
Asymptotic Analysis



Data Structures and Algorithms

Algorithm: Outline, the essence of a 

computational procedure, step-by-step 

instructions

Program: an implementation of an 

algorithm in some programming language 

Data structure: Organization of data 

needed to solve the problem



Algorithmic problem

 Infinite number of input instances satisfying the 

specification. 

 For eg: A sorted, non-decreasing sequence of natural 

numbers of non-zero, finite length:

 1, 20, 908, 909, 100000, 1000000000.

 3.

Specification 
of input

?
Specification 
of output as 
a function of 
input



Algorithmic Solution

Algorithm describes actions on the input instance

many correct algorithms for the same algorithmic 

problem 

Input instance, 
adhering to 
the 
specification

Algorithm Output 
related to 
the input as 
required



What is a Good Algorithm?

Efficient:

Running time

Space used

Efficiency as a function of input size:

The number of bits in an input number 

Number of data elements (numbers, points)



Measuring the Running Time 

Experimental Study

Write a program that implements the algorithm

Run the program with data sets of varying size 

and composition.

Use a system call to get an accurate measure of 

the actual running time.

50 1000

t (ms)

n

10

20

30

40

50

60

How should we measure the 

running time of an algorithm?



Limitations of Experimental Studies

 It is necessary to implement and test the 

algorithm in order to determine its running time. 

Experiments done only on a limited set of inputs,

 may not be indicative of the running time on other 

inputs not included in the experiment. 

 In order to compare two algorithms, the same 

hardware and software environments needed



Beyond Experimental Studies

We will develop a general methodology for 

analyzing running time of algorithms. This 

approach 

Uses a high-level description of the algorithm 

instead of testing one of its implementations. 

Takes into account all possible inputs. 

Allows one to evaluate the efficiency of any 

algorithm in a way that is independent of the 

hardware and software environment.



Example

Algorithm arrayMax(A, n):

Input: An array A storing n integers.

Output: The maximum element in A.



Pseudo-code (Functional / Recursive) 

algorithm arrayMax(A[0..n-1])

{

A[0]                                                     if n=1

max(arrayMax(A[0..n-2]), A[n-1])        o.w.  

}



Pseudo-Code (imperative)
 A mixture of natural language and high-level 

programming concepts that describes the main 
ideas behind a generic implementation of a data 
structure or algorithm.

 Eg: algorithm arrayMax(A, n):

Input: An array A storing n integers.

Output: The maximum element in A.

currentMax  A[0]

for  i  1 to n-1 do

if currentMax < A[i] then currentMax  A[i]

return currentMax



Pseudo-Code 

It is more structured than usual prose but

less formal than a programming language

Expressions: 
use standard mathematical symbols to 

describe numeric and boolean expressions   

use  for assignment (“=” in Java)

use = for equality relationship (“==” in Java)

Method Declarations:       

algorithm name(param1, param2)



Pseudo Code

Programming Constructs: 

decision structures: if ... then ... [else ... ] 

while-loops: while ... do 

repeat-loops: repeat ... until ...

 for-loop: for ... do

array indexing: A[i], A[i,j]

Methods:

calls: object method(args)

returns: return value 



Analysis of Algorithms

Primitive Operation: Low-level operation 

independent of programming language. 

Can be identified in pseudo-code. For eg:

Data movement (assign)

Control (branch, subroutine call, return) 

arithmetic an logical operations (e.g. addition, 

comparison)

By inspecting the pseudo-code, we can 

count the number of primitive operations 

executed by an algorithm.



Sort

Example: Sorting

INPUT
sequence of numbers

a1, a2, a3,….,an
b1,b2,b3,….,bn

OUTPUT
a permutation of the 

sequence of numbers

2    5    4    10    7  2    4 5    7    10  

Correctness (requirements for the  

output)

For any given input the algorithm 

halts with the output:

• b1 < b2 < b3 < …. <  bn

• b1, b2, b3, …., bn is a 

permutation of a1, a2, a3,….,an

Correctness (requirements for the  

output)

For any given input the algorithm 

halts with the output:

• b1 < b2 < b3 < …. <  bn

• b1, b2, b3, …., bn is a 

permutation of a1, a2, a3,….,an

Running time

Depends on

• number of elements (n)

• how (partially) sorted

they are

• algorithm

Running time

Depends on

• number of elements (n)

• how (partially) sorted

they are

• algorithm



Insertion Sort

A
1 nj

3 6 84 9 7 2 5 1

i

Strategy

• Start “empty handed”
• Insert a card in the right

position of the already sorted

hand

• Continue until all cards are

inserted/sorted

Strategy

• Start “empty handed”
• Insert a card in the right

position of the already sorted

hand

• Continue until all cards are

inserted/sorted

INPUT: A[0..n-1] – an array of integers

OUTPUT: a permutation of A such that 
A[0]A[1]…A[n-1]

INPUT: A[0..n-1] – an array of integers

OUTPUT: a permutation of A such that 
A[0]A[1]…A[n-1]



Pseudo-code (Functional / Recursive) 

algorithm insertionSort(A[0..n-1])

{

A[0]                                                         if n=1

insert(insertionSort(A[0..n-2]), A[n-1])    o.w.

}

algorithm insert(A[0..n-1], key)

{

append(A[0..n-1], key)                     if key>=A[n-1]

append(newarray(key), A[0]) if n=1&key<A[0]

append(insert(A[0..n-2],key), A[n-1])   o.w.

}



Insertion Sort

A
1 nj

3 6 84 9 7 2 5 1

i

Strategy

• Start “empty handed”
• Insert a card in the right

position of the already sorted

hand

• Continue until all cards are

inserted/sorted

Strategy

• Start “empty handed”
• Insert a card in the right

position of the already sorted

hand

• Continue until all cards are

inserted/sorted

INPUT: A[0..n-1] – an array of integers

OUTPUT: a permutation of A such that 
A[0]A[1]…A[n-1]

for j1 to n-1 do

key A[j]

//insert A[j] into the sorted sequence 

A[0..j-1]
ij-1

while i>=0 and A[i]>key

do A[i+1]A[i]

i--

A[i+1]key

INPUT: A[0..n-1] – an array of integers

OUTPUT: a permutation of A such that 
A[0]A[1]…A[n-1]

for j1 to n-1 do

key A[j]

//insert A[j] into the sorted sequence 

A[0..j-1]
ij-1

while i>=0 and A[i]>key

do A[i+1]A[i]

i--

A[i+1]key



Analysis of Insertion Sort

for j1 to n-1 do

keyA[j]

//insert A[j] into the sorted   

sequence A[0..j-1]
ij-1

while i>=0 and A[i]>key

do A[i+1]A[i]

i--

A[i+1]  key

cost

c1
c2
0

c3
c4
c5
c6
c7

Times

n

n-1

n-1

n-1

n-1

Total time = n(c1+c2+c3+c7) + n-1
j=1 tj (c4+c5+c6) 

– (c2+c3+c5+c6+c7)

 
𝒋=𝟏

𝒏−𝟏

𝒕𝒋

 
𝒋=𝟏

𝒏−𝟏

(𝒕𝒋 − 𝟏)

 
𝒋=𝟏

𝒏−𝟏

(𝒕𝒋 − 𝟏)



Best/Worst/Average Case

Best case: 

elements already sorted; tj=1, running time = f(n),

i.e., linear time. 

Worst case: 

elements are sorted in inverse order; tj=j+1, 

running time = f(n2), i.e., quadratic time

Average case: 

 tj=(j+1)/2, running time = f(n2), i.e., quadratic time

Total time = n(c1+c2+c3+c7) + n-1
j=1 tj (c4+c5+c6) 

– (c2+c3+c5+c6+c7)



Best/Worst/Average Case (2)

For a specific size of input n, investigate 
running times for different input instances:



Best/Worst/Average Case (3)

For inputs of all sizes:

1n

2n

3n

4n

5n

6n

Input instance size

R
u
n
n
in

g
 t

im
e

1    2    3    4    5     6    7    8     9   10   11   12  …..

best-case

average-case

worst-case



Best/Worst/Average Case (4)

 Worst case is usually used: It is an upper-

bound and in certain application domains (e.g., 

air traffic control, surgery) knowing the worst-

case time complexity is of crucial importance

 For some algos worst case occurs fairly often

 Average case is often as bad as worst case

 Finding average case can be very difficult



Asymptotic Analysis

 Goal: to simplify analysis of running time by 

getting rid of ”details”, which may be affected by 

specific implementation and hardware 

 like “rounding”: 1,000,001  1,000,000

 3n2  n2

 Capturing the essence: how the running time of 

an algorithm increases with the size of the input 

in the limit.

 Asymptotically more efficient algorithms are best for 

all but small inputs 



Asymptotic Notation

The “big-Oh” O-Notation

asymptotic upper bound

 f(n) is O(g(n)), if there exists constants c and n0, 
s.t. f(n)  c g(n) for all n  n0

 f(n) and g(n) are functions over non-negative 
integers

Used for worst-case

analysis
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Example

f(n) = 2n + 6

For functions f(n) and g(n) there are positive 

constants c and n0 such that: f(n) ≤ c g(n) for n ≥ n0

conclusion: 

2n+6 is O(n).



Another Example

On the other hand…

n2 is not O(n) because there is 

no c and n0 such that:  

n2 ≤ cn for n ≥ n0

The graph to the right 

illustrates that no matter how 

large a c is chosen there is an n

big enough that n2 > cn ) .



Asymptotic Notation

Simple Rule: Drop lower order terms and 

constant factors.

50 n log n is O(n log n)

7n - 3 is O(n)

8n2 log n + 5n2 + n is O(n2 log n)

Note: Even though (50 n log n) is O(n5), it 

is expected that such an approximation be 

of as small an order as possible



Asymptotic Analysis of Running Time

 Use O-notation to express number of primitive 
operations executed as function of  input size.

 Comparing asymptotic running times

an algorithm that runs in O(n) time is better 
than one that runs in O(n2) time

similarly, O(log n) is better than O(n)

hierarchy of functions:  log n < n < n2 < n3 < 2n

 Caution! Beware of very large constant factors. 
An algorithm running in time 1,000,000 n is still 
O(n) but might be less efficient than one running 
in time 2n2, which is O(n2)



Example of Asymptotic Analysis

Algorithm prefixAverages1(X):

Input: An n-element array X of numbers.

Output: An n-element array A of numbers such that 
A[i] is the average of elements X[0], ... , X[i].

for i  0 to n-1 do

a  0

for j  0 to i do

a  a + X[j] 

A[i]  a/(i+1)

return array A

Analysis: running time is O(n2)

1 step

i iterations 

with 

i=0,1,2...n-1

n iterations



A Better Algorithm

Algorithm prefixAverages2(X):

Input: An n-element array X of numbers.

Output: An n-element array A of numbers such

that A[i] is the average of elements X[0], ... , X[i].

s  0

for i  0 to n do

s  s + X[i] 

A[i]  s/(i+1)

return array A

Analysis: Running time is O(n)



Asymptotic Notation (terminology)

 Special classes of algorithms:

 Logarithmic: O(log n)

 Linear: O(n)

 Quadratic: O(n2)

 Polynomial: O(nk), k ≥ 1

 Exponential: O(an), a > 1

 “Relatives” of the Big-Oh

 (f(n)): Big Omega -asymptotic lower bound

 (f(n)): Big Theta -asymptotic tight bound



 The “big-Omega” -
Notation
 asymptotic lower bound

 f(n) is (g(n)) if there exists 
constants c and n0, s.t.        
c g(n)  f(n) for n  n0

 Used to describe best-
case running times or 
lower bounds for 
algorithmic problems
 E.g., lower-bound for 

searching in an unsorted 
array is (n). 
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 The “big-Theta” -
Notation

 asymptotically tight bound

 f(n) is (g(n)) if there exists 

constants c1, c2, and n0, s.t.

c1 g(n)  f(n)  c2 g(n) for n 

n0

 f(n) is (g(n)) if and only if 

f(n) is O(g(n))  and f(n) is 

(g(n))

 O(f(n)) is often misused 

instead of (f(n)) 

Asymptotic Notation
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Asymptotic Notation

Analogy with real numbers

 f(n) is O(g(n)) @ f g

 f(n) is (g(n)) @ f  g

 f(n) is (g(n)) @ f =g

Abuse of notation: f(n) = O(g(n)) actually 

means f(n) O(g(n)) 



Comparison of Running Times

Running

Time

Maximum problem size (n)

1 second 1 minute 1 hour

400n 2500 150000 9000000

20n log n 4096 166666 7826087

2n2 707 5477 42426

n4 31 88 244

2n 19 25 31


