
2-4 Trees

COL 106

Shweta Agrawal, Amit Kumar, Dr.
Ilyas Cicekli, Naveen Garg

Multi-Way Trees

• A binary search tree:
– One value in each node
– At most 2 children

• An M-way search tree:
– Between 1 to (M-1) values in each node

– At most M children per node

M-way Search Tree Details

Each internal node of an M-way search has:

– Between 1 and M children

– Up to M-1 keys k1 , k2 , ... , kM-1

Keys are ordered such that:
k1 < k2 < ... < kM-1

kM-1. ki-1 kik1

March 9, 2021 4

Multi-way Searching

• Similar to binary searching
– If search key s<k1 search the

leftmost child

– If s>kd-1 , search the rightmost
child

• Multiway search tree ?
– Find two keys ki-1 and ki between

which s falls, and search the child
vi.

• What would an in-order
traversal look like?

3 4 6 8 23 24 27

22

5 10 25

11 13

14

Searching
for s = 8

Searching
for s = 12

Not found!

17 18 19 20 21

3 4

March 9, 2021 5

(2,4) Trees

• Properties:
– Each node has at

most 4 children
– All external nodes

have same depth
– Height h of (2,4)

tree is O(log n).

• How is the last
fact useful in
searching?

3 4 116 8 13 14 17

12

5 10 15

Insertion
• No problem if the node has

empty space

1 4 9 11 14 20 24 26 33 37

3525183

13 32

12

108

652

2940

393028

21 723

22

15

Insertion(2)
• Nodes get split if there is

insufficient space.

1 4 9 11 14 20 24 26 33 37

3525183

13 32

12

108

652

29

40393021

7

23

22

15 28

Insertion(3)

• One key is promoted to
parent and inserted in there

1 4 9 11 14 20 24

26

33 37

3525183

13 32

12

108

652

29

4039

30

21

7

23

22

15

28

Insertion(4)

• If parent node does not have sufficient space then it
is split.

• In this manner splits can cascade.

1

4

9 11 14 20 24

26

33

3525183

13 32

12

108

65

2

29 30

21 23

22

15

28

7

37 4039

Insertion(5)

• Eventually we may have to create a new root.

• This increases the height of the tree

1

4

9 11 14 20 24

26

33

352518

3

13 32

12

108

6

5

2

29 30

21 23

22

15

28

7

37 4039

Time for Search and Insertion

• A search visits O(log N) nodes

• An insertion requires O(log N) node splits

• Each node split takes constant time

• Hence, operations Search and Insert each take time O(log
N)

Deletion
• Delete 21.
• No problem if key to be deleted is in a leaf with at least 2 keys

1

4

9 11 14 20 24

26

2518

3

13

12

108

6

5

2

29 30

21 23

22

15

28

7

Deletion(2)

• If key to be deleted is in an internal node then we
swap it with its predecessor (which is in a leaf) and
then delete it.

• Delete 25

1

4

9 11 14 20 24

26

2518

3

13

12

108

6

5

2

29 30

23

22

15

28

7

Deletion(3)

• If after deleting a key a node becomes empty then
we borrow a key from its sibling.

• Delete 20

1

4

9 11 14 20

24

26

18

3

13

12

108

6

5

2

29 30

23

22

15

28

7

Deletion(4)

• If sibling has only one key then we merge with it.

• The key in the parent node separating these two siblings
moves down into the merged node.

• Delete 23

1

4

9 11 14

24

26

18

3

13

12

108

6

5

2

29 30

23

22

15 28

7

Delete(5)
• Moving a key down from the parent corresponds to

deletion in the parent node.

• The procedure is the same as for a leaf node.

• Can lead to a cascade .

• Delete 18

1

4

9 11 14

24 26

18

3

13

12

108

6

5

2

29 30

22

15 28

7

(2,4) Conclusion

• The height of a (2,4) tree is O(log n).

• Split, transfer, and merge each take O(1).

• Search, insertion and deletion each take
O(log n) .

• Why are we doing this?
– (2,4) trees are fun! Why else would we do it?

– Well, there’s another reason, too.

– They can be extended to what are called B-trees.

(a,b) Trees

• A multiway search tree.

• Each node has at least a
and at most b children.

• Root can have less than a
children but it has at least 2
children.

• All leaf nodes are at the
same level.

• Height h of (a,b) tree is at
least logb n and at most
loga n.

3 4 116 8 13 14 17

12

5 10 15

Insertion
• No problem if the node has

empty space

1 4 9 14 20 24 26

25183

13

8

52

29

28

21 723

22

15

Insertion(2)
• Nodes get split if there is insufficient

space.

• The median key is promoted to the
parent node and inserted there

24 26

25

13

29 7

23

22

281 4 9 14 20

183 8

52 15

Insertion(3)

• A node is split when it has exactly b keys.

• One of these is promoted to the parent and the
remaining are split between two nodes.

• Thus one node gets and the other

keys.

• This implies that a-1 >=

Deletion

• If after deleting a key a node becomes empty then
we borrow a key from its sibling.

• Delete 20

1 4 9 11 14 20

24

26

18

3

13

12

108

6

5

2 29 3023

22

15

28

7

Deletion(2)
• If sibling has only one key then we merge with it.

• The key in the parent node separating these two
siblings moves down into the merged node.

• Delete 23

1 4 9 11 14 20

18

3

13

12

108

6

5

2

22

157

24

26 29 3023

28

Deletion(3)

• In an (a,b) tree we will merge a node with its
sibling if the node has a-2 keys and its sibling
has a-1 keys.

• Thus the merged node has 2(a-1) keys.

• This implies that 2(a-1) <= b-1 which is
equivalent to a-1 <= .

• Earlier too we argued that a-1 <=

• This implies b >= 2a-1

• For a=2, b >= 3

Conclusion

• The height of a (a,b) tree is O(log n).

• b >= 2a-1.

• For insertion and deletion we take time
proportional to the height.

March 9, 2021 26

Disk Based Data Structures

• So far search trees were limited to main
memory structures
– Assumption: the dataset organized in a search tree

fits in main memory (including the tree overhead)

• Counter-example: transaction data of a bank >
1 GB per day
– use secondary storage media (punch cards, hard

disks, magnetic tapes, etc.)

• Consequence: make a search tree structure
secondary-storage-enabled

March 9, 2021 27

Hard Disks

• Large amounts of
storage, but slow
access!

• Identifying a page takes
a long time (seek time
plus rotational delay – 5-
10ms), reading it is fast
– pays off to read or write

data in pages (or blocks) of
2-16 Kb in size.

Algorithm analysis

• The running time of disk-based algorithms is
measured in terms of
– computing time (CPU)

– number of disk accesses
• sequential reads

• random reads

• Regular main-memory algorithms that work one data
element at a time can not be “ported” to secondary
storage in a straight-forward way

Principles

• Pointers in data structures are no longer
addresses in main memory but locations in
files

• If x is a pointer to an object

– if x is in main memory key[x] refers to it

– otherwise DiskRead(x) reads the object from
disk into main memory (DiskWrite(x) – writes it
back to disk)

Principles (2)

• A typical working pattern

• Operations:
– DiskRead(x:pointer_to_a_node)

– DiskWrite(x:pointer_to_a_node)

– AllocateNode():pointer_to_a_node

01 …

02 x  a pointer to some object

03 DiskRead(x)

04 operations that access and/or modify x

05 DiskWrite(x) //omitted if nothing changed

06 other operations, only access no modify

07 …

Binary-trees vs. B-trees
• Size of B-tree nodes is determined by the page size. One

page – one node.

• A B-tree of height 2 may contain > 1 billion keys!

• Heights of Binary-tree and B-tree are logarithmic
– B-tree: logarithm of base, e.g., 1000

– Binary-tree: logarithm of base 2

1000

1000 1000 1000…

1001

1000 1000 1000…

1001 10011001

1 node

1000 keys

1001 nodes,

1,001,000 keys

1,002,001 nodes,

1,002,001,000 keys

B-tree Definitions

• Node x has fields

– n[x]: the number of keys of that the node

– key1[x]  …  keyn[x][x]: the keys in ascending order

– leaf[x]: true if leaf node, false if internal node

– if internal node, then c1[x], …, cn[x]+1[x]: pointers to children

• Keys separate the ranges of keys in the sub-trees. If ki

is an arbitrary key in the subtree ci[x] then ki keyi[x]
 ki+1

B-tree Definitions (2)

• Every leaf has the same depth

• In a B-tree of a degree t all nodes except the
root node have between t and 2t children (i.e.,
between t–1 and 2t–1 keys).

• The root node has between 0 and 2t children
(i.e., between 0 and 2t–1 keys)

Height of a B-tree

• B-tree T of height h, containing n  1 keys and minimum
degree t  2, the following restriction on the height holds:

1
log

2
t

n
h




1

1

1 (1) 2 2 1
h

i h

i

n t t t



    

1

t - 1 t - 1

t - 1 t - 1 t - 1…

tt

t - 1 t - 1 t - 1…

0 1

1 2

2 2t

depth
#of

nodes

B-tree Operations

• An implementation needs to suport the
following B-tree operations

– Searching (simple)

– Creating an empty tree (trivial)

– Insertion (complex)

– Deletion (complex)

Searching

• Straightforward generalization of a binary tree
search

BTreeSearch(x,k)

01 i  1

02 while i  n[x] and k > keyi[x]

03 i  i+1

04 if i  n[x] and k = keyi[x] then

05 return(x,i)

06 if leaf[x] then

08 return NIL

09 else DiskRead(ci[x])

10 return BTtreeSearch(ci[x],k)

Creating an Empty Tree

• Empty B-tree = create a root & write it to disk!

BTreeCreate(T)

01 x  AllocateNode();

02 leaf[x]  TRUE;

03 n[x]  0;

04 DiskWrite(x);

05 root[T]  x

Splitting Nodes

• Nodes fill up and reach their maximum
capacity 2t – 1

• Before we can insert a new key, we have to
“make room,” i.e., split nodes

Splitting Nodes (2)

• Result: one key of x moves up to parent + 2
nodes with t-1 keys

P Q R S T V W

T1 T8...

... N W ...

y = ci[x]

x

... N S W ...

x

P Q R T V W

y = ci[x] z = ci+1[x]

Splitting Nodes (2)
BTreeSplitChild(x,i,y)

z  AllocateNode()

leaf[z]  leaf[y]

n[z]  t-1

for j  1 to t-1

keyj[z]  keyj+t[y]

if not leaf[y] then

for j  1 to t

cj[z]  cj+t[y]

n[y]  t-1

for j  n[x]+1 downto i+1

cj+1[x]  cj[x]

ci+1[x]  z

for j  n[x] downto i

keyj+1[x]  keyj[x]

keyi[x]  keyt[y]

n[x]  n[x]+1

DiskWrite(y)

DiskWrite(z)

DiskWrite(x)

x: parent node
y: node to be split and child of x
i: index in x
z: new node

P Q R S T V W

T1 T8...

... N W ...

y = ci[x]

x

Split: Running Time

• A local operation that does not traverse the
tree

• Q(t) CPU-time, since two loops run t times

• 3 I/Os

Inserting Keys

• Done recursively, by starting from the root and
recursively traversing down the tree to the
leaf level

• Before descending to a lower level in the tree,
make sure that the node contains < 2t – 1
keys:

– so that if we split a node in a lower level we will
have space to include a new key

Inserting Keys (2)

• Special case: root is full (BtreeInsert)

BTreeInsert(T)

r  root[T]

if n[r] = 2t – 1 then

s  AllocateNode()

root[T]  s

leaf[s]  FALSE

n[s]  0

c1[s]  r

BTreeSplitChild(s,1,r)

BTreeInsertNonFull(s,k)

else BTreeInsertNonFull(r,k)

Splitting the Root

• Splitting the root requires the creation of a
new root

• The tree grows at the top instead of the
bottom

A D F H L N P

T1 T8...

root[T]
r

A D F L N P

H

root[T]
s

r

Inserting Keys

• BtreeNonFull tries to insert a key k into a
node x, which is assumed to be non-full
when the procedure is called

• BTreeInsert and the recursion in
BTreeInsertNonFull guarantee that this
assumption is true!

Inserting Keys: Pseudo Code
BTreeInsertNonFull(x,k)

01 i  n[x]

02 if leaf[x] then

03 while i  1 and k < keyi[x]

04 keyi+1[x]  keyi[x]

05 i  i - 1

06 keyi+1[x]  k

07 n[x]  n[x] + 1

08 DiskWrite(x)

09 else while i  1 and k < keyi[x]

10 i  i - 1

11 i  i + 1

12 DiskRead ci[x]

13 if n[ci[x]] = 2t – 1 then

14 BTreeSplitChild(x,i,ci[x])

15 if k > keyi[x] then

16 i  i + 1

17 BTreeInsertNonFull(ci[x],k)

leaf insertion

internal node:

traversing tree

Insertion: Example

G M P X

A C D E J K R S T U VN O Y Z

G M P X

A B C D E J K R S T U VN O Y Z

G M P T X

A B C D E J K Q R SN O Y ZU V

initial tree (t = 3)

B inserted

Q inserted

Insertion: Example (2)

G M

A B C D E J K L Q R SN O Y ZU V

T X

P

C G M

A B J K L Q R SN O Y ZU V

T X

P

D E F

L inserted

F inserted

Insertion: Running Time

• Disk I/O: O(h), since only O(1) disk accesses
are performed during recursive calls of
BTreeInsertNonFull

• CPU: O(th) = O(t logtn)

• At any given time there are O(1) number of
disk pages in main memory

Deleting Keys
• Done recursively, by starting from the root and

recursively traversing down the tree to the leaf level

• Before descending to a lower level in the tree, make
sure that the node contains  t keys (cf. insertion < 2t
– 1 keys)

• BtreeDelete distinguishes three different
stages/scenarios for deletion
– Case 1: key k found in leaf node

– Case 2: key k found in internal node

– Case 3: key k suspected in lower level node

Deleting Keys (2)

• Case 1: If the key k is in node x, and x is a leaf, delete
k from x

C G M

A B J K L Q R SN O Y ZU V

T X

P

D E F

initial tree

C G M

A B J K L Q R SN O Y ZU V

T X

P

D E

F deleted:

case 1

x

Deleting Keys (3)
• Case 2: If the key k is in node x, and x is not a leaf,

delete k from x
– a) If the child y that precedes k in node x has at least t

keys, then find the predecessor k’ of k in the sub-tree
rooted at y. Recursively delete k’, and replace k with k’ in x.

– b) Symmetrically for successor node z

C G L

A B J K Q R SN O Y ZU V

T X

P

D E

M deleted:

case 2a
x

y

Deleting Keys (4)

• If both y and z have only t –1 keys, merge k with the
contents of z into y, so that x loses both k and the
pointers to z, and y now contains 2t – 1 keys. Free z
and recursively delete k from y.

C L

A B D E J K Q R SN O Y ZU V

T X

PG deleted:

case 2c

y = y+k + z - k

x - k

Deleting Keys - Distribution

• Descending down the tree: if k not found in current
node x, find the sub-tree ci[x] that has to contain k.

• If ci[x] has only t – 1 keys take action to ensure that
we descent to a node of size at least t.

• We can encounter two cases.

– If ci[x] has only t-1 keys, but a sibling with at least t keys,
give ci[x] an extra key by moving a key from x to ci[x],
moving a key from ci[x]’s immediate left and right sibling up
into x, and moving the appropriate child from the sibling
into ci[x] - distribution

Deleting Keys – Distribution(2)

C L P T X

A B E J K Q R SN O Y ZU Vci[x]

x

sibling

delete B

B deleted: E L P T X

A C J K Q R SN O Y ZU V

... k’ ...

... k

A B

ci[x]

x ... k ...

... k’

A

ci[x]

B

Deleting Keys - Merging

• If ci[x] and both of ci[x]’s siblings have t – 1
keys, merge ci with one sibling, which involves
moving a key from x down into the new
merged node to become the median key for
that node

x ... l’ m’ ...

...l k m ...

A B

x ... l’ k m’...

... l m …

A B

ci[x]

Deleting Keys – Merging (2)

tree shrinks in height

D deleted:
C L P T X

A B E J K Q R SN O Y ZU V

C L

A B D E J K Q R SN O Y ZU V

T X

P

delete D ci[x] sibling

Deletion: Running Time

• Most of the keys are in the leaf, thus deletion most
often occurs there!

• In this case deletion happens in one downward pass
to the leaf level of the tree

• Deletion from an internal node might require
“backing up” (case 2)

• Disk I/O: O(h), since only O(1) disk operations are
produced during recursive calls

• CPU: O(th) = O(t logtn)

Two-pass vs One pass Operations

• Two pass simpler to implement

• One pass saves time in traversing the tree
from root to leaf twice, but may cause more
splits/merges than one pass.

