
Asymptotic Analysis

Data Structures and Algorithms

Algorithm: Outline, the essence of a

computational procedure, step-by-step

instructions

Program: an implementation of an

algorithm in some programming language

Data structure: Organization of data

needed to solve the problem

Algorithmic problem

 Infinite number of input instances satisfying the

specification.

 For eg: A sorted, non-decreasing sequence of natural

numbers of non-zero, finite length:

 1, 20, 908, 909, 100000, 1000000000.

 3.

Specification
of input

?
Specification
of output as
a function of
input

Algorithmic Solution

Algorithm describes actions on the input instance

many correct algorithms for the same algorithmic

problem

Input instance,
adhering to
the
specification

Algorithm Output
related to
the input as
required

What is a Good Algorithm?

Efficient:

Running time

Space used

Efficiency as a function of input size:

The number of bits in an input number

Number of data elements (numbers, points)

Measuring the Running Time

Experimental Study

Write a program that implements the algorithm

Run the program with data sets of varying size

and composition.

Use a system call to get an accurate measure of

the actual running time.

50 1000

t (ms)

n

10

20

30

40

50

60

How should we measure the

running time of an algorithm?

Limitations of Experimental Studies

 It is necessary to implement and test the

algorithm in order to determine its running time.

Experiments done only on a limited set of inputs,

 may not be indicative of the running time on other

inputs not included in the experiment.

 In order to compare two algorithms, the same

hardware and software environments needed

Beyond Experimental Studies

We will develop a general methodology for

analyzing running time of algorithms. This

approach

Uses a high-level description of the algorithm

instead of testing one of its implementations.

Takes into account all possible inputs.

Allows one to evaluate the efficiency of any

algorithm in a way that is independent of the

hardware and software environment.

Example

Algorithm arrayMax(A, n):

Input: An array A storing n integers.

Output: The maximum element in A.

Pseudo-code (Functional / Recursive)

algorithm arrayMax(A[0..n-1])

{

A[0] if n=1

max(arrayMax(A[0..n-2]), A[n-1]) o.w.

}

Pseudo-Code (imperative)
 A mixture of natural language and high-level

programming concepts that describes the main
ideas behind a generic implementation of a data
structure or algorithm.

 Eg: algorithm arrayMax(A, n):

Input: An array A storing n integers.

Output: The maximum element in A.

currentMax A[0]

for i 1 to n-1 do

if currentMax < A[i] then currentMax A[i]

return currentMax

Pseudo-Code

It is more structured than usual prose but

less formal than a programming language

Expressions:
use standard mathematical symbols to

describe numeric and boolean expressions

use for assignment (“=” in Java)

use = for equality relationship (“==” in Java)

Method Declarations:

algorithm name(param1, param2)

Pseudo Code

Programming Constructs:

decision structures: if ... then ... [else ...]

while-loops: while ... do

repeat-loops: repeat ... until ...

 for-loop: for ... do

array indexing: A[i], A[i,j]

Methods:

calls: object method(args)

returns: return value

Analysis of Algorithms

Primitive Operation: Low-level operation

independent of programming language.

Can be identified in pseudo-code. For eg:

Data movement (assign)

Control (branch, subroutine call, return)

arithmetic an logical operations (e.g. addition,

comparison)

By inspecting the pseudo-code, we can

count the number of primitive operations

executed by an algorithm.

Sort

Example: Sorting

INPUT
sequence of numbers

a1, a2, a3,….,an
b1,b2,b3,….,bn

OUTPUT
a permutation of the

sequence of numbers

2 5 4 10 7 2 4 5 7 10

Correctness (requirements for the

output)

For any given input the algorithm

halts with the output:

• b1 < b2 < b3 < …. < bn

• b1, b2, b3, …., bn is a

permutation of a1, a2, a3,….,an

Correctness (requirements for the

output)

For any given input the algorithm

halts with the output:

• b1 < b2 < b3 < …. < bn

• b1, b2, b3, …., bn is a

permutation of a1, a2, a3,….,an

Running time

Depends on

• number of elements (n)

• how (partially) sorted

they are

• algorithm

Running time

Depends on

• number of elements (n)

• how (partially) sorted

they are

• algorithm

Insertion Sort

A
1 nj

3 6 84 9 7 2 5 1

i

Strategy

• Start “empty handed”
• Insert a card in the right

position of the already sorted

hand

• Continue until all cards are

inserted/sorted

Strategy

• Start “empty handed”
• Insert a card in the right

position of the already sorted

hand

• Continue until all cards are

inserted/sorted

INPUT: A[0..n-1] – an array of integers

OUTPUT: a permutation of A such that
A[0]A[1]…A[n-1]

INPUT: A[0..n-1] – an array of integers

OUTPUT: a permutation of A such that
A[0]A[1]…A[n-1]

Pseudo-code (Functional / Recursive)

algorithm insertionSort(A[0..n-1])

{

A[0] if n=1

insert(insertionSort(A[0..n-2]), A[n-1]) o.w.

}

algorithm insert(A[0..n-1], key)

{

append(A[0..n-1], key) if key>=A[n-1]

append(newarray(key), A[0]) if n=1&key<A[0]

append(insert(A[0..n-2],key), A[n-1]) o.w.

}

Insertion Sort

A
1 nj

3 6 84 9 7 2 5 1

i

Strategy

• Start “empty handed”
• Insert a card in the right

position of the already sorted

hand

• Continue until all cards are

inserted/sorted

Strategy

• Start “empty handed”
• Insert a card in the right

position of the already sorted

hand

• Continue until all cards are

inserted/sorted

INPUT: A[0..n-1] – an array of integers

OUTPUT: a permutation of A such that
A[0]A[1]…A[n-1]

for j1 to n-1 do

key A[j]

//insert A[j] into the sorted sequence

A[0..j-1]
ij-1

while i>=0 and A[i]>key

do A[i+1]A[i]

i--

A[i+1]key

INPUT: A[0..n-1] – an array of integers

OUTPUT: a permutation of A such that
A[0]A[1]…A[n-1]

for j1 to n-1 do

key A[j]

//insert A[j] into the sorted sequence

A[0..j-1]
ij-1

while i>=0 and A[i]>key

do A[i+1]A[i]

i--

A[i+1]key

Analysis of Insertion Sort

for j1 to n-1 do

keyA[j]

//insert A[j] into the sorted

sequence A[0..j-1]
ij-1

while i>=0 and A[i]>key

do A[i+1]A[i]

i--

A[i+1] key

cost

c1
c2
0

c3
c4
c5
c6
c7

Times

n

n-1

n-1

n-1

n-1

Total time = n(c1+c2+c3+c7) + n-1
j=1 tj (c4+c5+c6)

– (c2+c3+c5+c6+c7)

𝒋=𝟏

𝒏−𝟏

𝒕𝒋

𝒋=𝟏

𝒏−𝟏

(𝒕𝒋 − 𝟏)

𝒋=𝟏

𝒏−𝟏

(𝒕𝒋 − 𝟏)

Best/Worst/Average Case

Best case:

elements already sorted; tj=1, running time = f(n),

i.e., linear time.

Worst case:

elements are sorted in inverse order; tj=j+1,

running time = f(n2), i.e., quadratic time

Average case:

 tj=(j+1)/2, running time = f(n2), i.e., quadratic time

Total time = n(c1+c2+c3+c7) + n-1
j=1 tj (c4+c5+c6)

– (c2+c3+c5+c6+c7)

Best/Worst/Average Case (2)

For a specific size of input n, investigate
running times for different input instances:

Best/Worst/Average Case (3)

For inputs of all sizes:

1n

2n

3n

4n

5n

6n

Input instance size

R
u
n
n
in

g
 t

im
e

1 2 3 4 5 6 7 8 9 10 11 12 …..

best-case

average-case

worst-case

Best/Worst/Average Case (4)

 Worst case is usually used: It is an upper-

bound and in certain application domains (e.g.,

air traffic control, surgery) knowing the worst-

case time complexity is of crucial importance

 For some algos worst case occurs fairly often

 Average case is often as bad as worst case

 Finding average case can be very difficult

Asymptotic Analysis

 Goal: to simplify analysis of running time by

getting rid of ”details”, which may be affected by

specific implementation and hardware

 like “rounding”: 1,000,001 1,000,000

 3n2 n2

 Capturing the essence: how the running time of

an algorithm increases with the size of the input

in the limit.

 Asymptotically more efficient algorithms are best for

all but small inputs

Asymptotic Notation

The “big-Oh” O-Notation

asymptotic upper bound

 f(n) is O(g(n)), if there exists constants c and n0,
s.t. f(n) c g(n) for all n n0

 f(n) and g(n) are functions over non-negative
integers

Used for worst-case

analysis

)(nf
()c g n

0n Input Size

R
u

n
n

in
g

 T
im

e

Example

f(n) = 2n + 6

For functions f(n) and g(n) there are positive

constants c and n0 such that: f(n) ≤ c g(n) for n ≥ n0

conclusion:

2n+6 is O(n).

Another Example

On the other hand…

n2 is not O(n) because there is

no c and n0 such that:

n2 ≤ cn for n ≥ n0

The graph to the right

illustrates that no matter how

large a c is chosen there is an n

big enough that n2 > cn) .

Asymptotic Notation

Simple Rule: Drop lower order terms and

constant factors.

50 n log n is O(n log n)

7n - 3 is O(n)

8n2 log n + 5n2 + n is O(n2 log n)

Note: Even though (50 n log n) is O(n5), it

is expected that such an approximation be

of as small an order as possible

Asymptotic Analysis of Running Time

 Use O-notation to express number of primitive
operations executed as function of input size.

 Comparing asymptotic running times

an algorithm that runs in O(n) time is better
than one that runs in O(n2) time

similarly, O(log n) is better than O(n)

hierarchy of functions: log n < n < n2 < n3 < 2n

 Caution! Beware of very large constant factors.
An algorithm running in time 1,000,000 n is still
O(n) but might be less efficient than one running
in time 2n2, which is O(n2)

Example of Asymptotic Analysis

Algorithm prefixAverages1(X):

Input: An n-element array X of numbers.

Output: An n-element array A of numbers such that
A[i] is the average of elements X[0], ... , X[i].

for i 0 to n-1 do

a 0

for j 0 to i do

a a + X[j]

A[i] a/(i+1)

return array A

Analysis: running time is O(n2)

1 step

i iterations

with

i=0,1,2...n-1

n iterations

A Better Algorithm

Algorithm prefixAverages2(X):

Input: An n-element array X of numbers.

Output: An n-element array A of numbers such

that A[i] is the average of elements X[0], ... , X[i].

s 0

for i 0 to n do

s s + X[i]

A[i] s/(i+1)

return array A

Analysis: Running time is O(n)

Asymptotic Notation (terminology)

 Special classes of algorithms:

 Logarithmic: O(log n)

 Linear: O(n)

 Quadratic: O(n2)

 Polynomial: O(nk), k ≥ 1

 Exponential: O(an), a > 1

 “Relatives” of the Big-Oh

 (f(n)): Big Omega -asymptotic lower bound

 (f(n)): Big Theta -asymptotic tight bound

 The “big-Omega” -
Notation
 asymptotic lower bound

 f(n) is (g(n)) if there exists
constants c and n0, s.t.
c g(n) f(n) for n n0

 Used to describe best-
case running times or
lower bounds for
algorithmic problems
 E.g., lower-bound for

searching in an unsorted
array is (n).

Input Size

R
u

n
n

in
g

 T
im

e

)(nf

()c g n

0n

Asymptotic Notation

 The “big-Theta” -
Notation

 asymptotically tight bound

 f(n) is (g(n)) if there exists

constants c1, c2, and n0, s.t.

c1 g(n) f(n) c2 g(n) for n

n0

 f(n) is (g(n)) if and only if

f(n) is O(g(n)) and f(n) is

(g(n))

 O(f(n)) is often misused

instead of (f(n))

Asymptotic Notation

Input Size
R

u
n

n
in

g
 T

im
e

)(nf

0n

)(ngc 2

)(ngc 1

Asymptotic Notation

Analogy with real numbers

 f(n) is O(g(n)) @ f g

 f(n) is (g(n)) @ f g

 f(n) is (g(n)) @ f =g

Abuse of notation: f(n) = O(g(n)) actually

means f(n) O(g(n))

Comparison of Running Times

Running

Time

Maximum problem size (n)

1 second 1 minute 1 hour

400n 2500 150000 9000000

20n log n 4096 166666 7826087

2n2 707 5477 42426

n4 31 88 244

2n 19 25 31

