Djikstra’s Algorithm

Slide Courtesy: Uwash, UT



Single-Source Shortest Path Problem

Single-Source Shortest Path Problem - The
problem of finding shortest paths from a source
vertex s to all other vertices in the graph.
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Applications

- Maps (Map Quest, Google Maps)
- Routing Systems
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Dijkstra's algorithm

Dijkstra's algorithm - is a solution to the single-source
shortest path problem in graph theory.

Works on both directed and undirected graphs. However,
all edges must have nonnegative weights.

Input: Weighted graph G={E,V} and source vertex seV,
such that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest paths
themselves) from a given source vertex seV to all other
vertices



Approach

The algorithm computes for each vertex u the distance to u
from the start vertex s, that is, the weight of a shortest path
between s and u.

the algorithm keeps track of the set of vertices for which the
distance has been computed, called the cloud C

Every vertex has a label D associated with it. For any vertex u,
D[u] stores an approximation of the distance between s and u.
The algorithm will update a D[u] value when it finds a shorter
path from s to u.

When a vertex u is added to the cloud, its label D[u] is equal
to the actual (final) distance between the starting vertex s and
vertex u.



Dijkstra pseudocode

Dijkstra(s, t):
for each vertex v: // Initialization
v's distance := infinity.
v's previous := none.
s's distance := 0.
List := {all vertices}.

while List is not empty:
v := remove List vertex with minimum distance.
mark v as known.
for each unknown neighbor n of v:
dist := v's distance + edge (v, n)'s weight.

if dist is smaller than n's distance:
n's distance := dist.
n's previous := v.

reconstruct path from t back to s,
following previous pointers.



Example: Initialization

Distance(source) = ~ Distance (all vertices
0 A 2 [ B but source) = oo
4 1 3 0
co ( C ) 2 D L ——{E)
5 8 0 4 6
F ) - G
(e o] (e.0]

Pick vertex in List with minimum distance.



Example: Update neighbors'
distance

Distance(B) = 2
Distance(D) = 1




Example: Remove vertex with
minimum distance

Pick vertex in List with minimum distance, i.e., D



Example: Update neighbors

Distance(C)=1+2=3
Distance(E) =1+2=3
Distance(F) =1+8=9 9 5
Distance(G)=1+4=5
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Example: Continued...

Pick vertex in List with minimum distance (B) and update neighbors

Note : distance(D) not
updated since D is
already known and

9 5 distance(E) not updated
since it is larger than
previously computed
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Example: Continued...

Pick vertex List with minimum distance (E) and update neighbors

No updating
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Example: Continued...

Pick vertex List with minimum distance (C) and update neighbors

Distance(F) =3+5=8
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Example: Continued...

Pick vertex List with minimum distance (G) and update neighbors

Previous distance
¥ 6 5

Distance(F) = min (8, 5+1) = 6
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Example (end)

Pick vertex not in S with lowest cost (F) and update neighbors
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Another Example




Another Example
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Another Example
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Another Example




Another Example

S: {4 C E}



Another Example
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Another Example
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Another Example
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Another Example
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Correctness :“Cloudy” Proof

When a vertex is added to the cloud, it has shortest
distance to source.

| east cost node 0 P Next shortest path from
) ,/~ inside the known cloud

_——_——
-

- THE KNOWN
CLOUD

competitor
Source

* |f the path to v is the next shortest path, the path to v' must be at
least as long. Therefore, any path through v' to v cannot be shorter!



Dijkstra’s Correctness

* We will prove that whenever u is added to S, d[u] =

o(s,u), i.e., that d[u] is minimum, and that equality is
maintained thereafter

* Proof
— Note that for all vnotin S, d[v] = d(s,v)

— Let u be the first vertex picked such that there is a shorter
path than d[u], i.e., that d[u] > o(s,u)

— We will show that this assumption leads to a contradiction




Dijkstra Correctness (2)

* Let y be the first vertex in V—S on the actual shortest
path from s to u, then it must be that d[y] = o(s,y)
because
— d[x] is set correctly for y's predecessor x in S on the shortest

path (by choice of u as the first vertex for which d is set
incorrectly)

— when the algorithm inserted x into §, it relaxed the edge
(x,y), assigning d[y] the correct value
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Dijkstra Correctness (3)

di} = Gilespiary
—aS RO i alalrncios
—dh 00 Erskeesi LD
bk ooy

e But if d[u] > d|y], the algorithm would have chosen y
(from the Q) to process next, not u — Contradiction

 Thus d[u] = o(s,u) at time of insertion of u into S, and
Dijkstra's algorithm is correct



Dijkstra’s Pseudo Code

* Graph G, weight function w, root s

DIJKSTRA(G, w, s)
1 for eachv e V

2 do d[v] — oo

3 d[s] — 0

4 S «— 0 > Set of discovered nodes

5 Q—V

6 while Q # ()

7 do u — EXTRACT-MIN(Q)

8 S — Su{u}

9 for each v € Adju] -
10 doif djv| > dju| + w(u,v) relaxing
11 then d[v] — d[u] + w(u, v) edges




Time Complexity: Using List

The simplest implementation of the Dijkstra's algorithm
stores vertices in an ordinary linked list or array

— Good for dense graphs (many edges)

|V | vertices and |E| edges

Initialization O(|V|)

While loop O(|V])

— Find and remove min distance vertices O(|V|)

Potentially |E| updates
e Update costs O(1)

Total time O(| V2| + |E|) = O(| V2| )



Time Complexity: Priority Queue

For sparse graphs, (i.e. graphs with much less than |V?| edges)
Dijkstra's implemented more efficiently by priority queue

* [nitialization O(|V|) using O(|V|) buildHeap
 While loop O(|V])

* Find and remove min distance vertices O(log |V|) using O(log |V|)
deleteMin

* Potentially |E| updates
e Update costs O(log |V|) using decreaseKey

Total time O(|V|log|V| + |E|log|V])=O(|E|log|V])

« |V|=0(|E|)assuming a connected graph



