Algorithms

Lecture 14
Shortest Paths II

- Bellman-Ford algorithm
- Floyd-Warshal algorithm

Negative-weight cycles

Recall: If a graph $G=(V, E)$ contains a negativeweight cycle, then some shortest paths may not exist. Example:

Negative-weight cycles

Recall: If a graph $G=(V, E)$ contains a negativeweight cycle, then some shortest paths may not exist.

Example:

Bellman-Ford algorithm: Finds all shortest-path lengths from a source $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

Bellman-Ford algorithm

Bellman-Ford algorithm

for each $v \in V$ do $d[\nu] \leftarrow \infty$
$d[s] \leftarrow 0$
for $i \leftarrow 1$ to ????
do for each edge $(u, v) \in E$ $\left.\begin{array}{rl}\text { do if } d[v]>d[u]+w(u, v) \\ \text { then } d[v] & \leftarrow d[u]+w(u, v)\end{array}\right\} \begin{aligned} & \text { relaxation } \\ & \text { step }\end{aligned}$

Bellman-Ford algorithm

for each $v \in V$ do $d[\nu] \leftarrow \infty$ $d[s] \leftarrow 0$
for $i \leftarrow 1$ to $|V|-1$
do for each edge $(u, v) \in E$ do if $d[v]>d[u]+w(u, v) \quad$ relaxation then $d[v] \leftarrow d[u]+w(u, v)\}$ step

Example of Bellman-Ford

Initialization.

Example of Bellman-Ford

Order of edge relaxation.

Example of Bellman-Ford

Example of Bellman-Ford

Example of Bellman-Ford

Example of Bellman-Ford

Example of Bellman-Ford

End of pass 2 (and 3 and 4).

Bellman-Ford algorithm

for each $v \in V$ do $d[\nu] \leftarrow \infty$ $d[s] \leftarrow 0$
for $i \leftarrow 1$ to $|V|-1$
do for each edge $(u, v) \in E$

$$
\left.\begin{array}{rl}
\text { do if } d[v]>d[u]+w(u, v) \\
\text { then } d[v] & \leftarrow d[u]+w(u, v)
\end{array}\right\} \begin{aligned}
& \text { relaxation } \\
& \text { step }
\end{aligned}
$$

???????
then report that a negative-weight cycle exists

Bellman-Ford algorithm

for each $v \in V$
do $d[\nu] \leftarrow \infty$
$d[s] \leftarrow 0$

for $i \leftarrow 1$ to $|V|-1$
do for each edge $(u, v) \in E$ do if $d[v]>d[u]+w(u, v)\}$ relaxation then $d[v] \leftarrow d[u]+w(u, v)\}$ step
for each edge $(u, v) \in E$ do if $d[v]>d[u]+w(u, v)$
then report that a negative-weight cycle exists

Bellman-Ford algorithm

for each $v \in V$
do $d[\nu] \leftarrow \infty$
$d[s] \leftarrow 0$
for $i \leftarrow 1$ to $|V|-1$
do for each edge $(u, v) \in E$ $\left.\begin{array}{rl}\text { do if } d[v]>d[u]+w(u, v) \\ \text { then } d[v] & \leftarrow d[u]+w(u, v)\end{array}\right\} \begin{aligned} & \text { relaxation } \\ & \text { step }\end{aligned}$
for each edge $(u, v) \in E$
do if $d[v]>d[u]+w(u, v)$
then report that a negative-weight cycle exists
At the end, $d[v]=\delta(s, v)$, if no negative-weight cycles.
Time $=O(V E)$.

Correctness

Theorem. If $G=(V, E)$ contains no negativeweight cycles, then after the Bellman-Ford algorithm executes, $d[v]=\delta(s, v)$ for all $v \in V$.

Theorem. If $G=(V, E)$ contains no negativeweight cycles, then after k iterations of Bellman-Ford algorithm every node knows the shortest path from v that uses at most k edges and the distance of this path.

All-pairs shortest paths

Input: Digraph $G=(V, E)$, where $V=\{1,2$,
$\ldots, n\}$, with edge-weight function $w: E \rightarrow \mathrm{R}$.
Output: $n \times n$ matrix of shortest-path lengths
$\delta(i, j)$ for all $i, j \in V$.

All-pairs shortest paths

Input: Digraph $G=(V, E)$, where $V=\{1,2$,
$\ldots, n\}$, with edge-weight function $w: E \rightarrow$ R.
Output: $n \times n$ matrix of shortest-path lengths
$\delta(i, j)$ for all $i, j \in V$.
Idea:

- Run Bellman-Ford once from each vertex.
- Time $=\mathrm{O}\left(V^{2} E\right)$.
- Dense graph (V^{2} edges $) \Rightarrow \Theta\left(V^{4}\right)$ time in the worst case.
Good first try!

Pseudocode for Floyd-Warshall

for $k \leftarrow 1$ to n do for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n $\left.\begin{array}{l}\text { do if } d_{i j}>d_{i k}+d_{k j} \\ \text { then } d_{i j} \leftarrow d_{i k}+d_{k j}\end{array}\right\}$ relaxation

Notes:

- Runs in $\Theta\left(V^{3}\right)$ time.
- Simple to code.
- Efficient in practice.

