Recursion

The Recursion Pattern

- Classic example - the factorial function:

$$
n!=1 \cdot 2 \cdot 3 \cdot \cdots \cdot(n-1) \cdot n
$$

- Recursive definition:

$$
f(n)=\left\{\begin{array}{cc}
1 & \text { if } n=0 \\
n \cdot f(n-1) & \text { else }
\end{array}\right.
$$

1. int factorial(int n)
2. \{
3. if $(\mathrm{n}==0) \quad / /$ base case
4. return 1;
5. else if $(\mathrm{n}==0) \quad / /$ recursive case
6. return n * factorial($\mathrm{n}-1$);
7. \}

Content of a Recursive Method

- Base case(s)
- Values of the input variables for which we perform no recursive calls are called base cases (there should be at least one base case).
- Every possible chain of recursive calls must eventually reach a base case.
- Recursive calls
- Calls to the current method.
- Each recursive call should be defined so that it makes progress towards a base case.

A Perspective on Recursion

1. Decomposition

- Decompose the problem into smaller identical problems

2. Base case

- Smallest problem with known solution

3. Composition

- Compose the solutions for smaller problems

The Recursion Pattern

- Decomposition into smaller problems
- Base case: smallest problem
- Composition of solutions

1. int factorial(int n) // $n>=0$
2. \{
3. if $(\mathrm{n}==0)$
4. return 1;
5. else
6. \{
7. \quad int smaller = factorial($\mathrm{n}-1$);
8. return n * smaller; // or just return n * factorial(n-1)
9. \}
10. $\}$

Visualizing Recursion

- Recursion trace

- A box for each recursive call
- An arrow from each caller to callee
- An arrow from each callee to caller showing return value
- Example

Linear Recursion

- Test for base cases
- Every possible chain of recursive calls must eventually reach a base case.
- Recur once
- Perform a single recursive call
- Might branch to one of several possible recursive calls
- makes progress towards a base case.

Example of Linear Recursion

Recursion trace of linearSum(data, 5)
Algorithm linearSum(A, n): Input:
Array, A, of integers Integer n such that $0 \leq n \leq|A|$

Output:

Sum of the first n integers in A
if $\mathrm{n}=0$ then
return 0
else

Example of Linear Recursion

Recursion trace of linearSum(data, 5)
Algorithm linearSum(A, n): Input:
Array, A, of integers Integer n such that $0 \leq n \leq|A|$

Output:

Sum of the first n integers in A
if $\mathrm{n}=0$ then
return 0
else

Insertion Sort

algorithm insertionSort(A[0..n-1])

A[0]
insert(insertionSort(A[0..n-2]), A[n-1]) o.w.
\}
algorithm insert(A[0..n-1], key)
\{
append(A[0..n-1], key) if key>=A[n-1]
append(newarray(key), $\mathrm{A}[0]$) if n=1\&key<A[0]
append(insert(A[0..n-2],key), A[n-1]) o.w.

Reversing an Array

Algorithm reverseArray(A, low, high):
Input: An array A and nonnegative integer indices low and high
Output: The reversal of the elements in A starting at index low and ending at high

Reversing an Array

Algorithm reverseArray(A, low, high):
Input: An array A and nonnegative integer indices low and high
Output: The reversal of the elements in A starting at index low and ending at high
if low $>=$ high then return

Swap A[low] and A[high] reverseArray $(A$, low +1 , high -1)

Tail Recursion

- linearly recursive method makes its recursive call as its last step.
- The array reversal method is an example.
- Such methods can be easily converted to nonrecursive methods (which saves on some resources).
- Example:

Algorithm IterativeReverseArray(A, low, high):
Input: An array A and indices low and high
Output: The reversal of the elements in A starting at index low and ending at high
while low < high do
Swap A[low] and A[high]
low $=$ low +1
high $=$ high-1
return

Binary Recursion

- two recursive calls for each non-base case.

Binary Recursion

- Problem: add all the numbers in an integer array A:

Algorithm BinarySum(A, i, n):
Input: $A n$ array A and integers i and n
Output: The sum of the n integers in A starting at index i
if $\mathrm{n}=1$ then
return $A[i]$
return BinarySum(A, $\mathrm{i}, \mathrm{n} / 2)+\operatorname{BinarySum}(\mathrm{A}, \mathrm{i}+\mathrm{n} / 2, \mathrm{n} / 2)$

- Example trace:

Binary Recursion

- Problem: add all the numbers in an integer array A:

Algorithm BinarySum(A, i, n):
Input: $A n$ array A and integers i and n
Output: The sum of the n integers in A starting at inde) if $\mathrm{n}=1$ then
return $A[i]$
return BinarySum(A, i, n/2) + BinarySum(A, i $+\mathrm{n} / 2$, n/2)

- Example trace:

Summary

- 3 components of recursion

- Decomposition (smaller problems)
- Base case (smallest problem with known solution)
- Composition (solution from smaller solutions)

Examples	Smaller	\# of smaller problems
Factorial	-1	1
ArraySum	-1	1
InsertionSort	-1	1
Reverse array	-2	1
BinarySum	$1 / 2$	2

