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• Running time of Insert and Delete depend 
upon

the height of the BST. 
• But the height of a BST on n nodes can be  

close to n. 

Problems with BST



Balance BST

Requirement:

– Define and maintain a balance condition to 

ensure Q(ln(n)) height  

– What are natural balance conditions ?



AVL Trees

– Named after Adelson-Velskii and Landis

Notion of balance in AVL trees?

Balance is defined by comparing the height of 
the two sub-trees

Recall:
– An empty tree has height –1

– A tree with a single node has height 0



AVL Trees

A binary search tree is said to be AVL 

balanced if:

– The difference in the heights between the left 

and right sub-trees is at most 1, and

– Both sub-trees are themselves AVL trees



AVL Trees

AVL trees with 1, 2, 3, and 4 nodes:



AVL Trees

Here is a larger AVL tree (42 nodes):



AVL Trees

The root node is AVL-balanced:

– Both sub-trees are of height 4:



AVL Trees

All other nodes are AVL balanced

– The sub-trees differ in height by at most one



Height of an AVL Tree

By the definition of complete trees, any 

complete binary search tree is an AVL tree

Thus an upper bound on the number of 

nodes in an AVL tree of height h

a perfect binary tree with 2h + 1 – 1 nodes

– What is a lower bound?



Height of an AVL Tree

H(n): Height of an AVL tree on n nodes

Not well defined!

H(n): worst possible height of an AVL tree on n nodes

Want to show H(n) is O(log n).



Height of an AVL Tree

• Write a recurrence for H(n):

H(n) <= H(n/2) + 2 

Looks like the recurrence for binary search.

Implies H(n) = O(log n)



Maintaining Balance

To maintain AVL balance, observe that:

– Inserting a node can increase the height of a 

tree by at most 1

– Removing a node can decrease the height of 

a tree by at most 1
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Insertion in an AVL Tree

• Insert as in a BST.
• If height condition maintained

at each node, we are done!

How much time does it take 
to check this condition ? 



Maintaining Balance

Consider this AVL tree



Maintaining Balance

Consider inserting 15 into this tree

– In this case, the heights of none of the trees change



Insertion
• Inserting a node, v, into an AVL tree changes the 

heights of some of the nodes in T.

• The only nodes whose heights can increase are the 
ancestors of node v.

• If insertion causes T to become unbalanced, then 
some ancestor of v would have a height-imbalance.

• We travel up the tree from v until we find the first 
node x such that its grandparent z is unbalanced.

• Let y be the parent of node x.

• Rearrange by making the middle element the parent of 
the other two. 
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Insertion (2)
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To rebalance the subtree rooted at z, we must 
perform a rotation.
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Maintaining Balance

The tree remains balanced



Maintaining Balance

Consider inserting 42 into this tree

– In this case, the heights of none of the trees 

change



Maintaining Balance

Suppose we insert 23 into our initial tree



Maintaining Balance

The heights of each of the sub-trees from 

here to the root are increased by one



Maintaining Balance

However, only two of the nodes are 

unbalanced:  17 and 36



Maintaining Balance

Consider adding 6:



Maintaining Balance

The height of each of the trees in the path 

back to the root are increased by one



Maintaining Balance

The height of each of the trees in the path 

back to the root are increased by one

– However, only the root node is now 

unbalanced



Maintaining Balance

We may fix this by rotating the root to the right

Note: the right subtree of 12 became the left 

subtree of 36
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Rotations

• Rotation is a way of locally reorganizing a BST.

• Let u,v be two nodes such that u=parent(v)

• Keys(T1) < key(v) < keys(T2) < key (u) < keys(T3)
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Insertion
• Insertion happens in subtree T1.

• ht(T1) increases from h to h+1.

• Since x remains balanced ht(T2) is h 
or h+1 or h+2.

– If ht(T2)=h+2 then x is originally 
unbalanced

– If ht(T2)=h+1 then ht(x) does not 
increase.

– Hence ht(T2)=h.

• So ht(x) increases from h+1 to h+2.
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Insertion(2)
• Since y remains balanced, ht(T3) 

is h+1 or h+2 or h+3.

– If ht(T3)=h+3 then y is originally 
unbalanced.

– If ht(T3)=h+2 then ht(y) does not 
increase.

– So ht(T3)=h+1.

• So ht(y) inc. from h+2 to h+3.

• Since z was balanced ht(T4) is 
h+1 or h+2 or h+3.

• z is now unbalanced and so 
ht(T4)=h+1.
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Single rotation

The height of the subtree remains the same after 
rotation. Hence no further rotations required
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Double rotation

Final tree has same height as 
original tree. Hence we need 
not go further up the tree.
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Restructuring
• The four ways to rotate nodes in an AVL tree, graphically 

represented

-Single Rotations:

T0
T1

T2

T3

c = x
b = y

a = z

T0 T1 T2

T3

c = x

b = y

a = z
single rotation
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Restructuring (contd.)
• double rotations:

double rotationa = z

b = x

c = y

T0
T2

T1

T3 T0

T2
T3T1

a = z
b = x

c = y
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Implementation Trick

Arrange x,y,z and their 4 children (which could be 
NULL) in increasing order. 
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More examples : Insertion

Consider this AVL tree



Insertion

Insert 73



Insertion

The node 81 is unbalanced

– A left-left imbalance



Insertion

The node 81 is unbalanced

– A left-left imbalance



Insertion

The node 81 is unbalanced

– A left-left imbalance

– Promote the intermediate node to the 

imbalanced node



Insertion

The node 81 is unbalanced

– A left-left imbalance

– Promote the intermediate node to the 

imbalanced node

– 75 is that node



Insertion

The node 81 is unbalanced

– A left-left imbalance

– Promote the intermediate node to the 

imbalanced node

– 75 is that node



Insertion

The tree is AVL balanced



Insertion

Insert 77



Insertion

The node 87 is unbalanced

– A left-right imbalance



Insertion

The node 87 is unbalanced

– A left-right imbalance



Insertion

The node 87 is unbalanced

– A left-right imbalance

– Promote the intermediate node to the 

imbalanced node



Insertion

The node 87 is unbalanced

– A left-right imbalance

– Promote the intermediate node to the 

imbalanced node

– 81 is that value



Insertion

The node 87 is unbalanced

– A left-right imbalance

– Promote the intermediate node to the 

imbalanced node

– 81 is that value



Insertion

The tree is balanced



Insertion

Insert 76



Insertion

The node 78 is unbalanced

– A left-left imbalance



Insertion

The node 78 is unbalanced

– Promote 77



Insertion

Again, balanced



Insertion

Insert 80



Insertion

The node 69 is unbalanced

– A right-left imbalance

– Promote the intermediate node to the 

imbalanced node



Insertion

The node 69 is unbalanced

– A left-right imbalance

– Promote the intermediate node to the imbalanced 

node

– 75 is that value



Insertion

Again, balanced



Insertion

Insert 74



Insertion

The node 72 is unbalanced

– A right-right imbalance

– Promote the intermediate node to the 

imbalanced node

– 75 is that value



Insertion

The node 72 is unbalanced

– A right-right imbalance

– Promote the intermediate node to the imbalanced 

node



Insertion

Again, balanced



Insertion

Insert 67



Insertion

Again, balanced



Insertion

Insert 70



Insertion

The root node is now imbalanced

– A right-left imbalance

– Promote the intermediate node to the root

– 75 is that value



Insertion

The root node is imbalanced

– A right-left imbalance

– Promote the intermediate node to the root

– 63 is that node



Insertion

The result is balanced



Deletion

• When deleting a node in a BST, we either 
delete a leaf or a node with only one child.

• In an AVL tree if a node has only one child 
then that child is a leaf. 

• Hence in an AVL tree we either delete a leaf or 
the parent of a leaf.
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Deletion(2)

• Let w be the node deleted.

• Let z be the first unbalanced node encountered while 
travelling up the tree from w. Also, let y be the child of z 
with larger height, and let x be the child of y with larger 
height (what if tie happens?).

• We perform rotations to restore balance at the subtree 
rooted at z.

• As this restructuring may upset the balance of another 
node higher in the tree, we must continue checking for 
balance until the root of T is reached
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Deletion(3)

• Suppose deletion happens 
in subtree T4 and its ht. 
reduces from h to h-1.

• Since z was balanced but 
is now unbalanced, ht(y) = 
h+1.

• x has larger ht. than T3 and 
so ht(x)=h.

• Since y is balanced ht(T3)= 
h or h-1
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Deletion(4)

• Since ht(x)=h, and x is 
balanced  ht(T1), ht(T2) is 
h-1 or h-2.

• However, both T1 and T2

cannot have ht. h-2
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Single rotation (deletion)

After rotation height of subtree might be 1 less than 
original height. In that case we continue up the tree
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Deletion: another case

• As before we can claim 
that ht(y)=h+1 and 
ht(x)=h.

• Since y is balanced ht(T1) 
is h or h-1.

• If ht(T1) is h then we 
would have picked x as the 
root of T1.

• So ht(T1)=h-1
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Double rotation

Final tree has height less than 
original tree. Hence we need to 
continue up the tree
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Deletion

Consider the following AVL tree



Deletion

Suppose we erase the front node:  1



Deletion

While its previous parent, 2, is not unbalanced, its 

grandparent 3 is

– The imbalance is in the right-right subtree



Deletion

We can correct this with a simple balance



Deletion

The node of that subtree, 5, is now balanced



Deletion

Recursing to the root, however, 8 is also unbalanced

– This is a right-left imbalance



Deletion

Promoting 11 to the root corrects the imbalance 



Deletion

At this point, the node 11 is balanced



Deletion

Still, the root node is unbalanced

– This is a right-right imbalance



Deletion

Again, a simple balance fixes the imbalance



Deletion

The resulting tree is now AVL balanced



Running time of insertion & deletion

• Insertion 

– We perform rotation only once but might have to go 
O(log n) levels to find the unbalanced node.

– So time for insertion is O(log n)

• Deletion

– We need O(log n) time to delete a node.

– Rebalancing also requires O(log n) time. 

– More than one rotation may have to be performed.
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Arguments for AVL trees:

1. Search is O(log N) since AVL trees are always balanced.
2. Insertion and deletions are also O(logn)
3. The height balancing adds no more than a constant factor to 

the speed of insertion.

Arguments against using AVL trees:

1. Difficult to program & debug; more space for balance factor.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and 

use other structures (e.g. B-trees).

Pros and Cons of AVL Trees


