
Graphs

COL 106
Slide Courtesy : http://courses.cs.washington.edu/courses/cse373/

Douglas W. Harder, U Waterloo

http://courses.cs.washington.edu/courses/cse373/

12/26/03 Graph Terminology - Lecture 13 2

What are graphs?

• Yes, this is a graph….

• But we are interested in a different kind of “graph”

12/26/03 Graph Terminology - Lecture 13 3

Graphs

• Graphs are composed of

– Nodes (vertices)

– Edges (arcs) node

edge

12/26/03 Graph Terminology - Lecture 13 4

Varieties

• Nodes

– Labeled or unlabeled

• Edges

– Directed or undirected

– Labeled or unlabeled

12/26/03 Graph Terminology - Lecture 13 5

Motivation for Graphs

• Consider the data structures we have
looked at so far…

• Linked list: nodes with 1 incoming edge +
1 outgoing edge

• Binary trees/heaps: nodes with 1
incoming edge + 2 outgoing edges

• B-trees: nodes with 1 incoming edge +
multiple outgoing edges

10

96 99

94

97

Value Next

node

Value Next

node

3 5

12/26/03 Graph Terminology - Lecture 13 6

Motivation for Graphs

• How can you generalize these data structures?

• Consider data structures for representing the
following problems…

12/26/03 Graph Terminology - Lecture 13 7

CSE Course Prerequisites

321
143

142

322

326

341370

378

401

421
Nodes = courses
Directed edge = prerequisite

373

410

413

415

417

461

12/26/03 Graph Terminology - Lecture 13 8

Representing a Maze

S

Nodes = rooms
Edge = door or passage

S

E

B

E

12/26/03 Graph Terminology - Lecture 13 9

Representing Electrical Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections

Battery Switch

Resistor

12/26/03 Graph Terminology - Lecture 13 10

Program statements

x1=q+y*z

x2=y*z-q
Naive:

common
subexpression

eliminated:

y z

*

-

q

+

q *

x1 x2

y z

-

q

+

q *

x1 x2

Nodes = symbols/operators
Edges = relationships

y*z calculated twice

12/26/03 Graph Terminology - Lecture 13 11

Precedence

S1 a=0;

S2 b=1;

S3 c=a+1

S4 d=b+a;

S5 e=d+1;

S6 e=c+d;

3

1
2

6

5

4Which statements must execute before S6?

S1, S2, S3, S4

Nodes = statements
Edges = precedence requirements

12/26/03 Graph Terminology - Lecture 13 12

Information Transmission in a Computer
Network

Seattle

New York

L.A.

Tokyo

Sydney

Seoul

Nodes = computers
Edges = transmission rates

128

140

181

30

16

56

12/26/03 Graph Terminology - Lecture 13 13

Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on
connecting highway

UW

12/26/03 Graph Terminology - Lecture 13 14

Graph Definition

• A graph is simply a collection of nodes plus edges
– Linked lists, trees, and heaps are all special cases of graphs

• The nodes are known as vertices (node = “vertex”)

• Formal Definition: A graph G is a pair (V, E) where
– V is a set of vertices or nodes

– E is a set of edges that connect vertices

12/26/03 Graph Terminology - Lecture 13 15

Graph Example

• Here is a directed graph G = (V, E)

– Each edge is a pair (v1, v2), where v1, v2 are vertices in V
– V = {A, B, C, D, E, F}

E = {(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)}

A

B
C

ED

F

12/26/03 Graph Terminology - Lecture 13 16

Directed vs Undirected Graphs

• If the order of edge pairs (v1, v2) matters, the graph is directed
(also called a digraph): (v1, v2) ≠(v2, v1)

• If the order of edge pairs (v1, v2) does not matter, the graph is
called an undirected graph: in this case, (v1, v2) = (v2, v1)

v1
v2

v1
v2

12/26/03 Graph Terminology - Lecture 13 17

Undirected Terminology

• Two vertices u and v are adjacent in an undirected graph
G if {u,v} is an edge in G
• edge e = {u,v} is incident with vertex u and vertex v

• A graph is connected if given any two vertices u and v,
there is a path from u to v

• The degree of a vertex in an undirected graph is the
number of edges incident with it
– a self-loop counts twice (both ends count)

– denoted with deg(v)

12/26/03 Graph Terminology - Lecture 13 18

Undirected Terminology

A

B
C

ED

F

Degree = 3

Degree = 0

B is adjacent to C and C is adjacent to B
(A,B) is incident
to A and to B

Self-loop

12/26/03 Graph Terminology - Lecture 13 19

Directed Terminology

• Vertex u is adjacent to vertex v in a directed graph
G if (u,v) is an edge in G
– vertex u is the initial vertex of (u,v)

• Vertex v is adjacent from vertex u
– vertex v is the terminal (or end) vertex of (u,v)

• Degree
– in-degree is the number of edges with the vertex as

the terminal vertex

– out-degree is the number of edges with the vertex as
the initial vertex

12/26/03 Graph Terminology - Lecture 13 20

Directed Terminology

A

B
C

ED

F

In-degree = 2
Out-degree = 1

In-degree = 0
Out-degree = 0

B adjacent to C and C adjacent from B

12/26/03 Graph Terminology - Lecture 13 21

Handshaking Theorem

• Let G=(V,E) be an undirected graph with |E|=e edges.
Then

• Every edge contributes +1 to the degree of each of
the two vertices it is incident with

– number of edges is exactly half the sum of deg(v)

– the sum of the deg(v) values must be even





Vv

deg(v)2e Add up the degrees of all vertices.

12/26/03 Graph Terminology - Lecture 13 22

• Space and time are analyzed in terms of:

• Number of vertices = |V| and

• Number of edges = |E|

• There are at least two ways of representing
graphs:

• The adjacency matrix representation

• The adjacency list representation

Graph Representations

12/26/03 Graph Terminology - Lecture 13 23

A B C D E F

0 1 0 1 0 0

1 0 1 0 0 0

0 1 0 1 1 0

1 0 1 0 1 0

0 0 1 1 0 0

0 0 0 0 0 0
M(v, w) =

1 if (v, w) is in E

0 otherwise

A

B

C

D

E

F

Space = |V|2

A

B
C

E
D

F

Adjacency Matrix

12/26/03 Graph Terminology - Lecture 13 24

A B C D E F

0 1 0 1 0 0

0 0 1 0 0 0

0 0 0 1 1 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

A

B

C

D

E

F

Space = |V|2

M(v, w) =
1 if (v, w) is in E

0 otherwise

A

B
C

E
D

F

Adjacency Matrix for a Digraph

12/26/03 Graph Terminology - Lecture 13 25

B D

B D

C

A C E

D

E

A C

A

B

C

D

E

F

A

B
C

E
D

F

Space = a |V| + 2 b |E|

For each v in V, L(v) = list of w such that (v, w) is in E
a b

Adjacency List

list of
neighbors

12/26/03 Graph Terminology - Lecture 13 26

B D

E

D

C

a b

A

B

C

D

E

F

E

A

B
C

E
D

F

For each v in V, L(v) = list of w such that (v, w) is in E

Space = a |V| + b |E|

Adjacency List for a Digraph

12/26/03 Graph Searching - Lecture 16 27

Searching in graphs

• Find Properties of Graphs
– Spanning trees

– Connected components

– Bipartite structure

– Biconnected components

• Applications
– Finding the web graph – used by Google and others

– Garbage collection – used in Java run time system

12/26/03 Graph Searching - Lecture 16 28

Graph Searching Methodology Depth-
First Search (DFS)

• Depth-First Search (DFS)

– Searches down one path as deep as possible

– When no nodes available, it backtracks

– When backtracking, it explores side-paths that
were not taken

– Uses a stack (instead of a queue in BFS)

– Allows an easy recursive implementation

12/26/03 Graph Searching - Lecture 16 29

Depth First Search Algorithm

• Recursive marking algorithm

• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

i

j

k

DFS(i)

DFS(j)

12/26/03 Graph Searching - Lecture 16 30

DFS Application: Spanning Tree

• Given a (undirected) connected graph G(V,E) a
spanning tree of G is a graph G’(V’,E’)

– V’ = V, the tree touches all vertices (spans) the
graph

– E’ is a subset of E such that G’ is connected and
there is no cycle in G’

12/26/03 Graph Searching - Lecture 16 31

Example of DFS: Graph connectivity
and spanning tree

1
2

7

5

4

6

3

DFS(1)

12/26/03 Graph Searching - Lecture 16 32

Example Step 2

1
2

7

5

4

6

3

DFS(1)
DFS(2)

Red links will define the spanning tree if the graph
is connected

12/26/03 Graph Searching - Lecture 16 33

Example Step 5

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)

12/26/03 Graph Searching - Lecture 16 34

Example Steps 6 and 7

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)
DFS(3)
DFS(7)

12/26/03 Graph Searching - Lecture 16 35

Example Steps 8 and 9

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)
DFS(7)

Now back up.

12/26/03 Graph Searching - Lecture 16 36

Example Step 10 (backtrack)

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)

Back to 5,
but it has no
more neighbors.

12/26/03 Graph Searching - Lecture 16 37

Example Step 12

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(6)

Back up to 4.
From 4 we can
get to 6.

12/26/03 Graph Searching - Lecture 16 38

Example Step 13

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(6)

From 6 there is
nowhere new
to go. Back up.

12/26/03 Graph Searching - Lecture 16 39

Example Step 14

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)

Back to 4.
Keep backing up.

12/26/03 Graph Searching - Lecture 16 40

Example Step 17

1
2

7

5

4

6

3

DFS(1)

All nodes are marked so graph is connected; red links
define a spanning tree

All the way
back to 1.

Done.

12/26/03 Graph Searching - Lecture 16 41

Finding Connected Components using DFS

1
2

3

9

8
6

10 4

5

7

11

3 connected components

12/26/03 Graph Searching - Lecture 16 42

Connected Components

1
2

3

9

8
6

10 4

5

7

11

3 connected components are labeled

12/26/03 Graph Searching - Lecture 16 43

Performance DFS

• n vertices and m edges

• Storage complexity O(n + m)

• Time complexity O(n + m)

• Linear Time!

Another Example

Perform a recursive depth-first traversal on this
graph

Another Example

– Visit the first node

A

Another Example

– A has an unvisited neighbor

A, B

Another Example

– B has an unvisited neighbor

A, B, C

Another Example

– C has an unvisited neighbor

A, B, C, D

Another Example

– D has no unvisited neighbors, so we return to C

A, B, C, D, E

Another Example

– E has an unvisited neighbor

A, B, C, D, E, G

Another Example

– F has an unvisited neighbor

A, B, C, D, E, G, I

Another Example

– H has an unvisited neighbor

A, B, C, D, E, G, I, H

Another Example

– We recurse back to C which has an unvisited neighbour

A, B, C, D, E, G, I, H, F

Another Example

– We recurse finding that no nodes have unvisited neighbours

A, B, C, D, E, G, I, H, F

12/26/03 Graph Searching - Lecture 16 55

Graph Searching Methodology
Breadth-First Search (BFS)

• Breadth-First Search (BFS)

– Use a queue to explore neighbors of source
vertex, then neighbors of neighbors etc.

– All nodes at a given distance (in number of edges)
are explored before we go further

Example
Consider the graph from previous example

Example
Performing a breadth-first traversal

– Push the first vertex onto the queue

A

Example
Performing a breadth-first traversal

– Pop A and push B, C and E

A

B C E

Example
Performing a breadth-first traversal:

– Pop B and push D

A, B

C E D

Example
Performing a breadth-first traversal:

– Pop C and push F

A, B, C

E D F

Example
Performing a breadth-first traversal:

– Pop E and push G and H

A, B, C, E

D F G H

Example
Performing a breadth-first traversal:

– Pop D

A, B, C, E, D

F G H

Example
Performing a breadth-first traversal:

– Pop F

A, B, C, E, D, F

G H

Example
Performing a breadth-first traversal:

– Pop G and push I

A, B, C, E, D, F, G

H I

Example
Performing a breadth-first traversal:

– Pop H

A, B, C, E, D, F, G, H

I

Example
Performing a breadth-first traversal:

– Pop I

A, B, C, E, D, F, G, H, I

Example
Performing a breadth-first traversal:

– The queue is empty: we are finished

A, B, C, E, D, F, G, H, I

12/26/03 Graph Searching - Lecture 16 68

Breadth-First Search

BFS
Initialize Q to be empty;
Enqueue(Q,1) and mark 1;
while Q is not empty do

i := Dequeue(Q);
for each j adjacent to i do

if j is not marked then
Enqueue(Q,j) and mark j;

end{BFS}

The order in which vertices can differ greatly

Comparison

A, B, C, D, E, G, I, H, FA, B, C, E, D, F, G, H, I

12/26/03 Graph Searching - Lecture 16 70

Depth-First vs Breadth-First

• Depth-First

– Stack or recursion

– Many applications

• Breadth-First

– Queue (recursion no help)

– Can be used to find shortest paths from the start vertex

Topological Sort

12/26/03 Digraphs - Lecture 14 72

Topological Sort

321
143

322

326

341370

378

401

421

Problem: Find an order in
which all these courses can
be taken.

Example: 142  143  378
 370  321  341  322
 326  421  401

In order to take a course, you must
take all of its prerequisites first

142

12/26/03 Digraphs - Lecture 14 73

Given a digraph G = (V, E), find a linear ordering of
its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering

A

B
C

F

D E

Topological Sort

12/26/03 Digraphs - Lecture 14 74

A

B
C

F

D E

EA DFB C

Any linear ordering in which
all the arrows go to the right
is a valid solution

Topo sort - good example

Note that F can go anywhere in this list because it is not connected.

Also the solution is not unique.

12/26/03 Digraphs - Lecture 14 75

A

B
C

F

D E

DA EFB C

Any linear ordering in which
an arrow goes to the left
is not a valid solution

Topo sort - bad example

NO!

12/26/03 Digraphs - Lecture 14 76

Paths and Cycles

• Given a digraph G = (V,E), a path is a sequence of
vertices v1,v2, …,vk such that:

– (vi,vi+1) in E for 1 < i < k

– path length = number of edges in the path

– path cost = sum of costs of each edge

• A path is a cycle if :

– k > 1; v1 = vk

• G is acyclic if it has no cycles.

12/26/03 Digraphs - Lecture 14 77

Only acyclic graphs can be topo. sorted

• A directed graph with a cycle cannot be
topologically sorted.

A

B
C

F

D E

12/26/03 Digraphs - Lecture 14 78

Step 1: Identify vertices that have no incoming edges
• The “in-degree” of these vertices is zero

A

B
C

F

D E

Topo sort algorithm - 1

12/26/03 Digraphs - Lecture 14 79

Step 1: Identify vertices that have no incoming edges
• If no such vertices, graph has only cycle(s) (cyclic graph)
• Topological sort not possible – Halt.

A

B
C

D

Example of a cyclic graph

Topo sort algorithm - 1a

12/26/03 Digraphs - Lecture 14 80

Step 1: Identify vertices that have no incoming edges
• Select one such vertex

A

B
C

F

D E

Select

Topo sort algorithm - 1b

12/26/03 Digraphs - Lecture 14 81

A

B
C

F

D E

Step 2: Delete this vertex of in-degree 0 and all its
outgoing edges from the graph. Place it in the
output.

Topo sort algorithm - 2

A

12/26/03 Digraphs - Lecture 14 82

A

B
C

F

D E

Repeat Step 1 and Step 2 until graph is empty

Select

Continue until done

12/26/03 Digraphs - Lecture 14 83

A

B
C

F

D E

B

Select B. Copy to sorted list. Delete B and its edges.

B

12/26/03 Digraphs - Lecture 14 84

A

C

F

D E

B C

Select C. Copy to sorted list. Delete C and its edges.

C

12/26/03 Digraphs - Lecture 14 85

AF

D E

B C D

Select D. Copy to sorted list. Delete D and its edges.

D

12/26/03 Digraphs - Lecture 14 86

AF

E

B C D E F

Select E. Copy to sorted list. Delete E and its edges.
Select F. Copy to sorted list. Delete F and its edges.

E, F

12/26/03 Digraphs - Lecture 14 87

A B C D E F

Done

A

B
C

F

D E

12/26/03 Digraphs - Lecture 14 88

A

B
C

F

D E

2 4

5

54

3

1

2

3

4

5

6

Assume adjacency list
representation

Implementation

A B C D E F
1 2 3 4 5 6Translation

array

value next

12/26/03 Digraphs - Lecture 14 89

0

1

0

2

2

1In-Degree
array; or add a
field to array A

Calculate In-degrees

2 4

5

54

3

1

2

3

4

5

6

AD

12/26/03 Digraphs - Lecture 14 90

Calculate In-degrees

for i = 1 to n do D[i] := 0; endfor

for i = 1 to n do

x := A[i];

while x ≠ null do

D[x.value] := D[x.value] + 1;

x := x.next;

endwhile

endfor

12/26/03 Digraphs - Lecture 14 91

Key idea: Initialize and maintain a queue (or stack)
of vertices with In-Degree 0

1Queue 6

1

2 3
6

4 5

Maintaining Degree 0 Vertices

0

1

0

2

2

1

2 4

5

54

3

1

2

3

4

5

6

AD

12/26/03 Digraphs - Lecture 14 92

After each vertex is output, when updating In-Degree array,
enqueue any vertex whose In-Degree becomes zero

1

Queue 6

Output

2

dequeue enqueue

1

2 3
6

4 5

Topo Sort using a Queue
(breadth-first)

0

0

0

1

2

1

2 4

5

54

3

1

2

3

4

5

6

AD

12/26/03 Digraphs - Lecture 14 93

Topological Sort Algorithm

1. Store each vertex’s In-Degree in an array D

2. Initialize queue with all “in-degree=0” vertices

3. While there are vertices remaining in the queue:
(a) Dequeue and output a vertex

(b) Reduce In-Degree of all vertices adjacent to it by 1

(c) Enqueue any of these vertices whose In-Degree became
zero

4. If all vertices are output then success, otherwise
there is a cycle.

