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How should data be stored?

Depends on your requirement



But we have some building blocks

Data is diverse ..



To store our big data
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Elementary Data “Structures”

• Arrays

• Lists

• Stacks

• Queues 

• Trees

RF

1
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3 4

5 6

7 8

In some languages these are basic data types – in others they need 
to be implemented  

head



Stacks



Stack

A list for which Insert and Delete are allowed 
only at one end of the list (the top)

– LIFO – Last in, First out

Push

Pop Pop



What is this good for ?

• Page-visited history in a Web browser



What is this good for ?

• Page-visited history in a Web browser

• Undo sequence in a text editor



What is this good for ?

• Page-visited history in a Web browser

• Undo sequence in a text editor

• Saving local variables when one function 
calls another, and this one calls another



How should we represent it ?

• Write code in python ?



How should we represent it ?
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• Write code in C ?



How should we represent it ?

• Write code in python ?

• Write code in C ?

• Write code in Java ?

Aren’t we essentially doing the same 
thing?
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Abstract Data Type

A mathematical definition of objects, with 
operations defined on them

Three operations

constructors

access functions

manipulation procedures
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Examples 

• Basic Types

– integer, real (floating point), boolean (0,1), 
character

• Arrays

– A[0..99] : integer array

– A[0..99] :  array of images

0  1  2  3  4  5  6  7                99

A …
2  1  3  3  2  9  9  6                10

0     1       2                        99

…

http://images.google.com/imgres?imgurl=http://img2.travelblog.org/Photos/1756/7592/f/31845-Bondi--Coogee-coastal-walk-0.jpg&imgrefurl=http://www.travelblog.org/Photos/31845.html&h=450&w=600&sz=49&hl=en&start=5&tbnid=ftCIt-Ab6IX_-M:&tbnh=101&tbnw=135&prev=/images?q=coogee&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://img2.travelblog.org/Photos/1756/7592/f/31845-Bondi--Coogee-coastal-walk-0.jpg&imgrefurl=http://www.travelblog.org/Photos/31845.html&h=450&w=600&sz=49&hl=en&start=5&tbnid=ftCIt-Ab6IX_-M:&tbnh=101&tbnw=135&prev=/images?q=coogee&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.membrane.unsw.edu.au/imstec07/images/venue/coogee.jpg&imgrefurl=http://www.membrane.unsw.edu.au/imstec07/venue.asp&h=285&w=380&sz=38&hl=en&start=14&tbnid=Zih10sTxSzmdMM:&tbnh=92&tbnw=123&prev=/images?q=coogee&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.membrane.unsw.edu.au/imstec07/images/venue/coogee.jpg&imgrefurl=http://www.membrane.unsw.edu.au/imstec07/venue.asp&h=285&w=380&sz=38&hl=en&start=14&tbnid=Zih10sTxSzmdMM:&tbnh=92&tbnw=123&prev=/images?q=coogee&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://g2007.com/wef/coogeeBOMB!!!!.jpg&imgrefurl=http://g2007.com/blog/gary/archives/2005/05/&h=276&w=407&sz=44&hl=en&start=11&tbnid=clfZjg2K9CpTeM:&tbnh=85&tbnw=125&prev=/images?q=coogee&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://g2007.com/wef/coogeeBOMB!!!!.jpg&imgrefurl=http://g2007.com/blog/gary/archives/2005/05/&h=276&w=407&sz=44&hl=en&start=11&tbnid=clfZjg2K9CpTeM:&tbnh=85&tbnw=125&prev=/images?q=coogee&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.membrane.unsw.edu.au/imstec07/images/venue/coogee.jpg&imgrefurl=http://www.membrane.unsw.edu.au/imstec07/venue.asp&h=285&w=380&sz=38&hl=en&start=14&tbnid=Zih10sTxSzmdMM:&tbnh=92&tbnw=123&prev=/images?q=coogee&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.membrane.unsw.edu.au/imstec07/images/venue/coogee.jpg&imgrefurl=http://www.membrane.unsw.edu.au/imstec07/venue.asp&h=285&w=380&sz=38&hl=en&start=14&tbnid=Zih10sTxSzmdMM:&tbnh=92&tbnw=123&prev=/images?q=coogee&gbv=2&svnum=10&hl=en


21

A mapping from an index set,  such as  
{0,1,2,…,n}, into a cell type

Objects: set of cells

Operations:

• create(A,n)

• put(A,v,i)   or A[i] = v

• value(A,i)

ADT: Array



Abstraction

The notion of abstraction is to 

distill a complicated system 

down to its most fundamental parts 

and describe these parts in a simple, precise language.

An ADT is a mathematical model of a data structure 

that specifies the type of the data stored, the 

operations supported on them, and  

the types of the parameters of the operations

Abstract Data Type
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Abstract Data Types (ADTs)

• An abstract data type (ADT) is an 
abstraction of a data structure

• An ADT specifies:

–Data stored

–Operations on the data

–Error conditions associated with 
operations
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ADT for stock trade

– The data stored are buy/sell orders

– The operations supported are

• order buy (stock, shares)

• order sell(stock, shares )

• void cancel(order)

– Error conditions:

• Buy/sell a nonexistent stock

• Cancel a nonexistent order



Objects:

A bag of nodes

Operations:

• New():Set

• Insert(S:Set, v:element):Set

• Delete(S:Set, v:element):Set

• IsIn(S:Set, v:element):Boolean

Set ADT



Axioms

• IsIn(New(), v) = false

• IsIn(Insert(S,v), v) = true

• IsIn(Insert(S,u), v) = IsIn(S, v) if v ≠ u

• IsIn(Delete(S,v), v) = false

• IsIn(Delete(S,u), v) = IsIn(S, v) if v ≠ u



Objects:

A finite sequence of nodes

Operations:

• New

• Push: Insert element at top

• Top: Return top element

• Pop: Remove top element

• IsEmpty: test for emptiness

• Size: number of elements in stack

Stack ADT



Objects:

A finite sequence of nodes

Operations:

• New():Stack

• Push(S:Stack, v:element):Stack

• Top(S:Stack):element

• Pop(S:Stack):Stack

• IsEmpty(S:Stack):Boolean

• Size(S:Stack):integer

Stack ADT



Axioms

• Pop(Push(S,v)) = S

• Top(Push(S,v)) = v

• IsSize(New()) = 0

• IsSize(Push(S,v)) = IsSize(S)+1
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Exceptions

• Attempting the execution of an operation of ADT 
may sometimes cause an error condition, called 
an exception

• Exceptions are said to be “thrown” by an 
operation that cannot be executed

• In the Stack ADT, operations pop and top cannot 
be performed if the stack is empty

• Attempting the execution of pop or top on an 
empty stack throws an EmptyStackException
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Exercise: Stacks

• Describe the output of the following series of stack 
operations
– Push(8)
– Push(3)
– Pop()
– Push(2)
– Push(5)
– Pop()
– Pop()
– Push(9)
– Push(1)
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Java Run-time Stack

• The Java run-time system keeps 
track of the chain of active 
functions with a stack

• When a function is called, the 
run-time system pushes on the 
stack a frame containing
– Local variables and return value
– Program counter, keeping track of 

the statement being executed 

• When a function returns, its 
frame is popped from the stack 
and control is passed to the 
method on top of the stack

main() {

int i;

i = 5;

foo(i);

}

foo(int j) 

{

int k;

k = j+1;

bar(k);

}

bar(int m) 

{

…

}

bar

PC = 1

m = 6

foo

PC = 3

j = 5

k = 6

main

PC = 2

i = 5



• Each “(”, “{”, or “[” must be paired with a 
matching “)”, “}”, or “[”

– correct

– correct

– incorrect

– incorrect

– incorrect
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Parentheses Matching

• Each “(”, “{”, or “[” must be paired with a 
matching “)”, “}”, or “[”

– ( )(( )){([( )])}

– ((( )(( )){([( )])}))

– )(( )){([( )])}

– ({[ ])}

– (
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Parentheses Matching Algorithm

Algorithm ParenMatch(X,n):

Input: An array X of n tokens, each of which is either a grouping symbol, a

variable, an arithmetic operator, or a number

Output: true if and only if all the grouping symbols in X match

Let S be an empty stack

for i=0 to n-1 do

if X[i] is an opening grouping symbol then

S.push(X[i])

else if X[i] is a closing grouping symbol then

if S.isEmpty() then

return false {nothing to match with} 

if S.pop() does not match the type of X[i] then

return false {wrong type}

if S.isEmpty() then

return true {every symbol matched} 

else

return false {some symbols were never matched}
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Postfix Evaluator

• 5 3 6 * + 7 - = ?
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Stack Interface in Java

functionality of a data structure is expressed through 
the public interface of the associated class or classes 
that define the data structure.

public interface Stack {

public int size();

public bool isEmpty();

public Object top()

throw(EmptyStackException);

public void push(Object o);

public Object pop()

throw(EmptyStackException);

};

• Interface 
corresponding to our 
Stack ADT

• Requires the 
definition of class 
EmptyStackException



Array-based Stack

• A simple way of 
implementing the 
Stack ADT uses an 
array

• We add elements 
from left to right

• A variable keeps track 
of the  index of the 
top element 

S

0 1 2 t

…

Algorithm size()

return t + 1

Algorithm pop()

if empty() then

throw EmptyStackException

else 

t = t - 1

return S[t + 1]
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Array-based Stack (cont.)

• The array storing the 
stack elements may 
become full

• A push operation will 
then throw a 
FullStackException
– Limitation of the 

array-based  
implementation

– Not intrinsic to the 
Stack ADT

S

0 1 2 t

…

Algorithm push(o)

if t = S.length - 1 then

throw FullStackException

else 

t = t + 1

S[t] = o
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Performance and Limitations 
of array-based implementation of stack ADT

• Performance

– Let n be the number of elements in the stack

– The space used is O(n)

– Each operation runs in time O(1)

• Limitations

– The maximum size of the stack must be defined a 
priori , and cannot be changed

– Trying to push a new element into a full stack causes 
an implementation-specific exception



Growable Array-based Stack

• In a push operation, when the 
array is full, instead of 
throwing an exception, we 
can replace the array with a 
larger one

• How large should the new 
array be?
– incremental strategy: increase 

the size by a constant c

– doubling strategy: double the 
size

Algorithm push(o)

if t = S.length - 1

then

A = new array of

size …

for i = 0 to t do

A[i] = S[i]

S = A

t = t + 1

S[t] = o



42

Comparison of the 
Strategies

• We compare the incremental strategy and the 
doubling strategy by analyzing the total time 
T(n) needed to perform a series of n push 
operations

• We assume that we start with an empty stack 
represented by an array of size 1

• We call amortized time of a push operation 
the average time taken by a push over the 
series of operations, i.e.,  T(n)/n
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Incremental Strategy Analysis 

• We replace the array k = n/c times
• The total time T(n) of a series of n push 

operations is proportional to
• n + c + 2c + 3c + 4c + … + kc =

• n + c(1 + 2 + 3 + … + k) =

• n + ck(k + 1)/2

• Since c is a constant, T(n) is O(n + k2), i.e., 
O(n2)

• The amortized time of a push operation is O(n)
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Doubling Strategy Analysis

• We replace the array k = log2 n
times

• The total time T(n) of a series of n
push operations is proportional to

• n + 1 + 2 + 4 + 8 + …+ 2k =

• n + 2k + 1 -1 = 3n -1

• T(n) is O(n)

• The amortized time of a push 
operation is O(1)

geometric series

1

2

1

4

8
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Singly Linked List

• A singly linked list is a 
concrete data 
structure consisting of 
a sequence of nodes

• Each node stores
– element
– link to the next node

next

elem node

A B C D
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Stack with a Singly Linked List

• We can implement a stack with a singly linked list

• The top element is stored at the first node of the list

• The space used is O(n) and each operation of the 
Stack ADT takes O(1) time 

t

nodes

elements

top
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Exercise

• Describe how to implement a stack using a 
singly-linked list
– Stack operations: push(x), pop(), size(), 

isEmpty()

– For each operation, give the running time



Stack Summary

• Stack Operation Complexity for Different 
Implementations
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Array 

Fixed-Size

Array

Expandable (doubling 

strategy)

List

Singly-

Linked

Pop() O(1) O(1) O(1)

Push(o) O(1) O(n) Worst Case

O(1) Best Case

O(1) Amortized

O(1)

Top() O(1) O(1) O(1)

Size(), isEmpty() O(1) O(1) O(1)


