
Stacks
COL 106

Slides by Amit Kumar, Shweta Agrawal

How should data be stored?

Depends on your requirement

But we have some building blocks

Data is diverse ..

To store our big data

10

Elementary Data “Structures”

• Arrays

• Lists

• Stacks

• Queues

• Trees

RF

1
2

3 4

5 6

7 8

In some languages these are basic data types – in others they need
to be implemented

head

Stacks

Stack

A list for which Insert and Delete are allowed
only at one end of the list (the top)

– LIFO – Last in, First out

Push

Pop Pop

What is this good for ?

• Page-visited history in a Web browser

What is this good for ?

• Page-visited history in a Web browser

• Undo sequence in a text editor

What is this good for ?

• Page-visited history in a Web browser

• Undo sequence in a text editor

• Saving local variables when one function
calls another, and this one calls another

How should we represent it ?

• Write code in python ?

How should we represent it ?

• Write code in python ?

• Write code in C ?

How should we represent it ?

• Write code in python ?

• Write code in C ?

• Write code in Java ?

Aren’t we essentially doing the same
thing?

19

Abstract Data Type

A mathematical definition of objects, with
operations defined on them

Three operations

constructors

access functions

manipulation procedures

20

Examples

• Basic Types

– integer, real (floating point), boolean (0,1),
character

• Arrays

– A[0..99] : integer array

– A[0..99] : array of images

0 1 2 3 4 5 6 7 99

A …
2 1 3 3 2 9 9 6 10

0 1 2 99

…

http://images.google.com/imgres?imgurl=http://img2.travelblog.org/Photos/1756/7592/f/31845-Bondi--Coogee-coastal-walk-0.jpg&imgrefurl=http://www.travelblog.org/Photos/31845.html&h=450&w=600&sz=49&hl=en&start=5&tbnid=ftCIt-Ab6IX_-M:&tbnh=101&tbnw=135&prev=/images?q=coogee&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://img2.travelblog.org/Photos/1756/7592/f/31845-Bondi--Coogee-coastal-walk-0.jpg&imgrefurl=http://www.travelblog.org/Photos/31845.html&h=450&w=600&sz=49&hl=en&start=5&tbnid=ftCIt-Ab6IX_-M:&tbnh=101&tbnw=135&prev=/images?q=coogee&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.membrane.unsw.edu.au/imstec07/images/venue/coogee.jpg&imgrefurl=http://www.membrane.unsw.edu.au/imstec07/venue.asp&h=285&w=380&sz=38&hl=en&start=14&tbnid=Zih10sTxSzmdMM:&tbnh=92&tbnw=123&prev=/images?q=coogee&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.membrane.unsw.edu.au/imstec07/images/venue/coogee.jpg&imgrefurl=http://www.membrane.unsw.edu.au/imstec07/venue.asp&h=285&w=380&sz=38&hl=en&start=14&tbnid=Zih10sTxSzmdMM:&tbnh=92&tbnw=123&prev=/images?q=coogee&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://g2007.com/wef/coogeeBOMB!!!!.jpg&imgrefurl=http://g2007.com/blog/gary/archives/2005/05/&h=276&w=407&sz=44&hl=en&start=11&tbnid=clfZjg2K9CpTeM:&tbnh=85&tbnw=125&prev=/images?q=coogee&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://g2007.com/wef/coogeeBOMB!!!!.jpg&imgrefurl=http://g2007.com/blog/gary/archives/2005/05/&h=276&w=407&sz=44&hl=en&start=11&tbnid=clfZjg2K9CpTeM:&tbnh=85&tbnw=125&prev=/images?q=coogee&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.membrane.unsw.edu.au/imstec07/images/venue/coogee.jpg&imgrefurl=http://www.membrane.unsw.edu.au/imstec07/venue.asp&h=285&w=380&sz=38&hl=en&start=14&tbnid=Zih10sTxSzmdMM:&tbnh=92&tbnw=123&prev=/images?q=coogee&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.membrane.unsw.edu.au/imstec07/images/venue/coogee.jpg&imgrefurl=http://www.membrane.unsw.edu.au/imstec07/venue.asp&h=285&w=380&sz=38&hl=en&start=14&tbnid=Zih10sTxSzmdMM:&tbnh=92&tbnw=123&prev=/images?q=coogee&gbv=2&svnum=10&hl=en

21

A mapping from an index set, such as
{0,1,2,…,n}, into a cell type

Objects: set of cells

Operations:

• create(A,n)

• put(A,v,i) or A[i] = v

• value(A,i)

ADT: Array

Abstraction

The notion of abstraction is to

distill a complicated system

down to its most fundamental parts

and describe these parts in a simple, precise language.

An ADT is a mathematical model of a data structure

that specifies the type of the data stored, the

operations supported on them, and

the types of the parameters of the operations

Abstract Data Type

23

Abstract Data Types (ADTs)

• An abstract data type (ADT) is an
abstraction of a data structure

• An ADT specifies:

–Data stored

–Operations on the data

–Error conditions associated with
operations

24

ADT for stock trade

– The data stored are buy/sell orders

– The operations supported are

• order buy (stock, shares)

• order sell(stock, shares)

• void cancel(order)

– Error conditions:

• Buy/sell a nonexistent stock

• Cancel a nonexistent order

Objects:

A bag of nodes

Operations:

• New():Set

• Insert(S:Set, v:element):Set

• Delete(S:Set, v:element):Set

• IsIn(S:Set, v:element):Boolean

Set ADT

Axioms

• IsIn(New(), v) = false

• IsIn(Insert(S,v), v) = true

• IsIn(Insert(S,u), v) = IsIn(S, v) if v ≠ u

• IsIn(Delete(S,v), v) = false

• IsIn(Delete(S,u), v) = IsIn(S, v) if v ≠ u

Objects:

A finite sequence of nodes

Operations:

• New

• Push: Insert element at top

• Top: Return top element

• Pop: Remove top element

• IsEmpty: test for emptiness

• Size: number of elements in stack

Stack ADT

Objects:

A finite sequence of nodes

Operations:

• New():Stack

• Push(S:Stack, v:element):Stack

• Top(S:Stack):element

• Pop(S:Stack):Stack

• IsEmpty(S:Stack):Boolean

• Size(S:Stack):integer

Stack ADT

Axioms

• Pop(Push(S,v)) = S

• Top(Push(S,v)) = v

• IsSize(New()) = 0

• IsSize(Push(S,v)) = IsSize(S)+1

30

Exceptions

• Attempting the execution of an operation of ADT
may sometimes cause an error condition, called
an exception

• Exceptions are said to be “thrown” by an
operation that cannot be executed

• In the Stack ADT, operations pop and top cannot
be performed if the stack is empty

• Attempting the execution of pop or top on an
empty stack throws an EmptyStackException

31

Exercise: Stacks

• Describe the output of the following series of stack
operations
– Push(8)
– Push(3)
– Pop()
– Push(2)
– Push(5)
– Pop()
– Pop()
– Push(9)
– Push(1)

32

Java Run-time Stack

• The Java run-time system keeps
track of the chain of active
functions with a stack

• When a function is called, the
run-time system pushes on the
stack a frame containing
– Local variables and return value
– Program counter, keeping track of

the statement being executed

• When a function returns, its
frame is popped from the stack
and control is passed to the
method on top of the stack

main() {

int i;

i = 5;

foo(i);

}

foo(int j)

{

int k;

k = j+1;

bar(k);

}

bar(int m)

{

…

}

bar

PC = 1

m = 6

foo

PC = 3

j = 5

k = 6

main

PC = 2

i = 5

• Each “(”, “{”, or “[” must be paired with a
matching “)”, “}”, or “[”

– correct

– correct

– incorrect

– incorrect

– incorrect

Stacks 33

Parentheses Matching

• Each “(”, “{”, or “[” must be paired with a
matching “)”, “}”, or “[”

– ()(()){([()])}

– ((()(()){([()])}))

–)(()){([()])}

– ({[])}

– (

Stacks 34

Parentheses Matching Algorithm

Algorithm ParenMatch(X,n):

Input: An array X of n tokens, each of which is either a grouping symbol, a

variable, an arithmetic operator, or a number

Output: true if and only if all the grouping symbols in X match

Let S be an empty stack

for i=0 to n-1 do

if X[i] is an opening grouping symbol then

S.push(X[i])

else if X[i] is a closing grouping symbol then

if S.isEmpty() then

return false {nothing to match with}

if S.pop() does not match the type of X[i] then

return false {wrong type}

if S.isEmpty() then

return true {every symbol matched}

else

return false {some symbols were never matched}

Stacks 35

Postfix Evaluator

• 5 3 6 * + 7 - = ?

36

Stack Interface in Java

functionality of a data structure is expressed through
the public interface of the associated class or classes
that define the data structure.

public interface Stack {

public int size();

public bool isEmpty();

public Object top()

throw(EmptyStackException);

public void push(Object o);

public Object pop()

throw(EmptyStackException);

};

• Interface
corresponding to our
Stack ADT

• Requires the
definition of class
EmptyStackException

Array-based Stack

• A simple way of
implementing the
Stack ADT uses an
array

• We add elements
from left to right

• A variable keeps track
of the index of the
top element

S

0 1 2 t

…

Algorithm size()

return t + 1

Algorithm pop()

if empty() then

throw EmptyStackException

else

t = t - 1

return S[t + 1]

38

Array-based Stack (cont.)

• The array storing the
stack elements may
become full

• A push operation will
then throw a
FullStackException
– Limitation of the

array-based
implementation

– Not intrinsic to the
Stack ADT

S

0 1 2 t

…

Algorithm push(o)

if t = S.length - 1 then

throw FullStackException

else

t = t + 1

S[t] = o

39

Performance and Limitations
of array-based implementation of stack ADT

• Performance

– Let n be the number of elements in the stack

– The space used is O(n)

– Each operation runs in time O(1)

• Limitations

– The maximum size of the stack must be defined a
priori , and cannot be changed

– Trying to push a new element into a full stack causes
an implementation-specific exception

Growable Array-based Stack

• In a push operation, when the
array is full, instead of
throwing an exception, we
can replace the array with a
larger one

• How large should the new
array be?
– incremental strategy: increase

the size by a constant c

– doubling strategy: double the
size

Algorithm push(o)

if t = S.length - 1

then

A = new array of

size …

for i = 0 to t do

A[i] = S[i]

S = A

t = t + 1

S[t] = o

42

Comparison of the
Strategies

• We compare the incremental strategy and the
doubling strategy by analyzing the total time
T(n) needed to perform a series of n push
operations

• We assume that we start with an empty stack
represented by an array of size 1

• We call amortized time of a push operation
the average time taken by a push over the
series of operations, i.e., T(n)/n

43

Incremental Strategy Analysis

• We replace the array k = n/c times
• The total time T(n) of a series of n push

operations is proportional to
• n + c + 2c + 3c + 4c + … + kc =

• n + c(1 + 2 + 3 + … + k) =

• n + ck(k + 1)/2

• Since c is a constant, T(n) is O(n + k2), i.e.,
O(n2)

• The amortized time of a push operation is O(n)

44

Doubling Strategy Analysis

• We replace the array k = log2 n
times

• The total time T(n) of a series of n
push operations is proportional to

• n + 1 + 2 + 4 + 8 + …+ 2k =

• n + 2k + 1 -1 = 3n -1

• T(n) is O(n)

• The amortized time of a push
operation is O(1)

geometric series

1

2

1

4

8

45

Singly Linked List

• A singly linked list is a
concrete data
structure consisting of
a sequence of nodes

• Each node stores
– element
– link to the next node

next

elem node

A B C D

2/11/2021 12:30 PMVectors 46

Stack with a Singly Linked List

• We can implement a stack with a singly linked list

• The top element is stored at the first node of the list

• The space used is O(n) and each operation of the
Stack ADT takes O(1) time

t

nodes

elements

top

2/11/2021 12:30 PMVectors 47

Exercise

• Describe how to implement a stack using a
singly-linked list
– Stack operations: push(x), pop(), size(),

isEmpty()

– For each operation, give the running time

Stack Summary

• Stack Operation Complexity for Different
Implementations

2/11/2021 12:30 PMVectors 48

Array

Fixed-Size

Array

Expandable (doubling

strategy)

List

Singly-

Linked

Pop() O(1) O(1) O(1)

Push(o) O(1) O(n) Worst Case

O(1) Best Case

O(1) Amortized

O(1)

Top() O(1) O(1) O(1)

Size(), isEmpty() O(1) O(1) O(1)

