
Djikstra’s Algorithm

Slide Courtesy: Uwash, UT

1

Single-Source Shortest Path Problem

Single-Source Shortest Path Problem - The
problem of finding shortest paths from a source
vertex s to all other vertices in the graph.

Applications

- Maps (Map Quest, Google Maps)
- Routing Systems

Dijkstra's algorithm

Dijkstra's algorithm - is a solution to the single-source
shortest path problem in graph theory.

Works on both directed and undirected graphs. However,
all edges must have nonnegative weights.

Input: Weighted graph G={E,V} and source vertex s∈V,
such that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest paths
themselves) from a given source vertex s∈V to all other
vertices

Approach

• The algorithm computes for each vertex u the distance to u
from the start vertex s, that is, the weight of a shortest path
between s and u.

• the algorithm keeps track of the set of vertices for which the
distance has been computed, called the cloud C

• Every vertex has a label D associated with it. For any vertex u,
D[u] stores an approximation of the distance between s and u.
The algorithm will update a D[u] value when it finds a shorter
path from s to u.

• When a vertex u is added to the cloud, its label D[u] is equal
to the actual (final) distance between the starting vertex s and
vertex u.

5

Dijkstra pseudocode

Dijkstra(s, t):
for each vertex v: // Initialization

v's distance := infinity.
v's previous := none.

s's distance := 0.
List := {all vertices}.

while List is not empty:
v := remove List vertex with minimum distance.
mark v as known.
for each unknown neighbor n of v:

dist := v's distance + edge (v, n)'s weight.

if dist is smaller than n's distance:
n's distance := dist.
n's previous := v.

reconstruct path from t back to s,
following previous pointers.

6

7

Example: Initialization

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 ∞

∞ ∞

∞

Pick vertex in List with minimum distance.

∞ ∞

Distance(source) =

0
Distance (all vertices

but source) = ∞

8

Example: Update neighbors'
distance

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

∞ ∞

1

∞ ∞

Distance(B) = 2

Distance(D) = 1

9

Example: Remove vertex with
minimum distance

Pick vertex in List with minimum distance, i.e., D

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

∞ ∞

1

∞ ∞

10

Example: Update neighbors

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

9 5

Distance(C) = 1 + 2 = 3

Distance(E) = 1 + 2 = 3

Distance(F) = 1 + 8 = 9

Distance(G) = 1 + 4 = 5

11

Example: Continued...

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex in List with minimum distance (B) and update neighbors

9 5

Note : distance(D) not

updated since D is

already known and

distance(E) not updated

since it is larger than

previously computed

12

Example: Continued...

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

9 5

No updating

Pick vertex List with minimum distance (E) and update neighbors

13

Example: Continued...

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

8 5

Pick vertex List with minimum distance (C) and update neighbors

Distance(F) = 3 + 5 = 8

14

Example: Continued...

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

6 5

Distance(F) = min (8, 5+1) = 6

Previous distance

Pick vertex List with minimum distance (G) and update neighbors

15

Example (end)

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex not in S with lowest cost (F) and update neighbors

6 5

Another Example

Another Example

Another Example

Another Example

Another Example

Another Example

Another Example

Another Example

Another Example

THE KNOWN

CLOUD

v
P: Next shortest path from

inside the known cloud

v'

Correctness :“Cloudy” Proof

• If the path to v is the next shortest path, the path to v' must be at
least as long. Therefore, any path through v' to v cannot be shorter!

Source

Least cost node

competitor

When a vertex is added to the cloud, it has shortest

distance to source.

26

Dijkstra’s Correctness

• We will prove that whenever u is added to S, d[u] =
d(s,u), i.e., that d[u] is minimum, and that equality is
maintained thereafter

• Proof
– Note that for all v not in S, d[v] ≥ d(s,v)
– Let u be the first vertex picked such that there is a shorter

path than d[u], i.e., that d[u] > d(s,u)
– We will show that this assumption leads to a contradiction

27

Dijkstra Correctness (2)

• Let y be the first vertex in V – S on the actual shortest
path from s to u, then it must be that d[y] = d(s,y)
because
– d[x] is set correctly for y's predecessor x in S on the shortest

path (by choice of u as the first vertex for which d is set
incorrectly)

– when the algorithm inserted x into S, it relaxed the edge
(x,y), assigning d[y] the correct value

28

• But if d[u] > d[y], the algorithm would have chosen y
(from the Q) to process next, not u -- Contradiction

• Thus d[u] = d(s,u) at time of insertion of u into S, and
Dijkstra's algorithm is correct

Dijkstra Correctness (3)

[] (,) (initial assumption)

(,) (,)(optimal substructure)

[] (,) (correctness of [])

[] (no negative weights)

du su

sy yu

dy yu dy

dy

>d

d d

 d

29

Dijkstra’s Pseudo Code

• Graph G, weight function w, root s

relaxing

edges

Time Complexity: Using List

The simplest implementation of the Dijkstra's algorithm
stores vertices in an ordinary linked list or array
– Good for dense graphs (many edges)

• |V| vertices and |E| edges

• Initialization O(|V|)

• While loop O(|V|)
– Find and remove min distance vertices O(|V|)

• Potentially |E| updates
• Update costs O(1)

Total time O(|V2| + |E|) = O(|V2|)

31

Time Complexity: Priority Queue

For sparse graphs, (i.e. graphs with much less than |V2| edges)
Dijkstra's implemented more efficiently by priority queue

• Initialization O(|V|) using O(|V|) buildHeap

• While loop O(|V|)
• Find and remove min distance vertices O(log |V|) using O(log |V|)

deleteMin

• Potentially |E| updates
• Update costs O(log |V|) using decreaseKey

Total time O(|V|log|V| + |E|log|V|) = O(|E|log|V|)
• |V| = O(|E|) assuming a connected graph

