
Recursion 1

Recursion

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 2

The Recursion Pattern
 Classic example – the factorial function:

n! = 1· 2· 3· ··· · (n-1)· n
 Recursive definition:

elsenfn

n
nf

)1(

0 if1
)(

© 2014 Goodrich, Tamassia, Goldwasser

1. int factorial(int n)
2. {
3. if (n == 0) // base case
4. return 1;
5. else if (n == 0) // recursive case
6. return n * factorial(n-1);
7. }

Recursion 3

Content of a Recursive Method

 Base case(s)

 Values of the input variables for which we perform
no recursive calls are called base cases (there
should be at least one base case).

 Every possible chain of recursive calls must
eventually reach a base case.

 Recursive calls

 Calls to the current method.

 Each recursive call should be defined so that it
makes progress towards a base case.

© 2014 Goodrich, Tamassia,
Goldwasser

A Perspective on Recursion

1. Decomposition

 Decompose the problem into smaller
identical problems

2. Base case

 Smallest problem with known solution

3. Composition

 Compose the solutions for smaller
problems

© 2014 Goodrich, Tamassia, Goldwasser 4Recursion

Recursion 5

The Recursion Pattern
 Decomposition into smaller problems
 Base case: smallest problem
 Composition of solutions

© 2014 Goodrich, Tamassia, Goldwasser

1. int factorial(int n) // n >= 0
2. {
3. if (n == 0)
4. return 1;
5. else
6. {
7. int smaller = factorial(n-1);
8. return n * smaller; // or just return n * factorial(n-1)
9. }
10. }

Visualizing Recursion

 Recursion trace
 A box for each

recursive call

 An arrow from each
caller to callee

 An arrow from each
callee to caller
showing return value

 Example

Recursion 6

recursiveFactorial (4)

recursiveFactorial (3)

recursiveFactorial (2)

recursiveFactorial (1)

recursiveFactorial (0)

return 1

call

call

call

call

return 1*1 = 1

return 2*1 = 2

return 3*2 = 6

return 4*6 = 24 final answer
call

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion 7

Linear Recursion

 Test for base cases

 Every possible chain of recursive calls must

eventually reach a base case.

 Recur once

 Perform a single recursive call

 Might branch to one of several possible recursive

calls

 makes progress towards a base case.

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 8

Example of Linear Recursion

© 2014 Goodrich, Tamassia, Goldwasser

Algorithm linearSum(A, n):
Input:
Array, A, of integers
Integer n such that

0 ≤ n ≤ |A|
Output:

Sum of the first n
integers in A

if n = 0 then
return 0

else
return

linearSum(A, n - 1) + A[n - 1]

Recursion trace of linearSum(data, 5)
called on array data = [4, 3, 6, 2, 8]

Recursion 9

Example of Linear Recursion

© 2014 Goodrich, Tamassia, Goldwasser

Algorithm linearSum(A, n):
Input:
Array, A, of integers
Integer n such that

0 ≤ n ≤ |A|
Output:

Sum of the first n
integers in A

if n = 0 then
return 0

else
return

linearSum(A, n - 1) + A[n - 1]

Recursion trace of linearSum(data, 5)
called on array data = [4, 3, 6, 2, 8]

Insertion Sort

algorithm insertionSort(A[0..n-1])

{

A[0] if n=1

insert(insertionSort(A[0..n-2]), A[n-1]) o.w.

}

algorithm insert(A[0..n-1], key)

{

append(A[0..n-1], key) if key>=A[n-1]

append(newarray(key), A[0]) if n=1&key<A[0]

append(insert(A[0..n-2],key), A[n-1]) o.w.

}

Recursion 11

Reversing an Array
Algorithm reverseArray(A, low, high):

Input: An array A and nonnegative integer
indices low and high

Output: The reversal of the elements in A
starting at index low and ending at high

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 12

Reversing an Array
Algorithm reverseArray(A, low, high):

Input: An array A and nonnegative integer
indices low and high

Output: The reversal of the elements in A
starting at index low and ending at high

if low >= high then return

Swap A[low] and A[high]

reverseArray(A, low + 1, high 1)

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 13

Tail Recursion
 linearly recursive method makes its recursive call as

its last step.
 The array reversal method is an example.
 Such methods can be easily converted to non-

recursive methods (which saves on some resources).
 Example:

Algorithm IterativeReverseArray(A, low, high):
Input: An array A and indices low and high
Output: The reversal of the elements in A starting at

index low and ending at high
while low < high do

Swap A[low] and A[high]
low = low + 1
high = high - 1

return

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 14

Binary Recursion

 two recursive calls for each non-base case.

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 15

Binary Recursion
 Problem: add all the numbers in an integer array A:

Algorithm BinarySum(A, i, n):
Input: An array A and integers i and n
Output: The sum of the n integers in A starting at index i

if n = 1 then
return A[i]
return BinarySum(A, i, n/ 2) + BinarySum(A, i + n/ 2, n/ 2)

 Example trace:

3, 1

2, 2

0, 4

2, 11, 10, 1

0, 8

0, 2

7, 1

6, 2

4, 4

6, 15, 1

4, 2

4, 1

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 16

Binary Recursion
 Problem: add all the numbers in an integer array A:

Algorithm BinarySum(A, i, n):
Input: An array A and integers i and n
Output: The sum of the n integers in A starting at index i

if n = 1 then
return A[i]
return BinarySum(A, i, n/ 2) + BinarySum(A, i + n/ 2, n/ 2)

 Example trace:

3, 1

2, 2

0, 4

2, 11, 10, 1

0, 8

0, 2

7, 1

6, 2

4, 4

6, 15, 1

4, 2

4, 1

© 2014 Goodrich, Tamassia, Goldwasser

Decomposition?
Base case?
Composition?

Summary
 3 components of recursion

 Decomposition (smaller problems)

 Base case (smallest problem with known solution)

 Composition (solution from smaller solutions)

© 2014 Goodrich, Tamassia, Goldwasser 17Recursion

Examples Smaller # of smaller problems

Factorial -1 1

ArraySum -1 1

InsertionSort -1 1

Reverse array -2 1

BinarySum 1/2 2

