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Recursion
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The Recursion Pattern
 Classic example – the factorial function: 

n! = 1· 2· 3· ··· · (n-1)· n
 Recursive definition:
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1. int factorial(int n)
2. {
3. if (n == 0)          // base case
4. return 1;
5. else if (n == 0)    // recursive case
6. return n * factorial(n-1);
7. }
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Content of a Recursive Method

 Base case(s)

 Values of the input variables for which we perform 
no recursive calls are called base cases (there 
should be at least one base case). 

 Every possible chain of recursive calls must
eventually reach a base case.

 Recursive calls

 Calls to the current method. 

 Each recursive call should be defined so that it 
makes progress towards a base case.

© 2014 Goodrich, Tamassia, 
Goldwasser



A Perspective on Recursion

1. Decomposition

 Decompose the problem into smaller 
identical problems

2. Base case

 Smallest problem with known solution

3. Composition

 Compose the solutions for smaller 
problems
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The Recursion Pattern
 Decomposition into smaller problems
 Base case: smallest problem
 Composition of solutions
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1. int factorial(int n) // n >= 0
2. {
3. if (n == 0)         
4. return 1;
5. else  
6. {
7. int smaller = factorial(n-1);
8. return n * smaller;  // or just return n * factorial(n-1)
9. }
10. }



Visualizing Recursion

 Recursion trace
 A box for each 

recursive call

 An arrow from each 
caller to callee

 An arrow from each 
callee to caller 
showing return value

 Example
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recursiveFactorial (4)

recursiveFactorial (3)

recursiveFactorial (2)

recursiveFactorial (1)

recursiveFactorial (0)

return 1

call

call

call

call

return 1*1 = 1

return 2*1 = 2

return 3*2 = 6

return 4*6 = 24 final answer
call
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Linear Recursion

 Test for base cases

 Every possible chain of recursive calls must

eventually reach a base case.

 Recur once

 Perform a single recursive call

 Might branch to one of several possible recursive 

calls

 makes progress towards a base case.
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Example of Linear Recursion
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Algorithm linearSum(A, n):
Input: 
Array, A, of integers
Integer n such that

0 ≤ n ≤ |A|
Output: 

Sum of the first n 
integers in A

if n = 0 then
return 0

else
return 

linearSum(A, n - 1) + A[n - 1]

Recursion trace of linearSum(data, 5) 
called on array data = [4, 3, 6, 2, 8]
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Example of Linear Recursion

© 2014 Goodrich, Tamassia, Goldwasser

Algorithm linearSum(A, n):
Input: 
Array, A, of integers
Integer n such that

0 ≤ n ≤ |A|
Output: 

Sum of the first n 
integers in A

if n = 0 then
return 0

else
return 

linearSum(A, n - 1) + A[n - 1]

Recursion trace of linearSum(data, 5) 
called on array data = [4, 3, 6, 2, 8]



Insertion Sort

algorithm insertionSort(A[0..n-1])

{

A[0]                                                         if n=1

insert(insertionSort(A[0..n-2]), A[n-1])    o.w.

}

algorithm insert(A[0..n-1], key)

{

append(A[0..n-1], key)                     if key>=A[n-1]

append(newarray(key), A[0]) if n=1&key<A[0]

append(insert(A[0..n-2],key), A[n-1])   o.w.

}
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Reversing an Array
Algorithm reverseArray(A, low,  high):

Input: An array A and nonnegative integer 
indices low and high

Output: The reversal of the elements in A 
starting at index low and ending at high
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Reversing an Array
Algorithm reverseArray(A, low,  high):

Input: An array A and nonnegative integer 
indices low and high

Output: The reversal of the elements in A 
starting at index low and ending at high

if low >=  high then return

Swap A[low] and A[high]

reverseArray(A, low + 1,  high  1)
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Tail Recursion
 linearly recursive method makes its recursive call as 

its last step.
 The array reversal method is an example.
 Such methods can be easily converted to non-

recursive methods (which saves on some resources).
 Example:

Algorithm IterativeReverseArray(A, low, high ):
Input: An array A and indices low and high
Output: The reversal of the elements in A starting at 

index low and ending at high
while low <  high do

Swap A[low] and A[high]
low  = low + 1
high  = high - 1

return

© 2014 Goodrich, Tamassia, Goldwasser



Recursion 14

Binary Recursion

 two recursive calls for each non-base case.
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Binary Recursion
 Problem: add all the numbers in an integer array A:

Algorithm BinarySum(A, i, n):
Input: An array A and integers i and n
Output: The sum of the n integers in A starting at index i

if n = 1 then
return A[i]
return BinarySum(A, i, n/ 2) + BinarySum(A, i + n/ 2, n/ 2)

 Example trace:

3, 1

2, 2

0, 4

2, 11, 10, 1

0, 8

0, 2

7, 1

6, 2

4, 4

6, 15, 1

4, 2

4, 1
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Binary Recursion
 Problem: add all the numbers in an integer array A:

Algorithm BinarySum(A, i, n):
Input: An array A and integers i and n
Output: The sum of the n integers in A starting at index i

if n = 1 then
return A[i]
return BinarySum(A, i, n/ 2) + BinarySum(A, i + n/ 2, n/ 2)

 Example trace:

3, 1

2, 2

0, 4

2, 11, 10, 1

0, 8

0, 2

7, 1

6, 2

4, 4

6, 15, 1

4, 2

4, 1
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Decomposition?
Base case?
Composition?



Summary
 3 components of recursion

 Decomposition (smaller problems)

 Base case (smallest problem with known solution)

 Composition (solution from smaller solutions)
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Examples Smaller # of smaller problems

Factorial -1 1

ArraySum -1 1

InsertionSort -1 1

Reverse array -2 1

BinarySum 1/2 2


