Graphs

COL 106

Slide Courtesy : http://courses.cs.washington.edu/courses/cse373/
Douglas W. Harder, U Waterloo

http://courses.cs.washington.edu/courses/cse373/

What are graphs?

Low

Average

* Yes, this is a graph....

fEsdi=s

T

L S0 L LT WRnE LT Sl e L LS LT Sl e
0 S L O LT O P LD P 0 S L0 S0 10 O
S0 DL WL e 00 OO 00 OO O Ot S T
BB B B A A R R AR R

SFAprU 0t Aprduld st 9Aprdu DetAEAprdu l0ct8 1 Apr

* But we are interested in a different kind of “graph”

Graph Terminology - Lecture 13

12/26/03

Graphs

* Graphs are composed of
— Nodes (vertices)
— Edges (arcs) node

¢ .

edge

12/26/03 Graph Terminology - Lecture 13

Varieties

* Nodes
— Labeled or unlabeled

* Edges
— Directed or undirected
— Labeled or unlabeled

12/26/03 Graph Terminology - Lecture 13

Motivation for Graphs

node node

Consider the data structures we have

] I
Linked list: nodes with 1 incoming edge +

1 outgoing edge @

Binary trees/heaps: nodes with 1

incoming edge + 2 outgoing edges @ @
B-trees: nodes with 1 incoming edge +

multiple outgoing edges

12/26/03 Graph Terminology - Lecture 13 5

Motivation for Graphs

* How can you generalize these data structures?

* Consider data structures for representing the
following problems...

12/26/03 Graph Terminology - Lecture 13 6

CSE Course Prerequisites

Nodes = courses ,
, .. K/
Directed edge = prerequisite @

12/26/03 Graph Terminology - Lecture 13

Representing a Maze

""""""""""""""""""""""

Nodes = rooms
Edge = door or passage

12/26/03 Graph Terminology - Lecture 13

Representing Electrical Circuits

Battery m Switch
|

Nodes = battery, switch, resistor, etc. Resistor
Edges = connections

12/26/03 Graph Terminology - Lecture 13

Program statements

X1 X
xl=g+y*z G ‘

X2=y*z-q Naive:

o
0‘

y*z calculated twice

common

subexpression 6
eliminated: °

Nodes = symbols/operators
Edges = relationships

OEROT I AN

12/26/03 Graph Terminology - Lecture 13 10

Which statements must execute before S.?

51,5, 55 S,

Nodes = statements
Edges = precedence requirements

12/26/03

a=0;
b=1;
c=a+l
d=b+a;
e=d+1;
e=c+d;

Precedence

Graph Terminology - Lecture 13

11

Information Transmission in a Computer
Network

New York

Nodes = computers
Edges = transmission rates

12/26/03 Graph Terminology - Lecture 13 12

Traffic Flow on Highways

S AN =
ntanas QJ' :_Ii @ f +
T;“ il s --gﬂ; o Y
' a‘f_ _[UAAFEDA 2] o

_ _ Nodes = cities
ey e D - Edges = # vehicles on
i : Ly connecting highway

12/26/03 Graph Terminology - Lecture 13 13

Graph Definition

* A graphis simply a collection of nodes plus edges
— Linked lists, trees, and heaps are all special cases of graphs

 The nodes are known as vertices (node = “vertex”)
* Formal Definition: A graph G is a pair (V, E) where
— Vis a set of vertices or nodes
— E is a set of edges that connect vertices

12/26/03 Graph Terminology - Lecture 13 14

Graph Example

 Hereis a directed graph G=(V, E)

— Each edge is a pair (v,, v,), where v,, v, are vertices in V
— V={A,B,C,D,E,F}
E={(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)}

\ @)

12/26/03 Graph Terminology - Lecture 13

15

Directed vs Undirected Graphs

* If the order of edge pairs (v,, v,) matters, the graph is directed
(also called a digraph): (vq, v,) #(v,, v)

@_®

* If the order of edge pairs (v,, v,) does not matter, the graph is
called an undirected graph: in this case, (v, v,) = (v,, v;)

12/26/03 Graph Terminology - Lecture 13 16

Undirected Terminology

 Two vertices u and v are adjacent in an undirected graph
G if {u,v}is an edge in G

 edge e ={u,v}isincident with vertex u and vertex v

A graphis connected if given any two vertices u and v,
there is a path fromutov

* The degree of a vertex in an undirected graph is the
number of edges incident with it

— a self-loop counts twice (both ends count)
— denoted with deg(v)

12/26/03 Graph Terminology - Lecture 13

17

Undirected Terminology

. B is adjacent to C and Cis adjacent to B
(A,B) is incident

toAandtoB e
G. Self-loop

G G Degree =0

Degree =3

12/26/03 Graph Terminology - Lecture 13

18

Directed Terminology

* Vertex u is adjacent to vertex v in a directed graph
G if (u,v) isan edge in G
— vertex u is the initial vertex of (u,v)

* Vertex v is adjacent from vertex u
— vertex v is the terminal (or end) vertex of (u,v)

* Degree

— in-degree is the number of edges with the vertex as
the terminal vertex

— out-degree is the number of edges with the vertex as
the initial vertex

12/26/03 Graph Terminology - Lecture 13 19

12/26/03

Directed Terminology

B adjacent to C and C adjacent from B

In-degree =0
Out-degree =0

In-degree =2
Out-degree =1

Graph Terminology - Lecture 13

20

Handshaking Theorem

* Let G=(V,E) be an undirected graph with |E|=e edges.
Then

2e = Zdeg(v) Add up the degrees of all vertices.

veV

* Every edge contributes +1 to the degree of each of
the two vertices it is incident with
— number of edges is exactly half the sum of deg(v)
— the sum of the deg(v) values must be even

12/26/03 Graph Terminology - Lecture 13 21

Graph Representations

e Space and time are analyzed in terms of:
e Number of vertices = |V| and

e Number of edges = | E|

e There are at least two ways of representing
graphs:

e The adjacency matrix representation

e The adjacency list representation

12/26/03 Graph Terminology - Lecture 13 22

Adjacency Matrix

A B C D E F

N @ 0 1 0 0

Bl(1) 0 1 0 0 0

cl o 1 1 1 0

Dl 1 0 1 @ 10

o it E[0 0 1 1 0 0
Miv, w) = {o otherwise FL0O 0 0 0 0 O J
Space = | V|? |

12/26/03 Graph Terminology - Lecture 13 23

Adjacency Matrix for a Digraph

OJ>
o O
~ O

E
0

' L

o o o B

B
L
0
0
0
0
0

TIITIUOWZD

o o o o o
o O O Lk O
H
o o o o o

1if (v, w)isinE
Mi(v, =
v, w) 0 otherwise

12/26/03 Graph Terminology - Lecture 13 24

Space = | V|2

Adjacency List

For each vin V, L(v) = list of w such that (v, w)isin E

b
(\
A 1B D / lr:[i;;bors
B A C
cl B D __LE
D| T A| —ic|E
E| ——c| D
FlL o

Space =a|V|+ 2 b |E]|

12/26/03 Graph Terminology - Lecture 13 25

Adjacency List for a Digraph

For each vin V, L(v) = list of w such that (v, w)isin E
a b

A

\

cl”

m m O O W >
|

1 }

w
m

Space =a |V|+ Db |E|

12/26/03 Graph Terminology - Lecture 13 26

Searching in graphs

* Find Properties of Graphs
— Spanning trees
— Connected components
— Bipartite structure
— Biconnected components
* Applications
— Finding the web graph — used by Google and others
— Garbage collection — used in Java run time system

12/26/03 Graph Searching - Lecture 16

27

Graph Searching Methodology Depth-
First Search (DFS)

* Depth-First Search (DFS)

— Searches down one path as deep as possible
— When no nodes available, it backtracks

— When backtracking, it explores side-paths that
were not taken

— Uses a stack (instead of a queue in BFS)
— Allows an easy recursive implementation

12/26/03 Graph Searching - Lecture 16 28

Depth First Search Algorithm

* Recursive marking algorithm

* |nitially every vertex is unmarked .

(D)

DFS(i: vertex)
mark i; DFS(j)

for each j adjacent to i do /
if j is unmarked then DFS(j)
end{DFS} ()

Marks all vertices reachable from i

12/26/03 Graph Searching - Lecture 16

DES Application: Spanning Tree

* Given a (undirected) connected graph G(V,E) a
spanning tree of G is a graph G’(V’,E’)
—V’ =V, the tree touches all vertices (spans) the
graph

— E’ is a subset of E such that G’ is connected and
there is no cycle in G’

12/26/03 Graph Searching - Lecture 16 30

Example of DFS: Graph connectivity
and spanning tree

12/26/03 Graph Searching - Lecture 16

31

12/26/03

Example Step 2

4

Red links will define the spanning tree if the graph
is connected

Graph Searching - Lecture 16

32

12/26/03

Example Step 5

Graph Searching - Lecture

16

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)

33

12/26/03

Example Steps 6 and 7

Graph Searching - Lecture 16

DFS(1)

DFS(2)
DFS(3)
DFS(4)
DFS(5)
DES(3)—
DFS(7)

34

12/26/03

Example Steps 8 and 9

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)
DFS(7)

Graph Searching - Lecture 16

Now back up.

35

12/26/03

Example Step 10 (backtrack)

Graph Searching - Lecture 16

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)

Back to 5,
but it has no
more neighbors.

36

12/26/03

Example Step 12

Graph Searching - Lecture 16

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(6)

Back up to 4.
From 4 we can
get to 6.

37

12/26/03

Example Step 13

Graph Searching - Lecture 16

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(6)

From 6 there is
nowhere new
to go. Back up.

38

12/26/03

Example Step 14

Graph Searching - Lecture 16

DFS(1)

DFS(2)
DFS(3)
DFS(4)

Back to 4.
Keep backing up.

39

Example Step 17

DFS(1)

All the way
back to 1.

Done.

All nodes are marked so graph is connected; red links
define a spanning tree

12/26/03 Graph Searching - Lecture 16

40

Finding Connected Components using DFS

3 connected components

12/26/03 Graph Searching - Lecture 16 41

12/26/03

Connected Components

N/

.11

3 connected components are labeled

Graph Searching - Lecture 16

42

Performance DFS

* nvertices and m edges

e Storage complexity O(n + m)
* Time complexity O(n + m)

* Linear Timel

12/26/03 Graph Searching - Lecture 16

43

Another Example

Perform a recursive depth-first traversal on this
graph

Another Example

— Visit the first node

Another Example

— A has an unvisited neighbor

Another Example

— B has an unvisited neighbor
A, B, C

Another Example

— C has an unvisited neighbor
A, B,C,D

Another Example

— D has no unvisited neighbors, so we return to C
A B CD,E

Another Example

— E has an unvisited neighbor
A,B,C D, E,G

Another Example

— F has an unvisited neighbor
A,B,CD,E,G,|I

Another Example

— H has an unvisited neighbor
A B CDEG,IH

Another Example

— We recurse back to C which has an unvisited neighbour
A B CDEGIHF

Another Example

— We recurse finding that no nodes have unvisited neighbours
A B CDEGIH,F

Graph Searching Methodology
Breadth-First Search (BFS)

* Breadth-First Search (BFS)

— Use a queue to explore neighbors of source
vertex, then neighbors of neighbors etc.

— All nodes at a given distance (in number of edges)
are explored before we go further

12/26/03 Graph Searching - Lecture 16 55

Example

Consider the graph from previous example

Example

Performing a breadth-first traversal

— Push the first vertex onto the queue

Example

Performing a breadth-first traversal
— Pop Aand push B, Cand E

Example

Performing a breadth-first traversal:
— Pop B and push D

Example

Performing a breadth-first traversal:

— Pop Cand push F
A, B, C

Example

Performing a breadth-first traversal:
— Pop E and push G and H
A B,C E

Example

Performing a breadth-first traversal:
— Pop D

Example

Performing a breadth-first traversal:
— Pop F
A B CED,F

Example

Performing a breadth-first traversal:

— Pop G and push |
A,B CEDFG

Example
Performing a breadth-first traversal:
— Pop H
A B CEDFG,H

Example

Performing a breadth-first traversal:
— Pop |
A B CEDFG,H,I

Example

Performing a breadth-first traversal:

— The queue is empty: we are finished
A,B CEDFG,H,I

Breadth-First Search

BFS
Initialize Q to be empty;
Enqueue(Q,1) and mark 1;
while Q is not empty do

i := Dequeue(Q);

for each jadjacenttoido

if j is not marked then
Enqueue(Q,j) and mark j;

end{BFS}

12/26/03 Graph Searching - Lecture 16

68

Comparison

The order in which vertices can differ greatly

A, B CEDFG,H,I A,B,CDEGIHF

Depth-First vs Breadth-First

* Depth-First
— Stack or recursion
— Many applications
* Breadth-First

— Queue (recursion no help)
— Can be used to find shortest paths from the start vertex

12/26/03 Graph Searching - Lecture 16

70

Topological Sort

Topological Sort

Problem: Find an order in
which all these courses can
be taken.

Example: 142 - 143 - 378
- 370 2 321 2 341 > 322
- 326 2 421 > 401

In order to take a course, you must
take all of its prerequisites first

12/26/03 Digraphs - Lecture 14 72

Topological Sort

Given a digraph G = (V, E), find a linear ordering of
its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering

12/26/03 Digraphs - Lecture 14 73

Topo sort - good example

Any linear ordering in which
all the arrows go to the right

@ is a valid solution

v

&)

NN
(A+(B)|(P|(C}DAE)

Note that F can go anywhere in this list because it is not connected.
Also the solution is not unique.

12/26/03 Digraphs - Lecture 14 74

Topo sort - bad example

Any linear ordering in which
an arrow goes to the left
@ is not a valid solution

Y

;@ I

NO!

12/26/03 Digraphs - Lecture 14 75

Paths and Cycles

e Given a digraph G =(V,E), a path is a sequence of
vertices v,,v,, ...,v, such that:
— (v,vi,y)inEforl1<i<k
— path length = number of edges in the path
— path cost = sum of costs of each edge
e Apathisacycleif:
—k>1;v,=v,

 Gis acyclicif it has no cycles.

12/26/03 Digraphs - Lecture 14

76

Only acyclic graphs can be topo. sorted

* Adirected graph with a cycle cannot be
topologically sorted.

12/26/03 Digraphs - Lecture 14 77

Topo sort algorithm - 1

Step 1: Identify vertices that have no incoming edges
e The “in-degree” of these vertices is zero

12/26/03 Digraphs - Lecture 14 78

Topo sort algorithm - 1a

Step 1: Identify vertices that have no incoming edges
e If no such vertices, graph has only cycle(s) (cyclic graph)
e Topological sort not possible — Halt.

/

Example of a cyclic graph

12/26/03 Digraphs - Lecture 14 79

Topo sort algorithm - 1b

Step 1: Identify vertices that have no incoming edges
e Select one such vertex

Select

12/26/03 Digraphs - Lecture 14 80

Topo sort algorithm - 2

Step 2: Delete this vertex of in-degree 0 and all its
outgoing edges from the graph. Place it in the
output.

-
-
-
- Phe
7 \\ //
’ \.
1 \
I 1
' 1
\ ’
\
N A
~—- N
A Y

12/26/03 Digraphs - Lecture 14 81

Continue until done

Repeat Step 1 and Step 2 until graph is empty

Select

12/26/03 Digraphs - Lecture 14 82

12/26/03

B

Select B. Copy to sorted list. Delete B and its edges.

© = (A

Digraphs - Lecture 14

83

Select C.

12/26/03

C

Copy to sorted list. Delete C and its edges.

-——
A
AY
\
1
1

7
’
_-

|
7’ I
‘ 1
7’
4 1
s’
7’ I
‘< 1
’
z |
’
7’ I
|
1
I

Digraphs - Lecture 14

84

D

Select D. Copy to sorted list. Delete D and its edges.

£ = (AlBCID

12/26/03 Digraphs - Lecture 14 85

E, F

Select E. Copy to sorted list. Delete E and its edges.
Select F. Copy to sorted list. Delete F and its edges.

TS

e N
/ \
1 \
I 1
' 1
A ’
A v

Se_ -

12/26/03 Digraphs - Lecture 14

86

12/26/03

Done

Digraphs - Lecture 14

87

Translation
array

12/26/03

Implementation

Assume adjacency list

O (W

O &

6
F

Digraphs - Lecture 14

1

2
3
4
5
6

representation

- 2

3

/

4

value next

88

Calculate In-degrees

D A
0| 1 12
1| 2 37
In-Degree P e 1) 3 __+ 4 :
array; or add a 2| 4 5
field to array A 5| g
0 6

12/26/03 Digraphs - Lecture 14

12/26/03

Calculate In-degrees

for 1 = 1 to n do D[1] := 0; endfor
for 1 = 1 to n do
X = A[i1];
while x # null do
D[x.value] := D[x.value] + 1;
X = X.next;
endwhile

endfor

Digraphs - Lecture 14

90

Maintaining Degree O Vertices

Key idea: Initialize and maintain a queue (or stack)

of vertices with In-Degree 0 D A
o| 1] 2 4"
Queue | 1 (| 6
1] 2 3 /
@ 1| 3 ——+ 4 15
\G/ 21 5
0| 6 /

12/26/03 Digraphs - Lecture 14 91

Topo Sort using a Queue
(breadth-first)

After each vertex is output, when updating In-Degree array,
enqueue any vertex whose In-Degree becomes zero

Queue 6|2 D A
dequeue l enqueq 0 1 o 2 4
Output | 1 B : 3|
@\ 1 3 __+ 4 19
ng © B+ 75
@/) .
) 0| 6

12/26/03 Digraphs - Lecture 14

Topological Sort Algorithm

1. Store each vertex’s In-Degree in an array D
2. Initialize queue with all “in-degree=0" vertices

3. While there are vertices remaining in the queue:
(a) Dequeue and output a vertex
(b) Reduce In-Degree of all vertices adjacent to it by 1

(c) Enqueue any of these vertices whose In-Degree became
Zero

4. If all vertices are output then success, otherwise
there is a cycle.

12/26/03 Digraphs - Lecture 14 93

