AVL Trees

COL 106
 Amit Kumar
 Shweta Agrawal

Slide Courtesy : Douglas Wilhelm Harder, MMath, UWaterloo
dwharder@alumni.uwaterloo.ca

Problems with BST

- Running time of Insert and Delete depend upon
the height of the BST.
- But the height of a BST on n nodes can be close to n.

Balance BST

Requirement:

- Define and maintain a balance condition to ensure $\Theta(\ln (n))$ height
- What are natural balance conditions ?

AVL Trees

- Named after Adelson-Velskii and Landis

Notion of balance in AVL trees?
Balance is defined by comparing the height of the two sub-trees

Recall:

- An empty tree has height -1
- A tree with a single node has height 0

AVL Trees

A binary search tree is said to be AVL balanced if:

- The difference in the heights between the left and right sub-trees is at most 1 , and
- Both sub-trees are themselves AVL trees

AVL Trees

AVL trees with $1,2,3$, and 4 nodes:
(5)

AVL Trees

Here is a larger AVL tree (42 nodes):

AVL Trees

The root node is AVL-balanced:

- Both sub-trees are of height 4:

AVL Trees

All other nodes are AVL balanced

- The sub-trees differ in height by at most one

Height of an AVL Tree

By the definition of complete trees, any complete binary search tree is an AVL tree

Thus an upper bound on the number of nodes in an AVL tree of height h
a perfect binary tree with $2^{h+1}-1$ nodes

- What is a lower bound?

Height of an AVL Tree

$H(n)$: Height of an AVL tree on n nodes

Not well defined!
$H(n)$: worst possible height of an AVL tree on n nodes

Want to show $\mathrm{H}(\mathrm{n})$ is $\mathrm{O}(\log \mathrm{n})$.
(5)

Height of an AVL Tree

- Write a recurrence for $\mathrm{H}(\mathrm{n})$:
$H(n)<=H(n / 2)+2$

Looks like the recurrence for binary search.

Implies $\mathrm{H}(\mathrm{n})=\mathrm{O}(\log \mathrm{n})$

Maintaining Balance

To maintain AVL balance, observe that:

- Inserting a node can increase the height of a tree by at most 1
- Removing a node can decrease the height of a tree by at most 1

Insertion in an AVL Tree

- Insert as in a BST.

If height condition maintained at each node, we are done!

How much time does it take to check this condition?

Maintaining Balance

Consider this AVL tree

Maintaining Balance

Consider inserting 15 into this tree

- In this case, the heights of none of the trees change

Insertion

- Inserting a node, v, into an AVL tree changes the heights of some of the nodes in T .
- The only nodes whose heights can increase are the ancestors of node v.
- If insertion causes T to become unbalanced, then some ancestor of v would have a height-imbalance.
- We travel up the tree from v until we find the first node x such that its grandparent z is unbalanced.
- Let y be the parent of node x.
- Rearrange by making the middle element the parent of the other two.

Insertion (2)

To rebalance the subtree rooted at z, we must perform a rotation.

Maintaining Balance

The tree remains balanced

Maintaining Balance

Consider inserting 42 into this tree

- In this case, the heights of none of the trees change

Maintaining Balance

Suppose we insert 23 into our initial tree

Maintaining Balance

The heights of each of the sub-trees from here to the root are increased by one

Maintaining Balance

However, only two of the nodes are unbalanced: 17 and 36

Maintaining Balance

Consider adding 6 :

Maintaining Balance

The height of each of the trees in the path back to the root are increased by one

Maintaining Balance

The height of each of the trees in the path back to the root are increased by one

- However, only the root node is now unbalanced

Maintaining Balance

We may fix this by rotating the root to the right

Note: the right subtree of 12 became the left subtree of 36

Rotations

- Rotation is a way of locally reorganizing a BST.
- Let u, v be two nodes such that $u=p a r e n t(v)$
- $\operatorname{Keys}\left(\mathrm{T}_{1}\right)<\operatorname{key}(\mathrm{v})<\operatorname{keys}\left(\mathrm{T}_{2}\right)<\operatorname{key}(\mathrm{u})<\operatorname{keys}\left(\mathrm{T}_{3}\right)$

Insertion

- Insertion happens in subtree T_{1}.
- $h t\left(T_{1}\right)$ increases from h to $h+1$.
- Since x remains balanced $h t\left(T_{2}\right)$ is h or $h+1$ or $h+2$.
- If $h t\left(T_{2}\right)=h+2$ then x is originally unbalanced
- If $h t\left(T_{2}\right)=h+1$ then $h t(x)$ does not increase.
- Hence ht $\left(\mathrm{T}_{2}\right)=$ h.
is h

h to $h+1$
h
- So ht(x) increases from h+1 to h+2.

Insertion(2)

- Since y remains balanced, $\mathrm{ht}\left(\mathrm{T}_{3}\right)$
 is $\mathrm{h}+1$ or $\mathrm{h}+2$ or $\mathrm{h}+3$.
- If $h t\left(T_{3}\right)=h+3$ then y is originally unbalanced.
- If $h t\left(T_{3}\right)=h+2$ then $h t(y)$ does not increase.
- So ht $\left(T_{3}\right)=h+1$.
- So ht(y) inc. from h+2 to h+3.
- Since z was balanced $h t\left(T_{4}\right)$ is $h+1$ or h+2 or h+3.
- z is now unbalanced and so $h t\left(T_{4}\right)=h+1$.

Single rotation

The height of the subtree remains the same after rotation. Hence no further rotations required

rotation(x,z)

Final tree has same height as original tree. Hence we need not go further up the tree.

Restructuring

- The four ways to rotate nodes in an AVL tree, graphically represented
-Single Rotations:

Restructuring (contd.)

- double rotations:

Implementation Trick

Arrange x, y, z and their 4 children (which could be NULL) in increasing order.

More examples : Insertion

Consider this AVL tree

Insertion

Insert 73

Insertion

The node 81 is unbalanced

- A left-left imbalance

Insertion

The node 81 is unbalanced

- A left-left imbalance

Insertion

The node 81 is unbalanced

- A left-left imbalance

Insertion

The node 81 is unbalanced

- A left-left imbalance
- Promote the intermediate node to the imbalanced node
- 75 is that node

Insertion

The node 81 is unbalanced

- A left-left imbalance
- Promote the intermediate node to the imbalanced node
-75 is that node

Insertion

The tree is AVL balanced

Insertion

Insert 77

Insertion

The node 87 is unbalanced

- A left-right imbalance

Insertion

The node 87 is unbalanced

- A left-right imbalance

Insertion

The node 87 is unbalanced

- A left-right imbalance

Insertion

The node 87 is unbalanced

- A left-right imbalance
- Promote the intermediate node to the imbalanced node
- 81 is that value

Insertion

The node 87 is unbalanced

- A left-right imbalance
- Promote the intermediate node to the imbalanced node
- 81 is that value

Insertion

The tree is balanced

Insertion

Insert 76

Insertion

The node 78 is unbalanced

- A left-left imbalance

Insertion

The node 78 is unbalanced

- Promote 77

Insertion

Again, balanced

Insertion

Insert 80

Insertion

The node 69 is unbalanced

- A right-left imbalance
- Promote the intermediate node to the imbalanced node

Insertion

The node 69 is unbalanced

- A left-right imbalance
- Promote the intermediate node to the imbalanced node
- 75 is that value

Insertion

Again, balanced

Insertion

Insert 74

Insertion

The node 72 is unbalanced - A right-right imbalance

Insertion

The node 72 is unbalanced

- A right-right imbalance
- Promote the intermediate node to the imbalanced node

Insertion

Again, balanced

Insertion

Insert 67

Insertion

Again, balanced

Insertion

Insert 70

Insertion

The root node is now imbalanced

- A right-left imbalance

Insertion

The root node is imbalanced

- A right-left imbalance
- Promote the intermediate node to the root
-63 is that node

Insertion

The result is balanced

Deletion

- When deleting a node in a BST, we either delete a leaf or a node with only one child.
- In an AVL tree if a node has only one child then that child is a leaf.
- Hence in an AVL tree we either delete a leaf or the parent of a leaf.

Deletion(2)

- Let w be the node deleted.
- Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with larger height, and let x be the child of y with larger height (what if tie happens?).
- We perform rotations to restore balance at the subtree rooted at z.
- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached

Deletion(3)

- Suppose deletion happens in subtree T_{4} and its ht. reduces from h to $h-1$.
- Since z was balanced but is now unbalanced, ht(y) = $h+1$.
- x has larger ht. than T_{3} and so ht $(x)=h$.
- Since y is balanced $\mathrm{ht}\left(\mathrm{T}_{3}\right)=$ h or h-1

Deletion(4)

- Since ht $(x)=h$, and x is balanced $\mathrm{ht}\left(\mathrm{T}_{1}\right)$, $\mathrm{ht}\left(\mathrm{T}_{2}\right)$ is h-1 or h-2.
- However, both T_{1} and T_{2} cannot have ht. h-2

Single rotation (deletion)

rotation (y, z)

After rotation height of subtree might be 1 less than original height. In that case we continue up the tree

Deletion: another case

- As before we can claim that $h t(y)=h+1$ and $h t(x)=h$.
- Since y is balanced $\mathrm{ht}\left(\mathrm{T}_{1}\right)$ is h or $h-1$.
- If $\mathrm{ht}\left(\mathrm{T}_{1}\right)$ is h then we would have picked x as the root of T_{1}.
- So ht $\left(T_{1}\right)=h-1$

Deletion

Consider the following AVL tree

Deletion

Suppose we erase the front node: 1

Deletion

While its previous parent, 2 , is not unbalanced, its grandparent 3 is

Deletion

We can correct this with a simple balance

Deletion

The node of that subtree, 5 , is now balanced

Deletion

Recursing to the root, however, 8 is also unbalanced

- This is a right-left imbalance

Deletion

Promoting 11 to the root corrects the imbalance

Deletion

At this point, the node 11 is balanced

Deletion

Still, the root node is unbalanced

- This is a right-right imbalance

Deletion

Again, a simple balance fixes the imbalance

Deletion

The resulting tree is now AVL balanced

Running time of insertion \& deletion

- Insertion
- We perform rotation only once but might have to go $\mathrm{O}(\log \mathrm{n})$ levels to find the unbalanced node.
- So time for insertion is $O(\log n)$
- Deletion
- We need $O(\log n)$ time to delete a node.
- Rebalancing also requires $\mathrm{O}(\log n)$ time.
- More than one rotation may have to be performed.

Pros and Cons of AVL Trees

Arguments for AVL trees:

1. Search is $O(\log N)$ since $A V L$ trees are always balanced.
2. Insertion and deletions are also O(logn)
3. The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:

1. Difficult to program \& debug; more space for balance factor.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
