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What are graphs?
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* Yes, this is a graph....
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* But we are interested in a different kind of “graph”
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Graphs

* Graphs are composed of
— Nodes (vertices)
— Edges (arcs) node

¢ .

edge
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Varieties

* Nodes
— Labeled or unlabeled

* Edges
— Directed or undirected
— Labeled or unlabeled

12/26/03 Graph Terminology - Lecture 13



Motivation for Graphs

node node

Consider the data structures we have

] I
Linked list: nodes with 1 incoming edge +

1 outgoing edge @

Binary trees/heaps: nodes with 1

incoming edge + 2 outgoing edges @ @
B-trees: nodes with 1 incoming edge +

multiple outgoing edges
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Motivation for Graphs

* How can you generalize these data structures?

* Consider data structures for representing the
following problems...
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CSE Course Prerequisites

Nodes = courses ,
, .. K/
Directed edge = prerequisite @
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Representing a Maze

""""""""""""""""""""""

______________________________

Nodes = rooms
Edge = door or passage
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Representing Electrical Circuits

Battery m Switch
|

Nodes = battery, switch, resistor, etc. Resistor
Edges = connections
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Program statements

X1 X
xl=g+y*z G ‘

X2=y*z-q Naive:

o
0‘

y*z calculated twice

common

subexpression 6
eliminated: °

Nodes = symbols/operators
Edges = relationships

OEROT I AN

12/26/03 Graph Terminology - Lecture 13 10



Which statements must execute before S.?

51,5, 55 S,

Nodes = statements
Edges = precedence requirements

12/26/03

a=0;
b=1;
c=a+l
d=b+a;
e=d+1;
e=c+d;

Precedence

Graph Terminology - Lecture 13
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Information Transmission in a Computer
Network

New York

Nodes = computers
Edges = transmission rates
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Traffic Flow on Highways

S AN =
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_ _ Nodes = cities
ey e D - Edges = # vehicles on
i : Ly connecting highway
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Graph Definition

* A graphis simply a collection of nodes plus edges
— Linked lists, trees, and heaps are all special cases of graphs

 The nodes are known as vertices (node = “vertex”)
* Formal Definition: A graph G is a pair (V, E) where
— Vis a set of vertices or nodes
— E is a set of edges that connect vertices
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Graph Example

 Hereis a directed graph G=(V, E)

— Each edge is a pair (v,, v,), where v,, v, are vertices in V
— V={A,B,C,D,E,F}
E={(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)}

\ @)
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Directed vs Undirected Graphs

* If the order of edge pairs (v,, v,) matters, the graph is directed
(also called a digraph): (vq, v,) #(v,, v)

@_®

* If the order of edge pairs (v,, v,) does not matter, the graph is
called an undirected graph: in this case, (v, v,) = (v,, v;)
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Undirected Terminology

 Two vertices u and v are adjacent in an undirected graph
G if {u,v}is an edge in G

 edge e ={u,v}isincident with vertex u and vertex v

A graphis connected if given any two vertices u and v,
there is a path fromutov

* The degree of a vertex in an undirected graph is the
number of edges incident with it

— a self-loop counts twice (both ends count)
— denoted with deg(v)

12/26/03 Graph Terminology - Lecture 13
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Undirected Terminology

. B is adjacent to C and Cis adjacent to B
(A,B) is incident

toAandtoB e
G. Self-loop

G G Degree =0

Degree =3

12/26/03 Graph Terminology - Lecture 13
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Directed Terminology

* Vertex u is adjacent to vertex v in a directed graph
G if (u,v) isan edge in G
— vertex u is the initial vertex of (u,v)

* Vertex v is adjacent from vertex u
— vertex v is the terminal (or end) vertex of (u,v)

* Degree

— in-degree is the number of edges with the vertex as
the terminal vertex

— out-degree is the number of edges with the vertex as
the initial vertex
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Directed Terminology

B adjacent to C and C adjacent from B

In-degree =0
Out-degree =0

In-degree =2
Out-degree =1

Graph Terminology - Lecture 13
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Handshaking Theorem

* Let G=(V,E) be an undirected graph with |E|=e edges.
Then

2e = Zdeg(v) Add up the degrees of all vertices.

veV

* Every edge contributes +1 to the degree of each of
the two vertices it is incident with
— number of edges is exactly half the sum of deg(v)
— the sum of the deg(v) values must be even
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Graph Representations

e Space and time are analyzed in terms of:
e Number of vertices = |V| and

e Number of edges = | E|

e There are at least two ways of representing
graphs:

e The adjacency matrix representation

e The adjacency list representation

12/26/03 Graph Terminology - Lecture 13 22



Adjacency Matrix

A B C D E F

N @ 0 1 0 0

Bl(1) 0 1 0 0 0

cl o 1 1 1 0

Dl 1 0 1 @ 10

o it E[ 0 0 1 1 0 0
Miv, w) = {o otherwise FL0O 0 0 0 0 O J
Space = | V|? |
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Adjacency Matrix for a Digraph

OJ>
o O
~ O

E
0

' L

o o o B

B
L
0
0
0
0
0
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1if (v, w)isinE
Mi(v, =
v, w) 0 otherwise
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Adjacency List

For each vin V, L(v) = list of w such that (v, w)isin E

b
( \
A 1B D / lr:[i;;bors
B A C
cl B D __LE
D| T A| —ic|E
E| ——c| D
FlL o

Space =a|V|+ 2 b |E]|
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Adjacency List for a Digraph

For each vin V, L(v) = list of w such that (v, w)isin E
a b

A

\

cl”

m m O O W >
|

1 }

w
m

Space =a |V|+ Db |E|

12/26/03 Graph Terminology - Lecture 13 26



Searching in graphs

* Find Properties of Graphs
— Spanning trees
— Connected components
— Bipartite structure
— Biconnected components
* Applications
— Finding the web graph — used by Google and others
— Garbage collection — used in Java run time system

12/26/03 Graph Searching - Lecture 16
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Graph Searching Methodology Depth-
First Search (DFS)

* Depth-First Search (DFS)

— Searches down one path as deep as possible
— When no nodes available, it backtracks

— When backtracking, it explores side-paths that
were not taken

— Uses a stack (instead of a queue in BFS)
— Allows an easy recursive implementation
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Depth First Search Algorithm

* Recursive marking algorithm

* |nitially every vertex is unmarked .

(D)

DFS(i: vertex)
mark i; DFS(j)

for each j adjacent to i do /
if j is unmarked then DFS(j)
end{DFS} ()

Marks all vertices reachable from i
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DES Application: Spanning Tree

* Given a (undirected) connected graph G(V,E) a
spanning tree of G is a graph G’(V’,E’)
—V’ =V, the tree touches all vertices (spans) the
graph

— E’ is a subset of E such that G’ is connected and
there is no cycle in G’
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Example of DFS: Graph connectivity
and spanning tree

12/26/03 Graph Searching - Lecture 16
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Example Step 2

4

Red links will define the spanning tree if the graph
is connected

Graph Searching - Lecture 16
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Example Step 5

Graph Searching - Lecture

16

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)
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Example Steps 6 and 7

Graph Searching - Lecture 16

DFS(1)

DFS(2)
DFS(3)
DFS(4)
DFS(5)
DES(3)—
DFS(7)
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Example Steps 8 and 9

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)
DFS(7)

Graph Searching - Lecture 16

Now back up.
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Example Step 10 (backtrack)

Graph Searching - Lecture 16

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)

Back to 5,
but it has no
more neighbors.
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Example Step 12

Graph Searching - Lecture 16

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(6)

Back up to 4.
From 4 we can
get to 6.
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Example Step 13

Graph Searching - Lecture 16

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(6)

From 6 there is
nowhere new
to go. Back up.
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Example Step 14

Graph Searching - Lecture 16

DFS(1)

DFS(2)
DFS(3)
DFS(4)

Back to 4.
Keep backing up.
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Example Step 17

DFS(1)

All the way
back to 1.

Done.

All nodes are marked so graph is connected; red links
define a spanning tree

12/26/03 Graph Searching - Lecture 16
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Finding Connected Components using DFS

3 connected components

12/26/03 Graph Searching - Lecture 16 41
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Connected Components

N/

.11

3 connected components are labeled

Graph Searching - Lecture 16
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Performance DFS

* nvertices and m edges

e Storage complexity O(n + m)
* Time complexity O(n + m)

* Linear Timel

12/26/03 Graph Searching - Lecture 16
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Another Example

Perform a recursive depth-first traversal on this
graph




Another Example

— Visit the first node




Another Example

— A has an unvisited neighbor




Another Example

— B has an unvisited neighbor
A, B, C




Another Example

— C has an unvisited neighbor
A, B,C,D




Another Example

— D has no unvisited neighbors, so we return to C
A B CD,E




Another Example

— E has an unvisited neighbor
A,B,C D, E,G




Another Example

— F has an unvisited neighbor
A,B,CD,E,G,|I




Another Example

— H has an unvisited neighbor
A B CDEG,IH




Another Example

— We recurse back to C which has an unvisited neighbour
A B CDEGIHF




Another Example

— We recurse finding that no nodes have unvisited neighbours
A B CDEGIH,F




Graph Searching Methodology
Breadth-First Search (BFS)

* Breadth-First Search (BFS)

— Use a queue to explore neighbors of source
vertex, then neighbors of neighbors etc.

— All nodes at a given distance (in number of edges)
are explored before we go further
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Example

Consider the graph from previous example




Example

Performing a breadth-first traversal

— Push the first vertex onto the queue




Example

Performing a breadth-first traversal
— Pop Aand push B, Cand E




Example

Performing a breadth-first traversal:
— Pop B and push D




Example

Performing a breadth-first traversal:

— Pop Cand push F
A, B, C




Example

Performing a breadth-first traversal:
— Pop E and push G and H
A B,C E




Example

Performing a breadth-first traversal:
— Pop D




Example

Performing a breadth-first traversal:
— Pop F
A B CED,F




Example

Performing a breadth-first traversal:

— Pop G and push |
A,B CEDFG




Example
Performing a breadth-first traversal:
— Pop H
A B CEDFG,H




Example

Performing a breadth-first traversal:
— Pop |
A B CEDFG,H,I




Example

Performing a breadth-first traversal:

— The queue is empty: we are finished
A,B CEDFG,H,I




Breadth-First Search

BFS
Initialize Q to be empty;
Enqueue(Q,1) and mark 1;
while Q is not empty do

i := Dequeue(Q);

for each jadjacenttoido

if j is not marked then
Enqueue(Q,j) and mark j;

end{BFS}

12/26/03 Graph Searching - Lecture 16
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Comparison

The order in which vertices can differ greatly

A, B CEDFG,H,I A,B,CDEGIHF




Depth-First vs Breadth-First

* Depth-First
— Stack or recursion
— Many applications
* Breadth-First

— Queue (recursion no help)
— Can be used to find shortest paths from the start vertex

12/26/03 Graph Searching - Lecture 16
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Topological Sort



Topological Sort

Problem: Find an order in
which all these courses can
be taken.

Example: 142 - 143 - 378
- 370 2 321 2 341 > 322
- 326 2 421 > 401

In order to take a course, you must
take all of its prerequisites first

12/26/03 Digraphs - Lecture 14 72



Topological Sort

Given a digraph G = (V, E), find a linear ordering of
its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering
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Topo sort - good example

Any linear ordering in which
all the arrows go to the right

@ is a valid solution

v

&)

NN
(A+(B)|(P|(C}DAE)

Note that F can go anywhere in this list because it is not connected.
Also the solution is not unique.
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Topo sort - bad example

Any linear ordering in which
an arrow goes to the left
@ is not a valid solution

Y

;@ I

NO!
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Paths and Cycles

e Given a digraph G =(V,E), a path is a sequence of
vertices v,,v,, ...,v, such that:
— (v,vi,y)inEforl1<i<k
— path length = number of edges in the path
— path cost = sum of costs of each edge
e Apathisacycleif:
—k>1;v,=v,

 Gis acyclicif it has no cycles.

12/26/03 Digraphs - Lecture 14
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Only acyclic graphs can be topo. sorted

* Adirected graph with a cycle cannot be
topologically sorted.
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Topo sort algorithm - 1

Step 1: Identify vertices that have no incoming edges
e The “in-degree” of these vertices is zero
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Topo sort algorithm - 1a

Step 1: Identify vertices that have no incoming edges
e If no such vertices, graph has only cycle(s) (cyclic graph)
e Topological sort not possible — Halt.

/

Example of a cyclic graph
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Topo sort algorithm - 1b

Step 1: Identify vertices that have no incoming edges
e Select one such vertex

Select
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Topo sort algorithm - 2

Step 2: Delete this vertex of in-degree 0 and all its
outgoing edges from the graph. Place it in the
output.

-
-
-
- Phe
7 \\ //
’ \.
1 \
I 1
' 1
\ ’
\
N A
~—- N
A Y
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Continue until done

Repeat Step 1 and Step 2 until graph is empty

Select
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B

Select B. Copy to sorted list. Delete B and its edges.

© = (A

Digraphs - Lecture 14
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Select C.

12/26/03

C

Copy to sorted list. Delete C and its edges.

-——
A
AY
\
1
1

7
’
_-

|
7’ I
‘ 1
7’
4 1
s’
7’ I
‘< 1
’
z |
’
7’ I
|
1
I

Digraphs - Lecture 14
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D

Select D. Copy to sorted list. Delete D and its edges.

£ = (AlBCID
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E, F

Select E. Copy to sorted list. Delete E and its edges.
Select F. Copy to sorted list. Delete F and its edges.

TS

e N
/ \
1 \
I 1
' 1
A ’
A v

Se_ -

12/26/03 Digraphs - Lecture 14

86



12/26/03

Done

Digraphs - Lecture 14
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Translation
array

12/26/03

Implementation

Assume adjacency list

O (W

O &

6
F

Digraphs - Lecture 14
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2
3
4
5
6

representation

- 2

3

/

4

value next
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Calculate In-degrees

D A
0| 1 12
1| 2 37
In-Degree P e 1) 3 __+ 4 :
array; or add a 2| 4 5
field to array A 5| g
0 6
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Calculate In-degrees

for 1 = 1 to n do D[1] := 0; endfor
for 1 = 1 to n do
X = A[i1];
while x # null do
D[x.value] := D[x.value] + 1;
X = X.next;
endwhile

endfor

Digraphs - Lecture 14
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Maintaining Degree O Vertices

Key idea: Initialize and maintain a queue (or stack)

of vertices with In-Degree 0 D A
o| 1] 2 4"
Queue | 1 (| 6
1] 2 3 /
@ 1| 3 ——+ 4 15
\G/ 21 5
0| 6 /
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Topo Sort using a Queue
(breadth-first)

After each vertex is output, when updating In-Degree array,
enqueue any vertex whose In-Degree becomes zero

Queue 6|2 D A
dequeue l enqueq 0 1 o 2 4
Output | 1 B : 3|
@\ 1 3 __+ 4 19
ng © B+ 75
@/ ) .
) 0| 6
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Topological Sort Algorithm

1. Store each vertex’s In-Degree in an array D
2. Initialize queue with all “in-degree=0" vertices

3. While there are vertices remaining in the queue:
(a) Dequeue and output a vertex
(b) Reduce In-Degree of all vertices adjacent to it by 1

(c) Enqueue any of these vertices whose In-Degree became
Zero

4. If all vertices are output then success, otherwise
there is a cycle.
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