
Queues
COL 106

Slides by Amit Kumar, Shweta Agrawal

4

The Queue ADT

• The Queue ADT stores arbitrary
objects

• Insertions and deletions follow
the first-in first-out (FIFO)
scheme

• Insertions are at the rear of the
queue and removals are at the
front of the queue

• Main queue operations:
– enqueue(object o): inserts

element o at the end of the
queue

– dequeue(): removes and returns
the element at the front of the
queue

• Auxiliary queue operations:
– front(): returns the element at

the front without removing it

– size(): returns the number of
elements stored

– isEmpty(): returns a Boolean
value indicating whether no
elements are stored

• Exceptions
– Attempting the execution of

dequeue or front on an empty
queue throws an
EmptyQueueException

5

Exercise: Queues

• Describe the output of the following series of queue
operations
– enqueue(8)
– enqueue(3)
– dequeue()
– enqueue(2)
– enqueue(5)
– dequeue()
– dequeue()
– enqueue(9)
– enqueue(1)

6

Applications of Queues

• Direct applications

– Waiting lines

– Access to shared resources (e.g., printer)

• Indirect applications

– Auxiliary data structure for algorithms

– Component of other data structures

7

Array-based Queue

• Use an array of size N in a circular fashion

• Two variables keep track of the front and rear
– f index of the front element

– r index immediately past the rear element

• Array location r is kept empty

Q

0 1 2 rf

normal configuration

Q

0 1 2 fr

wrapped-around configuration

8

Queue Operations

• We use the modulo
operator
(remainder of
division)

Algorithm size()

return (N + r – f) mod N

Algorithm isEmpty()

return (f = r)

Q

0 1 2 rf

Q

0 1 2 fr

9

Queue Operations (cont.)

Algorithm enqueue(o)

if size() = N - 1 then

throw FullQueueException

else

Q[r] = o

r = (r + 1) mod N

• Operation enqueue throws an
exception if the array is full

• This exception is
implementation-dependent

Q

0 1 2 rf

Q

0 1 2 fr

10

Queue Operations (cont.)

• Operation dequeue
throws an exception
if the queue is
empty

• This exception is
specified in the
queue ADT

Algorithm dequeue()

if isEmpty() then

throw EmptyQueueException

else

o = Q[f]

f = (f + 1) mod N

return o

Q

0 1 2 rf

Q

0 1 2 fr

Performance and Limitations
- array-based implementation of queue ADT

• Performance

– Let n be the number of elements in the queue

– The space used is O(n)

– Each operation runs in time O(1)

• Limitations

– The maximum size of the queue must be defined a
priori , and cannot be changed

– Trying to enqueue an element into a full queue causes
an implementation-specific exception

12

Growable Array-based Queue

• In an enqueue operation, when the array is full,
instead of throwing an exception, we can
replace the array with a larger one

• Similar to what we did for an array-based stack

• The enqueue operation has amortized running
time

– O(n) with the incremental strategy

– O(1) with the doubling strategy

Vectors

Exercise

• Describe how to implement a queue using a
singly-linked list
– Queue operations: enqueue(x), dequeue(),

size(), isEmpty()

– For each operation, give the running time

14

Queue with a Singly Linked List
• We can implement a queue with a singly linked list

– The front element is stored at the head of the list
– The rear element is stored at the tail of the list

• The space used is O(n) and each operation of the Queue ADT takes O(1)
time

• NOTE: we do not have the limitation of the array based implementation
on the size of the stack b/c the size of the linked list is not fixed, I.e., the
queue is NEVER full.

f

r



nodes

elements

front
rear

Queue Summary

• Queue Operation Complexity for Different
Implementations

2/11/2021 12:30 PMVectors 16

Array

Fixed-Size

Array

Expandable (doubling

strategy)

List

Singly-

Linked

dequeue() O(1) O(1) O(1)

enqueue(o) O(1) O(n) Worst Case

O(1) Best Case

O(1) amortized analysis

O(1)

front() O(1) O(1) O(1)

Size(), isEmpty() O(1) O(1) O(1)

17

The Double-Ended Queue ADT (§5.3)

• The Double-Ended Queue, or Deque,
ADT stores arbitrary objects.
(Pronounced ‘deck’)

• Richer than stack or queue ADTs.
Supports insertions and deletions at
both the front and the end.

• Main deque operations:
– insertFirst(object o): inserts element

o at the beginning of the deque

– insertLast(object o): inserts element
o at the end of the deque

– RemoveFirst(): removes and returns
the element at the front of the
queue

– RemoveLast(): removes and returns
the element at the end of the queue

• Auxiliary queue operations:
– first(): returns the element at the

front without removing it

– last(): returns the element at the
front without removing it

– size(): returns the number of
elements stored

– isEmpty(): returns a Boolean value
indicating whether no elements are
stored

• Exceptions
– Attempting the execution of

dequeue or front on an empty
queue throws an
EmptyDequeException

18

Doubly Linked List

• A doubly linked list provides a natural
implementation of the Deque ADT

• Nodes implement Position and store:

– element

– link to the previous node

– link to the next node

• Special trailer and header nodes

prev next

elem

trailerheader nodes/positions

elements

node

19

Deque with a Doubly Linked List

• We can implement a deque with a doubly linked list
– The front element is stored at the first node

– The rear element is stored at the last node

• The space used is O(n) and each operation of the
Deque ADT takes O(1) time

lastfirst

elements

first

20

Implementing Deques with Doubly
Linked Lists

Here’s a visualization of
the code for
removeLast().

Performance and Limitations
- doubly linked list implementation of deque ADT

• Performance

– Let n be the number of elements in the stack

– The space used is O(n)

– Each operation runs in time O(1)

• Limitations

– NOTE: we do not have the limitation of the array
based implementation on the size of the stack b/c the
size of the linked list is not fixed, I.e., the deque is
NEVER full.

Deque Summary

• Deque Operation Complexity for Different
Implementations

2/11/2021 12:30 PMVectors 22

Array

Fixed-

Size

Array

Expandable

(doubling strategy)

List

Singly-

Linked

List

Doubly-

Linked

removeFirst(),

removeLast()

O(1) O(1) O(n) for

one at list

tail, O(1) for

other

O(1)

insertFirst(o),

InsertLast(o)

O(1) O(n) Worst Case

O(1) Best Case

O(1) Average Case

O(1) O(1)

first(), last O(1) O(1) O(1) O(1)

Size(),

isEmpty()

O(1) O(1) O(1) O(1)

23

Implementing Stacks and Queues with
Deques

Stacks with Deques:

Queues with Deques:

24

The Adaptor Pattern

• Using a deque to implement a stack or queue is an example of the
adaptor pattern. Adaptor patterns implement a class by using
methods of another class

• In general, adaptor classes specialize general classes

• Two such applications:
-- Specialize a general class by changing some methods.

Ex: implementing a stack with a deque.
-- Specialize the types of objects used by a general class.

Ex: Defining an IntegerArrayStack class that adapts
ArrayStack to only store integers.

