
COL106 Practice Assignment #2 Autumn 2017

Stacks, Queues, Linked Lists & Recursion, Amortized Analysis

(1) Describe a recursive algorithm to compute the integer part of the base-two logarithm of
n using only addition and integer division.

(2) Suppose you are given an n-element array A containing distinct integers that are listed in
increasing order. Given a number k, describe a recursive algorithm the find two integers
in A that sum to k, if such a pair exists. What is the running time of your algorithm?

(3) Describe a linear time algorithm to reverse a singly-linked list L so that the ordering of
the nodes becomes opposite of what it was before.

(4) Describe in pseudo-code how to implement the stack ADT using two queues. What is
the running time of push(), and pop() methods in this case? (Note: there are multiple
solutions to this. Think of a solution where push() is constant time, and another solution
where pop() is constant time).

(5) A (singly linked) circular list is a collection C of n positions such that each has a next

variable and following next links starting from any position can visit all positions in C.
Describe how to perform insertBefore(p, e) and insertAfter(p, e) for position p and
element e in such a scheme. What are the running times of these operations? Can you
do both operations in constant time?

(6) Consider the problem of storing a very large counter. Say, we use an array A where ith

bit of the count is stored A[i]. Suppose the counter had to count a total of N events.
What is the total running time of counting up to N using a such a counter? (Hint: think
amortized analysis).

(7) [Challenge Problem] A singly linked list L has a cycle if the last position of the list, instead
of having a null next pointer, points to some previous position in the list. Develop a
method for checking if L has a cycle.


	Stacks, Queues, Linked Lists & Recursion, Amortized Analysis

