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Recursion
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The Recursion Pattern
 Classic example – the factorial function: 

n! = 1· 2· 3· ··· · (n-1)· n
 Recursive definition:
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1. int factorial(int n)
2. {
3. if (n == 0)          // base case
4. return 1;
5. else if (n == 0)    // recursive case
6. return n * factorial(n-1);
7. }
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Content of a Recursive Method

 Base case(s)

 Values of the input variables for which we perform 
no recursive calls are called base cases (there 
should be at least one base case). 

 Every possible chain of recursive calls must
eventually reach a base case.

 Recursive calls

 Calls to the current method. 

 Each recursive call should be defined so that it 
makes progress towards a base case.
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A Perspective on Recursion

1. Decomposition

 Decompose the problem into smaller 
identical problems

2. Base case

 Smallest problem with known solution

3. Composition

 Compose the solutions for smaller 
problems
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The Recursion Pattern
 Decomposition into smaller problems
 Base case: smallest problem
 Composition of solutions
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1. int factorial(int n) // n >= 0
2. {
3. if (n == 0)         
4. return 1;
5. else  
6. {
7. int smaller = factorial(n-1);
8. return n * smaller;  // or just return n * factorial(n-1)
9. }
10. }



Visualizing Recursion

 Recursion trace
 A box for each 

recursive call

 An arrow from each 
caller to callee

 An arrow from each 
callee to caller 
showing return value

 Example
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recursiveFactorial (4)

recursiveFactorial (3)

recursiveFactorial (2)

recursiveFactorial (1)

recursiveFactorial (0)

return 1

call

call

call

call

return 1*1 = 1

return 2*1 = 2

return 3*2 = 6

return 4*6 = 24 final answer
call
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Linear Recursion

 Test for base cases

 Every possible chain of recursive calls must

eventually reach a base case.

 Recur once

 Perform a single recursive call

 Might branch to one of several possible recursive 

calls

 makes progress towards a base case.
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Example of Linear Recursion
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Algorithm linearSum(A, n):
Input: 
Array, A, of integers
Integer n such that

0 ≤ n ≤ |A|
Output: 

Sum of the first n 
integers in A

if n = 0 then
return 0

else
return 

linearSum(A, n - 1) + A[n - 1]

Recursion trace of linearSum(data, 5) 
called on array data = [4, 3, 6, 2, 8]
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Example of Linear Recursion
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Algorithm linearSum(A, n):
Input: 
Array, A, of integers
Integer n such that

0 ≤ n ≤ |A|
Output: 

Sum of the first n 
integers in A

if n = 0 then
return 0

else
return 

linearSum(A, n - 1) + A[n - 1]

Recursion trace of linearSum(data, 5) 
called on array data = [4, 3, 6, 2, 8]



Insertion Sort

algorithm insertionSort(A[0..n-1])

{

A[0]                                                         if n=1

insert(insertionSort(A[0..n-2]), A[n-1])    o.w.

}

algorithm insert(A[0..n-1], key)

{

append(A[0..n-1], key)                     if key>=A[n-1]

append(newarray(key), A[0]) if n=1&key<A[0]

append(insert(A[0..n-2],key), A[n-1])   o.w.

}



Recursion 11

Reversing an Array
Algorithm reverseArray(A, low,  high):

Input: An array A and nonnegative integer 
indices low and high

Output: The reversal of the elements in A 
starting at index low and ending at high

© 2014 Goodrich, Tamassia, Goldwasser



Recursion 12

Reversing an Array
Algorithm reverseArray(A, low,  high):

Input: An array A and nonnegative integer 
indices low and high

Output: The reversal of the elements in A 
starting at index low and ending at high

if low >=  high then return

Swap A[low] and A[high]

reverseArray(A, low + 1,  high  1)
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Tail Recursion
 linearly recursive method makes its recursive call as 

its last step.
 The array reversal method is an example.
 Such methods can be easily converted to non-

recursive methods (which saves on some resources).
 Example:

Algorithm IterativeReverseArray(A, low, high ):
Input: An array A and indices low and high
Output: The reversal of the elements in A starting at 

index low and ending at high
while low <  high do

Swap A[low] and A[high]
low  = low + 1
high  = high - 1

return
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Binary Recursion

 two recursive calls for each non-base case.
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Binary Recursion
 Problem: add all the numbers in an integer array A:

Algorithm BinarySum(A, i, n):
Input: An array A and integers i and n
Output: The sum of the n integers in A starting at index i

if n = 1 then
return A[i]
return BinarySum(A, i, n/ 2) + BinarySum(A, i + n/ 2, n/ 2)

 Example trace:

3, 1

2, 2

0, 4

2, 11, 10, 1

0, 8

0, 2

7, 1

6, 2

4, 4

6, 15, 1

4, 2

4, 1
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Binary Recursion
 Problem: add all the numbers in an integer array A:

Algorithm BinarySum(A, i, n):
Input: An array A and integers i and n
Output: The sum of the n integers in A starting at index i

if n = 1 then
return A[i]
return BinarySum(A, i, n/ 2) + BinarySum(A, i + n/ 2, n/ 2)

 Example trace:

3, 1

2, 2

0, 4

2, 11, 10, 1

0, 8

0, 2

7, 1

6, 2

4, 4

6, 15, 1

4, 2

4, 1
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Decomposition?
Base case?
Composition?



Summary
 3 components of recursion

 Decomposition (smaller problems)

 Base case (smallest problem with known solution)

 Composition (solution from smaller solutions)
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Examples Smaller # of smaller problems

Factorial -1 1

ArraySum -1 1

InsertionSort -1 1

Reverse array -2 1

BinarySum 1/2 2


