Asymptotic Analysis

(1) Order the following functions in the increasing order of their asymptotic growth rate: (a) $4 n \log n+2 n$, (b) 2^{10}, (c) $2^{\log n}$, (d) $3 n+100 \log n$, (e) $4 n$, (f) 2^{n}, (g) $n 2-10 n$, (h) n^{3}, (i) $n \log n$
(2) Show that $O(\max \{f(n), g(n)\})$ is $O(f(n)+g(n))$.
(3) Show that if $d(n)$ is $O(f(n))$ and $e(n)$ is $O(g(n))$ then $d(n)-e(n)$ is not necessarily $O(f(n)-g(n))$.
(4) Show that n^{2} is not $o\left(n^{2}\right)$.
(5) Suppose that each row of an $n \times n$ array A consists of 1 s and 0 s such that, in any row of A, all the 1 s come before any 0 s in that row. Assuming A is already in memory, describe a method running in $\Theta(n)$ time for finding the row of A that contains the most 1s. Explain why your algorithm is $\Theta(n)$.
(6) Describe in pseudo-code a method for multiplying an $n \times m$ matrix A and an $m \times p$ matrix B. Recall that the product $C=A B$ is defined so that $C[i][j]=\sum_{k=1}^{m} A[i][k] \cdot B[k][j]$. What is the running time of your method?
(7) [Challenge Problem] Describe a method for finding both the minimum and maximum of n numbers using fewer than $3 n / 2$ comparisons.

