Djikstra's Algorithm

Slide Courtesy: Uwash, UT

Single-Source Shortest Path Problem

Single-Source Shortest Path Problem - The problem of finding shortest paths from a source vertex s to all other vertices in the graph.

Applications

- Maps (Map Quest, Google Maps)
- Routing Systems

From Computer Desktop Enoyclopedia - 1998 The Computer Language Co. Inc

Router A
Routing Table

Dijkstra's algorithm

Dijkstra's algorithm - is a solution to the single-source shortest path problem in graph theory.

Works on both directed and undirected graphs. However, all edges must have nonnegative weights.

Input: Weighted graph $\mathrm{G}=\{\mathrm{E}, \mathrm{V}\}$ and source vertex $s \in \mathrm{~V}$, such that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest paths themselves) from a given source vertex $s \in \mathrm{~V}$ to all other vertices

Approach

- The algorithm computes for each vertex u the distance to u from the start vertex s, that is, the weight of a shortest path between s and u.
- the algorithm keeps track of the set of vertices for which the distance has been computed, called the cloud C
- Every vertex has a label D associated with it. For any vertex u, $\mathrm{D}[\mathrm{u}]$ stores an approximation of the distance between s and u. The algorithm will update a $\mathrm{D}[\mathrm{u}]$ value when it finds a shorter path from s to u.
- When a vertex u is added to the cloud, its label $D[u]$ is equal to the actual (final) distance between the starting vertex s and vertex u.

Dijkstra pseudocode

Dijkstra(s, t):
for each vertex v :
// Initialization
v 's distance := infinity.
v's previous := none.
s's distance := 0 .
List := \{all vertices\}.
while List is not empty:
$v:=$ remove List vertex with minimum distance.
mark vas known.
for each unknown neighbor n of v :
dist $:=v$'s distance + edge (v, n)'s weight.
if dist is smaller than n 's distance:
n's distance := dist.
n 's previous := v.
reconstruct path from t back to s, following previous pointers.

Example: Initialization

Pick vertex in List with minimum distance.

Example: Update neighbors'

 distanceDistance(B) $=2$
Distance(D) $=1$

Example: Remove vertex with minimum distance

Pick vertex in List with minimum distance, i.e., D

Example: Update neighbors

Distance $(\mathrm{C})=1+2=3$
Distance $(\mathrm{E})=1+2=3$
Distance $(F)=1+8=9$
Distance $(\mathrm{G})=1+4=5$

Example: Continued...

Pick vertex in List with minimum distance (B) and update neighbors

Example: Continued...

Pick vertex List with minimum distance (E) and update neighbors

Example: Continued...

Pick vertex List with minimum distance (C) and update neighbors

Example: Continued...

Pick vertex List with minimum distance (G) and update neighbors

Example (end)

Pick vertex not in S with lowest cost (F) and update neighbors

Another Example

$$
Q: \begin{array}{llllll}
A & B & C & D & E \\
\hline 0 & \infty & \infty & \infty & \infty
\end{array}
$$

Another Example

Correctness :"Cloudy" Proof

When a vertex is added to the cloud, it has shortest distance to source.

- If the path to v is the next shortest path, the path to v ' must be at least as long. Therefore, any path through v' to v cannot be shorter!

Dijkstra's Correctness

- We will prove that whenever u is added to $S, d[u]=$ $\delta(s, u)$, i.e., that $d[u]$ is minimum, and that equality is maintained thereafter
- Proof
- Note that for all v not in $S, d[v] \geq \delta(s, v)$
- Let u be the first vertex picked such that there is a shorter path than $d[u]$, i.e., that $d[u]>\delta(s, u)$
- We will show that this assumption leads to a contradiction

Dijkstra Correctness (2)

- Let y be the first vertex in $V-S$ on the actual shortest path from s to u, then it must be that $d[y]=\delta(s, y)$ because
$-d[x]$ is set correctly for y 's predecessor x in S on the shortest path (by choice of u as the first vertex for which d is set incorrectly)
- when the algorithm inserted x into S, it relaxed the edge (x, y), assigning $d[y]$ the correct value

Dijkstra Correctness (3)

- But if $d[u]>d[y]$, the algorithm would have chosen y (from the Q) to process next, not u-- Contradiction
- Thus $\mathrm{d}[u]=\delta(s, u)$ at time of insertion of u into S, and Dijkstra's algorithm is correct

Dijkstra's Pseudo Code

- Graph G, weight function w, root s

relaxing edges

Time Complexity: Using List

The simplest implementation of the Dijkstra's algorithm stores vertices in an ordinary linked list or array

- Good for dense graphs (many edges)
- $|V|$ vertices and $|E|$ edges
- Initialization $\mathrm{O}(|\mathrm{V}|)$
- While loop O(|V|)
- Find and remove min distance vertices $\mathrm{O}(|\mathrm{V}|)$
- Potentially |E| updates
- Update costs O(1)

Total time $\mathrm{O}\left(\left|\mathrm{V}^{2}\right|+|\mathrm{E}|\right)=\mathrm{O}\left(\left|\mathrm{V}^{2}\right|\right)$

Time Complexity: Priority Queue

For sparse graphs, (i.e. graphs with much less than $\left|\mathrm{V}^{2}\right|$ edges) Dijkstra's implemented more efficiently by priority queue

- Initialization $\mathrm{O}(|\mathrm{V}|)$ using $\mathrm{O}(|\mathrm{V}|)$ buildHeap
- While loop O(|V|)
- Find and remove min distance vertices $\mathrm{O}(\log |\mathrm{V}|)$ using $\mathrm{O}(\log |\mathrm{V}|)$ deleteMin
- Potentially |E| updates
- Update costs $\mathrm{O}(\log |\mathrm{V}|)$ using decreaseKey

Total time $\mathrm{O}(|\mathrm{V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)=\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$

- $|\mathrm{V}|=\mathrm{O}(|\mathrm{E}|)$ assuming a connected graph

