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Multi-Way Trees

• A binary search tree:
– One value in each node 
– At most 2 children

• An M-way search tree:
– Between 1 to (M-1) values in each node

– At most M children per node



M-way Search Tree Details

Each internal node of an M-way search has:

– Between 1 and M children

– Up to M-1 keys k1 , k2 , ... , kM-1

Keys are ordered such that:
k1 < k2 < ... < kM-1

kM-1. . . . . . ki-1 kik1
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Multi-way Searching

• Similar to binary searching
– If search key s<k1 search the 

leftmost child

– If s>kd-1 ,  search the rightmost 
child

• Multiway search tree ?
– Find two keys ki-1 and ki between 

which s falls, and search the child 
vi.

• What would an in-order 
traversal look like?

3 4 6 8 23 24 27

22

5 10 25

11 13

14

Searching
for s = 8

Searching
for s = 12

Not found!

17 18 19 20 21

3 4
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(2,4) Trees

• Properties:
– Each node has at 

most 4 children
– All external nodes 

have same depth
– Height h of (2,4) 

tree is O(log n).

• How is the last 
fact useful in 
searching?

3 4 116 8 13 14 17

12

5 10 15



Insertion
• No problem if the node has 

empty space
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Insertion(2)
• Nodes get split if there is 

insufficient space. 
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Insertion(3)

• One key is promoted to 
parent and inserted in there 
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Insertion(4)

• If parent node does not have sufficient space then it 
is split.

• In this manner splits can cascade.
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Insertion(5)

• Eventually we may have to create a new root.

• This increases the height of the tree
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Time for Search and  Insertion

• A search visits  O(log N) nodes

• An insertion requires O(log N) node splits

• Each node split takes constant time

• Hence, operations Search and Insert each take time O(log 
N)



Deletion
• Delete 21.
• No problem if key to be deleted is in a leaf with at least 2 keys
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Deletion(2)

• If key to be deleted is in an internal node then we 
swap it with its predecessor (which is in a leaf) and 
then delete it.

• Delete 25
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Deletion(3)

• If after deleting a key a node becomes empty then 
we borrow a key from its sibling.

• Delete 20
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Deletion(4)

• If sibling has only one key then we merge with it.

• The key in the parent node separating these two siblings 
moves down into the merged node.

• Delete 23

1

4

9 11 14

24

26

18

3

13

12

108

6

5

2

29 30

23

22

15 28

7



Delete(5)
• Moving a key down from the parent corresponds to 

deletion in the parent node.

• The procedure is the same as for a leaf node.

• Can lead to a cascade .

• Delete 18
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(2,4) Conclusion

• The height of a (2,4) tree is O(log n).

• Split, transfer, and merge each take O(1).

• Search, insertion and deletion each take 
O(log n) .

• Why are we doing this?
– (2,4) trees are fun! Why else would we do it?

– Well, there’s another reason, too.

– They can be extended to what are called B-trees.



(a,b) Trees

• A multiway search tree.

• Each node has at least a
and at most b children.

• Root can have less than a 
children but it has at least 2 
children.

• All leaf nodes are at the 
same level.

• Height h of (a,b) tree is at 
least logb n and at most 
loga n.
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Insertion
• No problem if the node has 

empty space

1 4 9 14 20 24 26

25183
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Insertion(2)
• Nodes get split if there is insufficient 

space.

• The median key is promoted to the 
parent node and inserted there  

24 26
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29 7
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Insertion(3)

• A node is split when it has exactly b keys.

• One of these is promoted to the parent and the 
remaining are split between two nodes.

• Thus one node gets            and the other

keys.

• This implies that a-1 >= 



Deletion

• If after deleting a key a node becomes empty then 
we borrow a key from its sibling.

• Delete 20
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Deletion(2)
• If sibling has only one key then we merge with it.

• The key in the parent node separating these two 
siblings moves down into the merged node.

• Delete 23
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Deletion(3)

• In an (a,b) tree we will merge a node with its 
sibling if the node has a-2 keys and its sibling 
has a-1 keys.

• Thus the merged node has 2(a-1) keys.

• This implies that 2(a-1) <= b-1 which is 
equivalent to a-1 <=             .

• Earlier too we argued that a-1 <=          

• This implies b >= 2a-1

• For a=2,  b >= 3



Conclusion

• The height of a (a,b) tree is O(log n).

• b >= 2a-1.

• For insertion and deletion we take time 
proportional to the height.
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Disk Based Data Structures

• So far search trees were limited to main 
memory structures
– Assumption: the dataset organized in a search tree 

fits in main memory (including the tree overhead)

• Counter-example: transaction data of a bank > 
1 GB per day
– use secondary storage media (punch cards, hard 

disks, magnetic tapes, etc.)

• Consequence: make a search tree structure 
secondary-storage-enabled
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Hard Disks

• Large amounts of 
storage, but slow 
access!

• Identifying a page takes 
a long time (seek time 
plus rotational delay – 5-
10ms), reading it is fast
– pays off to read or write 

data in pages (or blocks) of 
2-16 Kb in size.



Algorithm analysis 

• The running time of disk-based algorithms is 
measured in terms of
– computing time (CPU) 

– number of disk accesses  
• sequential reads

• random reads

• Regular main-memory algorithms that work one data 
element at a time can not be “ported” to secondary 
storage in a straight-forward way



Principles

• Pointers in data structures are no longer 
addresses in main memory but locations in 
files

• If x is a pointer to an object

– if x is in main memory key[x] refers to it

– otherwise DiskRead(x) reads the object from 
disk into main memory (DiskWrite(x) – writes it 
back to disk)



Principles (2)

• A typical working pattern

• Operations:
– DiskRead(x:pointer_to_a_node)

– DiskWrite(x:pointer_to_a_node)

– AllocateNode():pointer_to_a_node

01 …

02 x  a pointer to some object

03 DiskRead(x)

04 operations that access and/or modify x

05 DiskWrite(x) //omitted if nothing changed

06 other operations, only access no modify

07 …



Binary-trees vs. B-trees
• Size of B-tree nodes is determined by the page size. One 

page – one node.

• A B-tree of height 2 may contain > 1 billion keys!

• Heights of Binary-tree and B-tree are logarithmic
– B-tree: logarithm of base, e.g., 1000

– Binary-tree: logarithm of base 2

1000

1000 1000 1000…

1001

1000 1000 1000…

1001 10011001

1 node

1000 keys

1001 nodes,

1,001,000 keys

1,002,001 nodes,

1,002,001,000 keys



B-tree Definitions

• Node x has fields

– n[x]: the number of keys of that the node

– key1[x]  …  keyn[x][x]: the keys in ascending order

– leaf[x]: true if leaf node, false if internal node

– if internal node, then c1[x], …, cn[x]+1[x]: pointers to children

• Keys separate the ranges of keys in the sub-trees. If ki

is an arbitrary key in the subtree ci[x] then ki keyi[x]
 ki+1



B-tree Definitions (2)

• Every leaf has the same depth 

• In a B-tree of a degree t all nodes except the 
root node have between t and 2t children (i.e., 
between t–1 and 2t–1 keys). 

• The root node has between 0 and 2t children 
(i.e., between 0 and 2t–1 keys)



Height of a B-tree

• B-tree T of height h, containing n  1 keys and minimum 
degree t  2, the following restriction on the height holds:
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B-tree Operations

• An implementation needs to suport the 
following B-tree operations 

– Searching (simple)

– Creating an empty tree (trivial)

– Insertion (complex)

– Deletion (complex)



Searching

• Straightforward generalization of a binary tree 
search

BTreeSearch(x,k)

01 i  1

02 while i  n[x] and k > keyi[x]

03 i  i+1

04 if i  n[x] and k = keyi[x] then

05 return(x,i)

06 if leaf[x] then

08 return NIL

09 else DiskRead(ci[x])

10 return BTtreeSearch(ci[x],k)



Creating an Empty Tree

• Empty B-tree = create a root & write it to disk!

BTreeCreate(T)

01 x  AllocateNode();

02 leaf[x]  TRUE;

03 n[x]  0;

04 DiskWrite(x);

05 root[T]  x



Splitting Nodes

• Nodes fill up and reach their maximum 
capacity 2t – 1

• Before we can insert a new key, we have to 
“make room,” i.e., split nodes



Splitting Nodes (2)

• Result: one key of x moves up to parent + 2 
nodes with t-1 keys

P   Q   R   S   T   V   W

T1 T8...

...   N   W   ...

y = ci[x]

x

...   N   S   W   ...

x

P   Q   R T   V   W

y = ci[x] z = ci+1[x]



Splitting Nodes (2)
BTreeSplitChild(x,i,y)

z  AllocateNode()

leaf[z]  leaf[y]

n[z]  t-1

for j  1 to t-1

keyj[z]  keyj+t[y]

if not leaf[y] then

for j  1 to t

cj[z]  cj+t[y]

n[y]  t-1

for j  n[x]+1 downto i+1

cj+1[x]  cj[x]

ci+1[x]  z

for j  n[x] downto i

keyj+1[x]  keyj[x]

keyi[x]  keyt[y]

n[x]  n[x]+1

DiskWrite(y)

DiskWrite(z)

DiskWrite(x)

x: parent node
y: node to be split and child of x
i: index in x
z: new node

P   Q   R   S   T   V   W

T1 T8...

...   N   W   ...

y = ci[x]

x



Split: Running Time

• A local operation that does not traverse the 
tree

• Q(t) CPU-time, since two loops run t times

• 3 I/Os 



Inserting Keys

• Done recursively, by starting from the root and 
recursively traversing down the tree to the 
leaf level 

• Before descending to a lower level in the tree, 
make sure that the node contains < 2t – 1 
keys:

– so that if we split a node in a lower level we will 
have space to include a new key



Inserting Keys (2)

• Special case: root is full (BtreeInsert)

BTreeInsert(T)

r  root[T]

if n[r] = 2t – 1 then

s  AllocateNode()

root[T]  s

leaf[s]  FALSE

n[s]  0

c1[s]  r

BTreeSplitChild(s,1,r)

BTreeInsertNonFull(s,k)

else BTreeInsertNonFull(r,k)



Splitting the Root

• Splitting the root requires the creation of a  
new root

• The tree grows at the top instead of the 
bottom

A   D   F   H   L   N   P

T1 T8...

root[T]
r

A   D   F L   N   P

H

root[T]
s

r



Inserting Keys 

• BtreeNonFull tries to insert a key k into a 
node x, which is assumed to be non-full
when the procedure is called

• BTreeInsert and the recursion in 
BTreeInsertNonFull guarantee that this 
assumption is true!



Inserting Keys: Pseudo Code
BTreeInsertNonFull(x,k)

01 i  n[x]

02 if leaf[x] then

03 while i  1 and k < keyi[x]

04 keyi+1[x]  keyi[x]

05 i  i - 1

06 keyi+1[x]  k

07 n[x]  n[x] + 1

08 DiskWrite(x)

09 else while i  1 and k < keyi[x]

10 i  i - 1

11 i  i + 1

12 DiskRead ci[x]

13 if n[ci[x]] = 2t – 1 then

14 BTreeSplitChild(x,i,ci[x])

15 if k > keyi[x] then

16 i  i + 1

17 BTreeInsertNonFull(ci[x],k)

leaf insertion

internal node: 

traversing tree



Insertion: Example

G   M   P   X

A   C   D   E J   K R   S   T   U   VN   O Y   Z

G   M   P   X

A   B   C   D   E J   K R   S   T   U   VN   O Y   Z

G   M   P   T   X

A   B   C   D   E J   K Q   R   SN   O Y   ZU   V

initial tree (t = 3)

B inserted

Q inserted



Insertion: Example (2)

G   M

A   B   C   D   E J   K   L Q   R   SN   O Y   ZU   V

T   X

P

C   G   M

A   B J   K   L Q   R   SN   O Y   ZU   V

T   X

P

D   E   F

L inserted

F inserted



Insertion: Running Time

• Disk I/O: O(h), since only O(1) disk accesses 
are performed during recursive calls of 
BTreeInsertNonFull

• CPU: O(th) = O(t logtn)

• At any given time there are O(1) number of 
disk pages in main memory



Deleting Keys
• Done recursively, by starting from the root and 

recursively traversing down the tree to the leaf level

• Before descending to a lower level in the tree, make 
sure that the node contains  t keys (cf. insertion < 2t
– 1 keys)

• BtreeDelete distinguishes three different 
stages/scenarios for deletion
– Case 1: key k found in leaf node

– Case 2: key k found in internal node

– Case 3: key k suspected in lower level node



Deleting Keys (2)

• Case 1: If the key k is in node x, and x is a leaf, delete
k from x

C   G   M

A   B J   K   L Q   R   SN   O Y   ZU   V

T   X

P

D   E   F

initial tree

C   G   M

A   B J   K   L Q   R   SN   O Y   ZU   V

T   X

P

D   E

F deleted: 

case 1

x



Deleting Keys (3)
• Case 2: If the key k is in node x, and x is not a leaf, 

delete k from x
– a) If the child y that precedes k in node x has at least t

keys, then find the predecessor k’ of k in the sub-tree 
rooted at y. Recursively delete k’, and replace k with k’ in x.

– b) Symmetrically for successor node z

C   G   L

A   B J   K Q   R   SN   O Y   ZU   V

T   X

P

D   E

M deleted: 

case 2a
x

y



Deleting Keys (4)

• If both y and z have only t –1 keys, merge k with the 
contents of z into y, so that x loses both k and the 
pointers to z, and y now contains 2t – 1 keys. Free z
and recursively delete k from y.

C   L

A   B D   E   J   K Q   R   SN   O Y   ZU   V

T   X

PG deleted: 

case 2c

y = y+k + z - k

x - k



Deleting Keys - Distribution

• Descending down the tree: if k not found in current 
node x, find the sub-tree ci[x] that has to contain k. 

• If ci[x] has only t – 1 keys take action to ensure that 
we descent to a node of size at least t. 

• We can encounter two cases.

– If ci[x] has only t-1 keys, but a sibling with at least t keys, 
give ci[x] an extra key by moving a key from x to ci[x], 
moving a key from ci[x]’s immediate left and right sibling up 
into x, and moving the appropriate child from the sibling 
into ci[x] - distribution



Deleting Keys – Distribution(2)

C   L   P   T   X

A   B E   J   K Q   R   SN   O Y   ZU   Vci[x]

x

sibling

delete B

B deleted: E   L   P   T   X

A   C J   K Q   R   SN   O Y   ZU   V

... k’ ...

... k       

A   B

ci[x]

x ... k ...

...       k’

A

ci[x]

B  



Deleting Keys - Merging

• If ci[x] and both of ci[x]’s siblings have t – 1 
keys, merge ci with one sibling, which involves 
moving a key from x down into the new 
merged node to become the median key for 
that node

x ... l’ m’ ...

...l k m ...       

A   B

x ... l’ k m’...

... l        m …

A B  

ci[x]



Deleting Keys – Merging (2)

tree shrinks in height

D deleted: 
C   L   P   T   X

A   B E   J   K Q   R   SN   O Y   ZU   V

C   L

A   B D   E   J   K Q   R   SN   O Y   ZU   V

T   X

P

delete D ci[x] sibling



Deletion: Running Time

• Most of the keys are in the leaf, thus deletion most 
often occurs there!

• In this case deletion happens in one downward pass 
to the leaf level of the tree

• Deletion from an internal node might require 
“backing up” (case 2)

• Disk I/O: O(h), since only O(1) disk operations are 
produced during recursive calls

• CPU: O(th) = O(t logtn)



Two-pass vs One pass Operations

• Two pass simpler to implement

• One pass saves time in traversing the tree 
from root to leaf twice, but may cause more 
splits/merges than one pass. 


