Trees COL 106

Acknowledgement :Many slides are courtesy Douglas Harder, UWaterloo

Trees

A rooted tree data structure stores information in nodes

- Similar to linked lists:
- There is a first node, or root
- Each node has variable number of references to successors (children)
- Each node, other than the root, has exactly one node as its predecessor (or parent)

What are trees suitable for ?

To store hierarchy of people

To store organization of departments

To capture the evolution of languages

To organize file-systems

Unix file system

Markup elements in a webpage

To store phylogenetic data Phylogenetic Tree of Life

Bacteria

Archaea
Eukaryota
 concepts using actual phylogenetic data.

Terminology

All nodes will have zero or more child nodes or children

- I has three children: J, K and L

For all nodes other than the root node, there is one parent node
-H is the parent of I

Terminology

The degree of a node is defined as the number of its children: $\quad \operatorname{deg}(I)=3$

Nodes with the same parent are siblings

- J, K, and L are siblings

Terminology

Phylogenetic trees have nodes with degree 2 or 0 :

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology

Nodes with degree zero are also called leaf nodes

All other nodes are said to be internal nodes, that is, they are internal to the tree

Terminology

Leaf nodes:

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology

Internal nodes:

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology

These trees are equal if the order of the children is ignored (Unordered trees)

They are different if order is relevant (ordered trees)

- We will usually examine ordered trees (linear orders)
- In a hierarchical ordering, order is not relevant

Terminology

The shape of a rooted tree gives a natural flow from the root node, or just root

Terminology

A path is a sequence of nodes

$$
\left(a_{0}, a_{1}, \ldots, a_{n}\right)
$$

where a_{k+1} is a child of a_{k} is

The length of this path is n
E.g., the path ($\mathrm{B}, \mathrm{E}, \mathrm{G}$) has length 2

Terminology

Paths of length 10 (11 nodes) and 4 (5 nodes)

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology

For each node in a tree, there exists a unique path from the root node to that node

The length of this path is the depth of the node, e.g.,

- E has depth 2
- L has depth 3

Terminology

Nodes of depth up to 17

Terminology

The height of a tree is defined as the maximum depth of any node within the tree

The height of a tree with one node is 0

- Just the root node

For convenience, we define the height of the empty tree to be -1

Terminology

The height of this tree is 17

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology

If a path exists from node a to node b :
$-a$ is an ancestor of b
$-b$ is a descendent of a

Thus, a node is both an ancestor and a descendant of itself

- We can add the adjective strict to exclude equality: a is a strict descendent of b if a is a descendant of b but $a \neq b$

The root node is an ancestor of all nodes

Terminology

The descendants of node B are B, C, D, E, F, and G:

The ancestors of node I are I, H, and A :

Terminology

All descendants (including itself) of the indicated node

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology

All ancestors (including itself) of the indicated node

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology

Another approach to a tree is to define the tree recursively:

- A degree-0 node is a tree
- A node with degree n is a tree if it has n children and all of its children are disjoint trees (i.e., with no intersecting nodes)

Given any node a within a tree with root r, the collection of a and all of its descendants is said to be a subtree of the tree with root a

Example: XHTML

Consider the following XHTML document

```
<html>
        <head>
            <title>Hello World!</title>
        </head>
        <body>
            <h1>This is a <u>Heading</u></h1>
            <p>This is a paragraph with some
            <u>underlined</u> text.</p>
        </body>
    </html>
```


Example: XHTML

Consider the following XHTML document

Example: XHTML

The nested tags define a tree rooted at the HTML tag

<html>

<head>
<title>Hello World!</title>
</head>
<body>
<h1>This is a <u>Heading</u></h1>

Example: XHTML

Web browsers render this tree as a web page

Iterator ADT

Most ADTs in Java can provide an iterator object, used to traverse all the data in any linear ADT.

Iterator Interface

```
public interface Iterator<E>{
    boolean hasNext();
    E next();
    void remove(); // Optional
}
```


Getting an Iterator

You get an iterator from an ADT by calling the method iterator () ;

Iterator<Integer> iter = myList.iterator();

Now a simple while loop can process each data value in the ADT:
while(iter.hasNext()) \{
process iter.next()
\}

Adding Iterators to SimpleArrayList is easy

First, we add the iterator() method to SimpleArrayList:
public Iterator<E> iterator() \{ return new
ArrayListIterator<E>(this);
\}

Then we implement the iterator class for Lists:

```
import java.util.*;
public class ArrayListIterator<E>
    implements Iterator<E> {
    // *** fields ***
    private SimpleArrayList<E> list;
    private int curPos;
    public ArrayListIterator(
        SimpleArrayList<E> list) {
    this.list = list;
    curPos = 0;
}
```

```
public boolean hasNext() {
        return curPos < list.size();
    }
public E next() {
        if (!hasNext()) throw
            new NoSuchElementException();
    E result = list.get(curPos);
    curPos++;
    return result;
}
    public void remove() {
        throw new UnsupportedOperationException();
    }
}
```


Tree ADT

- We use positions to abstract nodes
- Generic methods:
- integer size()
- boolean isEmpty()
- objectIterator elements()
- Accessor methods:
- node root()
- node parent(p)
- nodelterator children(p)
- Query methods:
- boolean isInternal(p)
- boolean isLeaf (p)
- boolean isRoot(p)
- Update methods:
- swapElements(p, q)
- object replaceElement(p, o)
- Additional update methods may be defined by data structures implementing the Tree ADT

A Linked Structure for General Trees

- A node is represented by an object storing
- Element
- Parent node
- Sequence of children nodes

A Linked Structure for General Trees

Class Node \{
Object element;
Node parent;
List<Node> Children; // or array of Nodes
\}

Tree using Array

- Each node contains a field for data and an array of pointers to the children for that node
- Missing child will have null pointer
- Tree is represented by pointer to root
- Allows access to $i^{\text {th }}$ child in $O(1)$ time
- Very wasteful in space when only few nodes in tree have many children (most pointers are null)

info			
p_{0}	p_{1}	\cdots	$p_{b f-1}$

Tree Traversals

- A traversal visits the nodes of a tree in a systematic manner
- We will see three types of traversals
- Pre-order
- Post-order
- In-order

Flavors of (Depth First) Traversal

- In a preorder traversal, a node is visited before its descendants
- In a postorder traversal, a node is visited after its descendants
- In an inorder traversal a node is visited after its left subtree and before its right subtree

Preorder Traversal

\square Process the root
国 Process the nodes in the all subtrees in their order

```
Algorithm preOrder(v)
    visit(v)
    for each child w of v
        preOrder(w)
```


Preorder Traversal

Preorder traversal: node is visited before its descendants

Postorder traversal

1. Process the nodes in all subtrees in their order
2. Process the root
```
Algorithm postOrder(v)
    for each child w of v
        postOrder(w)
    visit(v)
```


Postorder Traversal

Postorder traversal: node is visited before its descendants

Inorder traversal

1. Process the nodes in the left subtree
2. Process the root
3. Process the nodes in the right subtree
```
Algorithm InOrder(v)
    InOrder(v->left)
    visit(v)
    InOrder(v->right)
```

For simplicity, we consider tree having at most 2 children, though it can be generalized.

Inorder Traversal

Inorder traversal: node is visited after its left subtree and before its right subtree

Computing Height of Tree

Can be computed using the following idea:

1. The height of a leaf node is 0
2. The height of a node other than the leaf is the maximum of the height of the left subtree and the height of the right subtree plus 1.
Height(v) $=\max [$ height $(v \rightarrow$ left $)+$ height $(v \rightarrow$ right $)]+1$

Details left as exercise.

More examples

Which traversal will use if:

1. Want to evaluate the depth of every node ?
2. Given a tree representing arithmetic expression, print it in postfix notation ?
3. Given the directory structure of files, figure out the total memory usage ?
4. Given the directory structure of files, print the complete file names for each file?

Binary Trees

Every node has degree up to 2 .
Proper binary tree: each internal node has degree exactly 2.

Binary Tree

- A binary tree is a tree with the following properties:
- Each internal node has two children
- The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Alternative recursive definition: a binary tree is either
- a tree consisting of a single node, or
- a tree whose root has an ordered pair of children, each of which is a disjoint binary tree
- Applications:
- arithmetic expressions
- decision processes
- searching

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
- internal nodes: operators
- leaves: operands
- Example: arithmetic expression tree for the expression $(2 *(a-1)+(3 * b))$

How many leaves L does a complete binary tree of height h have?

The number of leaves at depth $d=2^{d}$
If the height of the tree is h it has 2^{h} leaves.
$L=2^{h}$.

What is the height h of a complete binary tree with L leaves?

$$
\begin{array}{ll}
\text { leaves }=1 & \text { height }=0 \\
\text { leaves }=2 & \text { height }=1 \\
\text { leaves }=4 & \text { height }=2 \\
\text { leaves }=\mathrm{L} & \text { height }=\log _{2} \mathrm{~L}
\end{array}
$$

$$
\begin{aligned}
& \text { Since } L=2^{h} \\
& \log _{2} L=\log _{2} 2^{h} \\
& h=\log _{2} L
\end{aligned}
$$

The number of internal nodes of a complete binary tree of height h is ?

$$
\begin{array}{ll}
\text { Internal nodes }=0 & \text { height }=0 \\
\text { Internal nodes }=1 & \text { height }=1 \\
\text { Internal nodes }=1+2 & \text { height }=2 \\
\text { Internal nodes }=1+2+4 & \text { height }=3
\end{array}
$$

$1+2+2^{2}+\ldots+2^{h-1}=2^{h}-1$
Geometric series

Thus, a complete binary tree of height $=\mathrm{h}$ has $2^{h}-1$ internal nodes.

The number of nodes n of a complete binary tree of height h is?

nodes $=1$	height $=0$
nodes $=3$	height $=1$
nodes $=7$	height $=2$
nodes $=2^{h+1}-1$	height $=\mathrm{h}$

Since L = 2^{h} and since the number of internal nodes $=2^{h}-1$ the total number of nodes $n=2^{h}+2^{h}-1=2\left(2^{h}\right)-1=2^{h+1}-1$.

If the number of nodes is n then what is the height?

nodes $=1$
nodes $=3$
nodes $=7$
nodes $=n$
height $=0$
height $=1$
height $=2$
height $=\log _{2}(\mathrm{n}+1)-1$

$$
\begin{aligned}
& \text { Since } n=2^{h+1}-1 \\
& n+1=2^{h+1} \\
& \log _{2}(n+1)=\log _{2} 2^{h+1} \\
& \log _{2}(n+1)=h+1 \\
& h=\log _{2}(n+1)-1
\end{aligned}
$$

What if the tree is not complete (but proper)?

Height could lie in the range $[\log n, n / 2]$
Number of leaves $=$ Number of internal nodes +1

BinaryTree ADT

- The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT
- Additional methods:
- node leftChild(p)
- node rightChild(p)
- node sibling(p)
- Update methods may be defined by data structures implementing the BinaryTree ADT

