Asymptotic Analysis

- (1) Order the following functions in the increasing order of their asymptotic growth rate: (a) $4n \log n + 2n$, (b) 2^{10} , (c) $2^{\log n}$, (d) $3n + 100 \log n$, (e) 4n, (f) 2^n , (g) n2 - 10n, (h) n^3 , (i) $n \log n$
- (2) Show that $O(\max\{f(n), g(n)\})$ is O(f(n) + g(n)).
- (3) Show that if d(n) is O(f(n)) and e(n) is O(g(n)) then d(n) e(n) is not necessarily O(f(n) g(n)).
- (4) Show that n^2 is not $o(n^2)$.
- (5) Suppose that each row of an $n \times n$ array A consists of 1s and 0s such that, in any row of A, all the 1s come before any 0s in that row. Assuming A is already in memory, describe a method running in $\Theta(n)$ time for finding the row of A that contains the most 1s. Explain why your algorithm is $\Theta(n)$.
- (6) Describe in pseudo-code a method for multiplying an $n \times m$ matrix A and an $m \times p$ matrix B. Recall that the product C = AB is defined so that $C[i][j] = \sum_{k=1}^{m} A[i][k] \cdot B[k][j]$. What is the running time of your method?
- (7) [Challenge Problem] Describe a method for finding both the minimum and maximum of n numbers using fewer than 3n/2 comparisons.