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Problem: Laying Telephone Wire

Central office
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Wiring: Naive Approach

Central office

Expensive!
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Wiring: Better Approach

Central office

Minimize the total length of wire connecting ALL customers
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Spanning trees

 Suppose you have a connected undirected graph:

 Connected: every node is reachable from every other node

 Undirected: edges do not have an associated direction

 ...then a spanning tree of the graph is a connected subgraph which contains all 
the vertices and has no cycles.

A connected,

undirected graph

Four of the spanning trees of the graph



All 16 of its Spanning TreesComplete Graph
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Minimum-cost spanning trees

 Suppose you have a connected undirected graph with a weight (or 

cost) associated with each edge.

 The cost of a spanning tree would be the sum of the costs of its 

edges.

 A minimum-cost spanning tree is a spanning tree that has the 

lowest cost.
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Minimum Spanning Tree (MST)

 it is a tree (i.e., it is acyclic)

 it covers all the vertices V

 contains |V| - 1 edges

 the total cost associated with tree edges is the 

minimum among all possible spanning trees

 not necessarily unique.

A minimum spanning tree is a subgraph of an 

undirected weighted graph G, such that

Tree = connected graph without cycles
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How Can We Generate a MST? 
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Finding minimum spanning trees

 There are two basic algorithms for finding minimum-cost 

spanning trees, and both are greedy algorithms.

 Kruskal’s algorithm: Start with no nodes or edges in the 

spanning tree, and repeatedly add the cheapest edge that does 

not create a cycle

 Here, we consider the spanning tree to consist of edges only

 Prim’s algorithm: Start with any one node in the spanning 

tree, and repeatedly add the cheapest edge, and the node it leads 

to, for which the node is not already in the spanning tree.

 Here, we consider the spanning tree to consist of both nodes and edges

https://en.wikipedia.org/wiki/Kruskal's_algorithm
https://en.wikipedia.org/wiki/Prim's_algorithm
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Kruskal’s algorithm

The steps are:

1. The forest is constructed - with each node in a separate tree.

2. The edges are placed in a priority queue.

3. Until we've added n-1 edges,

(1). Extract the cheapest edge from the priority queue,

(2). If it forms a cycle, reject it. Else add it to the forest. 

Adding it to the forest will join two trees together.

Every step will have joined two trees in the forest together, so that at 

the end, there will only be one tree in T.
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Visualization of Kruskal's algorithm

“repeatedly add the cheapest edge

that does not create a cycle”



Time complexity of Kruskal's Algorithm

Running Time =  O(E log E)                (E = # edges)

Testing if an edge creates a cycle can be slow unless a complicated data 

structure called a “union-find” structure is used.

This algorithm works best, of course, if the number of edges is kept to a 

minimum.



Proof of Kruskal's Algorithm



Proof of Kruskal's Algorithm 2
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Prim’s algorithm

The steps are:

1. Initialize a tree with a single node arbitrarily chose from graph.

2. Repeat until all nodes are in the tree:

(1). Find the node from the graph with the smallest connecting 

edge to the tree,

(2). Add it to the tree

Every step will have joined one node, so that at the end we will have 

one new graph with all the nodes and it will be a minimum spanning 

tree of the original graph.
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 Unlike Kruskal’s, Prim’s algorithm doesn’t need to see all of 

the graph at once.  It can deal with it one piece at a time.  

 It also doesn’t need to worry if adding an edge will create a 

cycle since this algorithm deals primarily with the nodes, and 

not the edges.

Summary of Prim's Algorithm
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Time Complexity Review

 Kruskal’s algorithm:  O(e log v)

 Prim’s algorithm: O( e + v log v)

 Kruskal’s algorithm is preferable on sparse graphs, i.e., 

where e is very small compared to the total number of 

possible edges.

 Prim’s algorithm is easy to implemented, but the 

number of vertices needs to be kept to a minimum in 

addition to the number of edges.
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Approximation Algorithms

Presentation for use with the textbook, Algorithm Design and 

Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

© 2015 

Goodrich 

and 

Tamassia 



TSP: Traveling Salesperson Problem

Given a number of cities and the costs of traveling from 

any city to any other city, what is the cheapest round-trip 

route that visits each city exactly once and then returns to 

the starting city? 
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Approximation Ratios

 Optimization Problems

 We have some problem instance x that has many feasible 

“solutions”.

 We are trying to minimize (or maximize) some cost 

function c(S) for a “solution” S to x. For example,

 Finding a minimum spanning tree of a graph

 Finding a smallest vertex cover of a graph

 Finding a smallest traveling salesperson tour in a graph

 An approximation produces a solution T

 T is a k-approximation to the optimal solution OPT if 

c(T)/c(OPT) < k (assuming a min. prob.; a maximization 

approximation would be the reverse)
© 2015 Goodrich and 

Tamassia 
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Special Case of the Traveling 

Salesperson Problem

 OPT-TSP: Given a complete, weighted graph, find a 

cycle of minimum cost that visits each vertex.

 OPT-TSP is NP-hard

 Special case: edge weights satisfy the triangle inequality 

(which is common in many applications):

 w(a,b) + w(b,c) > w(a,c)

a

b

c

5 4

7

© 2015 Goodrich and 

Tamassia 



52

2-Approximation for TSP Special Case

Output tour T

Euler tour P of MST M

Algorithm TSPApprox(G)

Input weighted complete graph G, 
satisfying the triangle inequality

Output a TSP tour T for G

M  a minimum spanning tree for G

P  an Euler tour traversal of M, 
starting at some vertex s

T  empty list

for each vertex v in P (in traversal order)

if this is v’s first appearance in P then 
T.insertLast(v)

T.insertLast(s)

return T

© 2015 Goodrich and 

Tamassia 
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2-Approximation for TSP Special Case - Proof

Euler tour P of MST MOutput tour T Optimal tour OPT 

(twice the cost of M) (at least the cost of MST M)(at most the cost of P)

The optimal tour is a spanning tour; hence |M|<|OPT|.

The Euler tour P visits each edge of M twice; hence |P|=2|M|

Each time we shortcut a vertex in the Euler Tour we will not increase the 

total length, by the triangle inequality (w(a,b) + w(b,c) > w(a,c)); hence, 

|T|<|P|.

Therefore, |T|<|P|=2|M|<2|OPT|

© 2015 Goodrich and 

Tamassia 


