
AVL Trees

COL 106

Amit Kumar

Shweta Agrawal

Slide Courtesy : Douglas Wilhelm Harder, MMath, UWaterloo

dwharder@alumni.uwaterloo.ca

March 4, 2021 2

• Running time of Insert and Delete depend
upon

the height of the BST.
• But the height of a BST on n nodes can be

close to n.

Problems with BST

Balance BST

Requirement:

– Define and maintain a balance condition to

ensure Q(ln(n)) height

– What are natural balance conditions ?

AVL Trees

– Named after Adelson-Velskii and Landis

Notion of balance in AVL trees?

Balance is defined by comparing the height of
the two sub-trees

Recall:
– An empty tree has height –1

– A tree with a single node has height 0

AVL Trees

A binary search tree is said to be AVL

balanced if:

– The difference in the heights between the left

and right sub-trees is at most 1, and

– Both sub-trees are themselves AVL trees

AVL Trees

AVL trees with 1, 2, 3, and 4 nodes:

AVL Trees

Here is a larger AVL tree (42 nodes):

AVL Trees

The root node is AVL-balanced:

– Both sub-trees are of height 4:

AVL Trees

All other nodes are AVL balanced

– The sub-trees differ in height by at most one

Height of an AVL Tree

By the definition of complete trees, any

complete binary search tree is an AVL tree

Thus an upper bound on the number of

nodes in an AVL tree of height h

a perfect binary tree with 2h + 1 – 1 nodes

– What is a lower bound?

Height of an AVL Tree

H(n): Height of an AVL tree on n nodes

Not well defined!

H(n): worst possible height of an AVL tree on n nodes

Want to show H(n) is O(log n).

Height of an AVL Tree

• Write a recurrence for H(n):

H(n) <= H(n/2) + 2

Looks like the recurrence for binary search.

Implies H(n) = O(log n)

Maintaining Balance

To maintain AVL balance, observe that:

– Inserting a node can increase the height of a

tree by at most 1

– Removing a node can decrease the height of

a tree by at most 1

March 4, 2021
14

Insertion in an AVL Tree

• Insert as in a BST.
• If height condition maintained

at each node, we are done!

How much time does it take
to check this condition ?

Maintaining Balance

Consider this AVL tree

Maintaining Balance

Consider inserting 15 into this tree

– In this case, the heights of none of the trees change

Insertion
• Inserting a node, v, into an AVL tree changes the

heights of some of the nodes in T.

• The only nodes whose heights can increase are the
ancestors of node v.

• If insertion causes T to become unbalanced, then
some ancestor of v would have a height-imbalance.

• We travel up the tree from v until we find the first
node x such that its grandparent z is unbalanced.

• Let y be the parent of node x.

• Rearrange by making the middle element the parent of
the other two.

17

Insertion (2)

18

To rebalance the subtree rooted at z, we must
perform a rotation.

44

17

32

78

50

48 62

88

54

z

x

y

44

17

32

62

50

48 54

78

88

z

x

y

Maintaining Balance

The tree remains balanced

Maintaining Balance

Consider inserting 42 into this tree

– In this case, the heights of none of the trees

change

Maintaining Balance

Suppose we insert 23 into our initial tree

Maintaining Balance

The heights of each of the sub-trees from

here to the root are increased by one

Maintaining Balance

However, only two of the nodes are

unbalanced: 17 and 36

Maintaining Balance

Consider adding 6:

Maintaining Balance

The height of each of the trees in the path

back to the root are increased by one

Maintaining Balance

The height of each of the trees in the path

back to the root are increased by one

– However, only the root node is now

unbalanced

Maintaining Balance

We may fix this by rotating the root to the right

Note: the right subtree of 12 became the left

subtree of 36

17 27

Rotations

• Rotation is a way of locally reorganizing a BST.

• Let u,v be two nodes such that u=parent(v)

• Keys(T1) < key(v) < keys(T2) < key (u) < keys(T3)

28

u

v

T1 T2

T3

u

v

T1

T2
T3

Insertion
• Insertion happens in subtree T1.

• ht(T1) increases from h to h+1.

• Since x remains balanced ht(T2) is h
or h+1 or h+2.

– If ht(T2)=h+2 then x is originally
unbalanced

– If ht(T2)=h+1 then ht(x) does not
increase.

– Hence ht(T2)=h.

• So ht(x) increases from h+1 to h+2.

29

z

x

y

T2T1

T3

T4

h to h+1 h

h+1 to h+2

Insertion(2)
• Since y remains balanced, ht(T3)

is h+1 or h+2 or h+3.

– If ht(T3)=h+3 then y is originally
unbalanced.

– If ht(T3)=h+2 then ht(y) does not
increase.

– So ht(T3)=h+1.

• So ht(y) inc. from h+2 to h+3.

• Since z was balanced ht(T4) is
h+1 or h+2 or h+3.

• z is now unbalanced and so
ht(T4)=h+1.

30

z

x

y

T2T1

T3

T4

h to h+1 h

h+1 to h+2

h+1

h+2 to h+3

h+1

h+3

Single rotation

The height of the subtree remains the same after
rotation. Hence no further rotations required

31

z

x

y

T2T1

T3

T4

h to h+1 h

h+1 to h+2

h+1

h+2 to h+3 h+1

zx

y

T2T1 T3 T4

h+1 h

h+2

h+1

h+3

h+1

h+3

h+2

rotation(y,z)

Double rotation

Final tree has same height as
original tree. Hence we need
not go further up the tree.

32

z

x

y

T3T2

T1

T4

h to h+1 h

h+1 to h+2
h+1

h+2 to h+3
h+1

h+3

z

x

y
T3

T2T1

T4

h+1

h
h+2

h+1

h+3 h+1

h+4

z

x

y

T3T2T1 T4

h+1 h

h+2

h+1

h+3

h+1

h+2

rotation(x,y)

rotation(x,z)

Restructuring
• The four ways to rotate nodes in an AVL tree, graphically

represented

-Single Rotations:

T0
T1

T2

T3

c = x
b = y

a = z

T0 T1 T2

T3

c = x

b = y

a = z
single rotation

33

T3
T2

T1

T0

a = x

b = y

c = z

T0T1T2

T3

a = x
b = y

c = z
single rotation

Restructuring (contd.)
• double rotations:

double rotationa = z

b = x

c = y

T0
T2

T1

T3 T0

T2
T3T1

a = z
b = x

c = y

34

double rotationc = z

b = x
a = y

T0
T2

T1

T3 T0

T2
T3 T1

c = z
b = x

a = y

Implementation Trick

Arrange x,y,z and their 4 children (which could be
NULL) in increasing order.

35

c1 x c2 y c3 z c4

y

x z

c1 c2 c3 c4

More examples : Insertion

Consider this AVL tree

Insertion

Insert 73

Insertion

The node 81 is unbalanced

– A left-left imbalance

Insertion

The node 81 is unbalanced

– A left-left imbalance

Insertion

The node 81 is unbalanced

– A left-left imbalance

– Promote the intermediate node to the

imbalanced node

Insertion

The node 81 is unbalanced

– A left-left imbalance

– Promote the intermediate node to the

imbalanced node

– 75 is that node

Insertion

The node 81 is unbalanced

– A left-left imbalance

– Promote the intermediate node to the

imbalanced node

– 75 is that node

Insertion

The tree is AVL balanced

Insertion

Insert 77

Insertion

The node 87 is unbalanced

– A left-right imbalance

Insertion

The node 87 is unbalanced

– A left-right imbalance

Insertion

The node 87 is unbalanced

– A left-right imbalance

– Promote the intermediate node to the

imbalanced node

Insertion

The node 87 is unbalanced

– A left-right imbalance

– Promote the intermediate node to the

imbalanced node

– 81 is that value

Insertion

The node 87 is unbalanced

– A left-right imbalance

– Promote the intermediate node to the

imbalanced node

– 81 is that value

Insertion

The tree is balanced

Insertion

Insert 76

Insertion

The node 78 is unbalanced

– A left-left imbalance

Insertion

The node 78 is unbalanced

– Promote 77

Insertion

Again, balanced

Insertion

Insert 80

Insertion

The node 69 is unbalanced

– A right-left imbalance

– Promote the intermediate node to the

imbalanced node

Insertion

The node 69 is unbalanced

– A left-right imbalance

– Promote the intermediate node to the imbalanced

node

– 75 is that value

Insertion

Again, balanced

Insertion

Insert 74

Insertion

The node 72 is unbalanced

– A right-right imbalance

– Promote the intermediate node to the

imbalanced node

– 75 is that value

Insertion

The node 72 is unbalanced

– A right-right imbalance

– Promote the intermediate node to the imbalanced

node

Insertion

Again, balanced

Insertion

Insert 67

Insertion

Again, balanced

Insertion

Insert 70

Insertion

The root node is now imbalanced

– A right-left imbalance

– Promote the intermediate node to the root

– 75 is that value

Insertion

The root node is imbalanced

– A right-left imbalance

– Promote the intermediate node to the root

– 63 is that node

Insertion

The result is balanced

Deletion

• When deleting a node in a BST, we either
delete a leaf or a node with only one child.

• In an AVL tree if a node has only one child
then that child is a leaf.

• Hence in an AVL tree we either delete a leaf or
the parent of a leaf.

73

Deletion(2)

• Let w be the node deleted.

• Let z be the first unbalanced node encountered while
travelling up the tree from w. Also, let y be the child of z
with larger height, and let x be the child of y with larger
height (what if tie happens?).

• We perform rotations to restore balance at the subtree
rooted at z.

• As this restructuring may upset the balance of another
node higher in the tree, we must continue checking for
balance until the root of T is reached

74

Deletion(3)

• Suppose deletion happens
in subtree T4 and its ht.
reduces from h to h-1.

• Since z was balanced but
is now unbalanced, ht(y) =
h+1.

• x has larger ht. than T3 and
so ht(x)=h.

• Since y is balanced ht(T3)=
h or h-1

75

z

x

y

T2T1

T3

T4

h-1 or h-2

h-1 or h-2

h h or h-1

h+1 h to h-1

h+2

Deletion(4)

• Since ht(x)=h, and x is
balanced ht(T1), ht(T2) is
h-1 or h-2.

• However, both T1 and T2

cannot have ht. h-2

76

z

x

y

T2T1

T3

T4

h-1 or h-2 h-1 or h-2

h h or h-1

h+1 h to h-1

h+2

Single rotation (deletion)

After rotation height of subtree might be 1 less than
original height. In that case we continue up the tree

77

z

x

y

T2T1

T3

T4

h-1 or h-2

h-1 or h-2

h h or h-1

h+1 h to h-1

h+2

zx

y

T2T1 T3 T4

h-1 or h-2 h-1 or h-2

h

h or h-1

h+1 or h+2

h-1

h or h+1

rotation(y,z)

Deletion: another case

• As before we can claim
that ht(y)=h+1 and
ht(x)=h.

• Since y is balanced ht(T1)
is h or h-1.

• If ht(T1) is h then we
would have picked x as the
root of T1.

• So ht(T1)=h-1
78

z

x

y

T3T2

T1

T4

h-1 or h-2 h-1 or h-2

h

h-1

h+1 h to h-1

h+2

Double rotation

Final tree has height less than
original tree. Hence we need to
continue up the tree

79

z

x

y

T3T2

T1

T4

h-1 or h-2 h-1 or h-2

h

h-1

h+1 h to h-1

h+2

z

x

y
T3

T2T1

T4

h-1 or h-2

h-1 or h-2h

h-1

h+1
h-1

h+2

z

x

y

T3T2T1 T4

h

h+1

h-1

h

rotation(x,y)

rotation(x,z)

h-1 h-1 or h-2 h-1 or h-2

Deletion

Consider the following AVL tree

Deletion

Suppose we erase the front node: 1

Deletion

While its previous parent, 2, is not unbalanced, its

grandparent 3 is

– The imbalance is in the right-right subtree

Deletion

We can correct this with a simple balance

Deletion

The node of that subtree, 5, is now balanced

Deletion

Recursing to the root, however, 8 is also unbalanced

– This is a right-left imbalance

Deletion

Promoting 11 to the root corrects the imbalance

Deletion

At this point, the node 11 is balanced

Deletion

Still, the root node is unbalanced

– This is a right-right imbalance

Deletion

Again, a simple balance fixes the imbalance

Deletion

The resulting tree is now AVL balanced

Running time of insertion & deletion

• Insertion

– We perform rotation only once but might have to go
O(log n) levels to find the unbalanced node.

– So time for insertion is O(log n)

• Deletion

– We need O(log n) time to delete a node.

– Rebalancing also requires O(log n) time.

– More than one rotation may have to be performed.

91

Arguments for AVL trees:

1. Search is O(log N) since AVL trees are always balanced.
2. Insertion and deletions are also O(logn)
3. The height balancing adds no more than a constant factor to

the speed of insertion.

Arguments against using AVL trees:

1. Difficult to program & debug; more space for balance factor.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and

use other structures (e.g. B-trees).

Pros and Cons of AVL Trees

