2-4 Trees

COL 106

Shweta Agrawal, Amit Kumar, Dr.
llyas Cicekli, Naveen Garg

Multi-Way Trees

* A binary search tree:

— One value in each node 317

— At most 2 children

* An M-way search tree:
— Between 1 to (M-1) values in each node

— At most M children per node

10 | 44

2K

22 55 | 70
*

S0 66 | &3

M-way Search Tree Details

Each internal node of an M-way search has:

— Between 1 and M children
— Up to M-1 keys k;, k,, ... , Ky 4

k1 .- ki_1 ki R kM-1
[=\
G

Keys are ordered such that:

Multi-way Searching

Searching
fors=8

 Similar to binary searching

— If search key s<k,; search the
leftmost child

— If s>ky_y , search the rightmost
child
« Multiway search tree ?

— Find two keys k;_; and k; between :
which s falls, and search the child Not fourd!
V;.
* What would an in-order
traversal look like?

(2,4) Trees

* Properties:
— Each node has at
most 4 children

— All external nodes
have same depth

— Height h of (2,4)
tree is O(log n).
 How is the last
fact useful in
searching?

Insertion

* No problem if the node has
2 B @ 9D empty space

Insertion(2)

* Nodes get split if there is
9 @ insufficient space.

Insertion(3)

& * One key is promoted to
parent and inserted in there

Insertion(4)

* If parent node does not have sufficient space then it
is split.

* |In this manner splits can cascade.

NN

Insertion(5)

* Eventually we may have to create a new root.
* This increases the height of the tree

)

©

NN

Time for Search and Insertion

A search visits O(log N) nodes
An insertion requires O(log N) node splits
Each node split takes constant time

Hence, operations Search and Insert each take time O(log
N)

Deletion

* Delete 21.
* No problem if key to be deleted is in a leaf with at least 2 keys

.
/

>

.,

Deletion(2)

* If key to be deleted is in an internal node then we
swap it with its predecessor (which is in a leaf) and

then delete it.

e Delete 25 /‘
@)

BN

©

Deletion(3)

* |f after deleting a key a node becomes empty then
we borrow a key from its sibling.

e Delete 20

BN

/

Deletion(4)

* If sibling has only one key then we merge with it.

* The key in the parent node separating these two siblings
moves down into the merged node.

e Delete 23 /'

/| N

©
~

Delete(5)

Moving a key down from the parent corresponds to
deletion in the parent node.

The procedure is the same as for a leaf node.

Can lead to a cascade.. /!
Delete 18

\l ® \

(2,4) Conclusion

The height of a (2,4) tree is O(log n).

Split, transfer, and merge each take O(1).
Search, insertion and deletion each take
O(log n) .

Why are we doing this?

— (2,4) trees are fun! Why else would we do it?

— Well, there’s another reason, too.
— They can be extended to what are called B-trees.

(a,b) Trees

A multiway search tree.

Each node has at least a
and at most b children.

Root can have less than a
children but it has at least 2
children.

All leaf nodes are at the
same level.

Height h of (a,b) tree is at
least log,, n and at most
log, n.

Insertion

* No problem if the node has
DB 9D empty space

Insertion(2)

* Nodes get split if there is insufficient
® space.
® * The median key is promoted to the
parent node and inserted there

,

Insertion(3)

* Anode is split when it has exactly b keys.

* One of these is promoted to the parent and the
remaining are split between two nodes.

* Thus one node gets{ Wand the other
_lej keys.

* This implies that a-1 >= Lb_TlJ

Deletion

* |f after deleting a key a node becomes empty then
we borrow a key from its sibling.

e Delete 20

@ |

Deletion(2)

* If sibling has only one key then we merge with it.

 The key in the parent node separating these two
siblings moves down into the merged node.

e Delete 23

@ |

Deletion(3)

In an (a,b) tree we will merge a node with its
sibling if the node has a-2 keys and its sibling
has a-1 keys.

Thus the merged node has 2(a-1) keys.

This implies that 2(a-1) <= b-1 which is
equivalent to g-1 <= Lb 1J
b_lJ

Earlier too we argued that a-1 <= LT
This implies b >= 2a-1
Fora=2, b>=3

Conclusion

* The height of a (a,b) tree is O(log n).
e b>=2a-1.

 Forinsertion and deletion we take time
proportional to the height.

Disk Based Data Structures

* So far search trees were limited to main
memory structures
— Assumption: the dataset organized in a search tree
fits in main memory (including the tree overhead)

 Counter-example: transaction data of a bank >
1 GB per day

— use secondary storage media (punch cards, hard
disks, magnetic tapes, etc.)

« Consequence: make a search tree structure
secondary-storage-enabled

26

Hard Disks

 Large amounts of Fromabove 2
storage, but slow
access!

 Identifying a page takes
a long time (seek time
plus rotational delay - 5-
10ms), reading it is fast _

— pays off to read or write e, — —
data in pages (or blocks) of —
2-16 Kb in size. \L'j ——

| :T: — :|]

27

Algorithm analysis

* The running time of disk-based algorithms is
measured in terms of
— computing time (CPU)
— number of disk accesses

e sequential reads
* random reads

* Regular main-memory algorithms that work one data
element at a time can not be “ported” to secondary
storage in a straight-forward way

Principles

* Pointers in data structures are no longer
addresses in main memory but locations in

files
* |f x is a pointer to an object

— if x is in main memory key|[x] refers to it

— otherwise DiskRead(x) reads the object from
disk into main memory (DiskWrite(x) — writes it

back to disk)

Principles (2)

* A typical working pattern

01 ..

02 x < a pointer to some object

03 DiskRead (x)

04 operations that access and/or modify x

05 DiskWrite(x) //omitted if nothing changed
06 other operations, only access no modify
07 ..

* Operations:
— DiskRead(x:pointer _to_a node)
— DiskWrite(x:pointer_to _a_node)
— AllocateNode():pointer_to_a_ node

Binary-trees vs. B-trees

* Size of B-tree nodes is determined by the page size. One
page —one node.

* A B-tree of height 2 may contain > 1 billion keys!

* Heights of Binary-tree and B-tree are logarithmic
— B-tree: logarithm of base, e.g., 1000
— Binary-tree: logarithm of base 2

1 node

1000 1000 keys
1001
1001 nodes,
1000 1000 1000 | 1 001,000 keys
1001 100 1001
1,002,001 nodes,
1000 | | 1000 | ... | 1000 1,002,001,000 keys

B-tree Definitions

* Node x has fields
— n[x]: the number of keys of that the node
— key;[x] < ... < key,4[x]: the keys in ascending order
— leaf[x]: true if leaf node, false if internal node
— if internal node, then cy[x], ..., ¢, ,y:1[x]: pointers to children

* Keys separate the ranges of keys in the sub-trees. If k.
is an arbitrary key in the subtree ¢;[x] then k< key;[x]
< ki+1

B-tree Definitions (2)

* Every leaf has the same depth

* |[n a B-tree of a degree t all nodes except the
root node have between t and 2t children (i.e.,
between t—1 and 2t—1 keys).

* The root node has between 0 and 2t children
(i.e., between 0 and 2t—1 keys)

Height of a B-tree

* B-tree T of height h, containing n > 1 keys and minimum
degree t > 2, the following restriction on the height holds:

n+1
h<log —— #of
S 2 depth nodes
/1\ 0 1
t-1 t-1 1 92
/N t/N
t-1 t-1 | ... | t-1 t-1 t-1 |..|t-1] 2 2t

h
n21+(-1)>) 267 =2¢" 1
i=1

B-tree Operations

 An implementation needs to suport the
following B-tree operations
— Searching (simple)
— Creating an empty tree (trivial)
— Insertion (complex)
— Deletion (complex)

Searching

* Straightforward generalization of a binary tree
search

BTreeSearch (x, k)

01 i « 1

02 while 1 < n[x] and k > key, [x]
03 1 ¢« i+l

04 if 1 < n[x] and k = key,[x] then
05 return (x, 1)

Oc 1f leaf[x] then

08 return NIL

09 else DiskRead(c,[x])

10 return BTtreeSearch(c;[x], k)

Creating an Empty Tree

* Empty B-tree = create a root & write it to disk!

BTreeCreate (T)

01 x < AllocateNode()
02 leaf[x] <« TRUE;

03 nix] <« 0;

04 DiskWrite (x);

05 root[T] <« x

Splitting Nodes

* Nodes fill up and reach their maximum
capacity 2t—1

* Before we can insert a new key, we have to
“make room,” i.e., split nodes

Splitting Nodes (2)

* Result: one key of x moves up to parent + 2
nodes with t-1 keys

£ S &
X @ v NN MWE NS
. N S W ..
/ AN

l y= ci[x/ x— cii[X]
P QR

TV W

Splitting Nodes (2)

BTreeSplitChild (x,1i, V)
z <« AllocateNode ()
leaf[z] <« leaf[y]
niz] « t-1
for] < 1 to t-1
key;[z] <« keyy. [y]

if not leaf[y] then
for j < 1 to t

cylz] <« cycly]

nly] <« t-1

for § <« n[x]+1 downto i+l
Cyp [X] <« cylx]

Ci1[X] <« z

for J < n[x] downto 1

keyi, [x] < key,[x]

key; [x] <« key. [V]

nix] «< n[x]+1

DiskWrite (y)

DiskWrite (z)

DiskWrite (x)

X: parent node

y: node to be split and child of x
I: index in X

Z: new node

AN
Q”AV\
éﬁ* ‘QV

Split: Running Time
* Alocal operation that does not traverse the
tree

* ®(t) CPU-time, since two loops run t times
* 31/0Os

Inserting Keys

* Done recursively, by starting from the root and
recursively traversing down the tree to the
leaf level

* Before descending to a lower level in the tree,
make sure that the node contains < 2t -1
keys:

— so that if we split a node in a lower level we will
have space to include a new key

Inserting Keys (2)
e Special case: root is full (Btreelnsert)

BTreeInsert (T)

r < root[T]

if n(r] = 2t - 1 then
s <« AllocateNode ()
root [T] <« s
leaf[s] <« FALSE
nis] «< O
c,[s] <«
BTreeSplitChild(s, 1, r)
BTreeInsertNonFull (s, k)

else BTreelInsertNonFull (r, k)

Splitting the Root

e Splitting the root requires the creation of a
new root

ol SN
/ A'/DlFlHlL XN\T \ r A

1,

* The tree grows at the top instead of the
bottom

Inserting Keys

* BtreeNonkFull tries to insert a key k into a
node x, which is assumed to be non-full
when the procedure is called

* BTreelnsert and the recursion in
BTreelnsertNonFull guarantee that this
assumption is true!

Inserting Keys: Pseudo Code

BTreeInsertNonFull (x, k)
0l 1 « n[x]
02 1if leaf[x] then

03 while 1 2 1 and k < key, [x]

04 key.,,[x] <« key, [x] leaf insertion
05 1 i -1

06 key;,1 [x] « k

07 nix] < nix] + 1

08 DiskWrite (x)

09 else while 1 2 1 and k < key,[x]

10 P R | internal node:
Ll N traversing tree
12 DiskRead c; [x]

13 if nlc,[x]] = 2t - 1 then

14 BTreeSplitChild(x,1,c;[x])

15 if k > key,[x] then

16 1« 1 + 1

17 BTreeInsertNonFull (c;[x], k)

Insertion: Example

initial tree (t = 3)

/G/MPX~
A C D E J K N O||RSTUVI|Y Z
B inserted

G M P X |

i
A B CD E J K N O||RSTUVI|Y
Q inserted

s
ABCDEI|/JKI|NOI|/QRSI|UVI|Y

Insertion: Example (2)

- P <

L inserted

ABCDEI||JKL||NO|QRS|U

F inserted - P <
C G M T X
/// \\
A B|({IDEVF|JKULI|NUOI|[QRSI|U

Insertion: Running Time

* Disk I/O: O(h), since only O(1) disk accesses
are performed during recursive calls of
BTreelnsertNonFull

* CPU: O(th) = O(t log.n)
e At any given time there are O(1) number of
disk pages in main memory

Deleting Keys

* Done recursively, by starting from the root and
recursively traversing down the tree to the leaf level

* Before descending to a lower level in the tree, make
sure that the node contains >t keys (cf. insertion < 2t
— 1 keys)
* BtreeDelete distinguishes three different
stages/scenarios for deletion
— Case 1: key k found in leaf node
— Case 2: key k found in internal node
— Case 3: key k suspected in lower level node

Deleting Keys (2)
initial tree / P

C G M. | T X S

AB|DETF||JKLI|NOIQRSI||UV||Y Z

F deleted: P
case 1
L C G M| T_X .
/>
ABI|/DE|JKLI|NO|QRSI|UVI|YZ

 Case 1: Ifxthe key k is in node x, and x is a leaf, delete
k from x

Deleting Keys (3)

e Case 2: If the key k is in node x, and x is not a leaf,
delete k from x

— a) If the child y that precedes k in node x has at least t
keys, then find the predecessor k' of k in the sub-tree
rooted at y. Recursively delete k’, and replace k with k" in x.

— b) Symmetrically for successor node z

M deleted: - P
case 2a
L C, G\L\ X T {\\
AB|/DE||JK|[NOI|QRSI||UVI|IY Z

Deleting Keys (4)

* If both y and z have only t -1 keys, merge k with the
contents of z into y, so that x loses both k and the
pointers to z, and y now contains 2t — 1 keys. Free z
and recursively delete k from y.

G deleted: P
case 2¢

L C, L x-k T X
AN

AB|[DEUJKI||INO|[QRSI|UV]|Y Z

y=ytk+z-k

Deleting Keys - Distribution

Descending down the tree: if k not found in current
node x, find the sub-tree c[x] that has to contain k.

If c.[x] has only t — 1 keys take action to ensure that
we descent to a node of size at least t.

We can encounter two cases.

— If ¢,[x] has only t-1 keys, but a sibling with at least t keys,
give c.[x] an extra key by moving a key from x to c[x],
moving a key from c¢,[x]’s immediate left and right sibling up
into x, and moving the appropriate child from the sibling
into c¢.[x] - distribution

Deleting Keys — Distribution(2)

X goe k e X o Ko
/ VAN
c:lx] Kk’ c:lx] o K

| L, P.T J
delete B L LPd X

c¢xX] |A B||E J K||NOI||QRS||UV|Y Z
sibling

B deleted: - E L PT-X~

/S N\
K [N O||[Q R

A Cl|lJ N S||U V||Y Z

Q

X l/’ k{n’... X ym’
N > /
l\ m ... LdKkm
v
A

Deleting Keys - Merging

If ¢.[x] and both of ¢ [x]’s siblings have t — 1
keys, merge c. with one sibling, which involves
moving a key from x down into the new
merged node to become the median key for
that node

l/\
4 roy
B A B

Deleting Keys — Merging (2)

A
delete D Glx][c 1] sibling] T x.
AN N
A B D E J K N O||QRSI||[UV]||Y Z
D deleted: |
/Q/L/P\T\§\
A BIEJ K|NO|QRS|UYV]|Y Z

tree shrinks in height

Deletion: Running Time

Most of the keys are in the leaf, thus deletion most
often occurs there!

In this case deletion happens in one downward pass
to the leaf level of the tree

Deletion from an internal node might require
“backing up” (case 2)

Disk 1/0: O(h), since only O(1) disk operations are
produced during recursive calls

CPU: O(th) = O(t log,n)

Two-pass vs One pass Operations

e Two pass simpler to implement

* One pass saves time in traversing the tree
from root to leaf twice, but may cause more
splits/merges than one pass.

