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What are graphs?

• Yes, this is a graph….

• But we are interested in a different kind of “graph”
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Graphs

• Graphs are composed of

– Nodes (vertices)

– Edges (arcs) node

edge
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Varieties

• Nodes

– Labeled or unlabeled

• Edges

– Directed or undirected

– Labeled or unlabeled
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Motivation for Graphs

• Consider the data structures we have 
looked at so far…

• Linked list: nodes with 1 incoming edge + 
1 outgoing edge

• Binary trees/heaps: nodes with 1 
incoming edge + 2 outgoing edges

• B-trees: nodes with 1 incoming edge + 
multiple outgoing edges

10

96 99
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97

Value Next

node

Value Next

node

3    5
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Motivation for Graphs

• How can you generalize these data structures?

• Consider data structures for representing the 
following problems…
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CSE Course Prerequisites

321
143

142

322

326

341370

378

401

421
Nodes = courses
Directed edge = prerequisite

373

410

413

415

417

461
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Representing a Maze

S

Nodes = rooms
Edge = door or passage

S

E

B

E
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Representing Electrical Circuits

Nodes = battery, switch, resistor, etc.
Edges = connections

Battery Switch

Resistor
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Program statements

x1=q+y*z

x2=y*z-q
Naive:

common
subexpression

eliminated:

y z

*

-

q

+

q *

x1 x2

y z

-

q

+

q *

x1 x2

Nodes = symbols/operators
Edges = relationships

y*z calculated twice
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Precedence

S1 a=0;

S2 b=1;

S3 c=a+1

S4 d=b+a;

S5 e=d+1;

S6 e=c+d;

3

1
2

6

5

4Which statements must execute before S6?

S1, S2, S3, S4

Nodes = statements
Edges = precedence requirements
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Information Transmission in a Computer 
Network

Seattle

New York

L.A.

Tokyo

Sydney

Seoul

Nodes = computers
Edges = transmission rates

128

140

181

30

16

56
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Traffic Flow on Highways

Nodes = cities
Edges = # vehicles on 
connecting highway

UW
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Graph Definition

• A graph is simply a collection of nodes plus edges
– Linked lists, trees, and heaps are all special cases of graphs

• The nodes are known as vertices (node = “vertex”)

• Formal Definition: A graph G is a pair (V, E) where
– V is a set of vertices or nodes 

– E is a set of edges that connect vertices
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Graph Example

• Here is a directed graph G = (V, E)

– Each edge is a pair (v1, v2), where v1, v2 are vertices in V 
– V = {A, B, C, D, E, F}

E = {(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)}

A

B
C

ED

F
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Directed vs Undirected Graphs

• If the order of edge pairs (v1, v2) matters, the graph is directed 
(also called a digraph): (v1, v2) ≠(v2, v1) 

• If the order of edge pairs (v1, v2) does not matter, the graph is 
called an undirected graph: in this case, (v1, v2) = (v2, v1) 

v1
v2

v1
v2
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Undirected Terminology

• Two vertices u and v are adjacent in an undirected graph 
G if {u,v} is an edge in G
• edge e = {u,v} is incident with vertex u and vertex v

• A graph is connected if given any two vertices u and v, 
there is a path from u to v

• The degree of a vertex in an undirected graph is the 
number of edges incident with it
– a self-loop counts twice (both ends count)

– denoted with deg(v)
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Undirected Terminology

A

B
C

ED

F

Degree = 3

Degree = 0

B is adjacent to C and C is adjacent to B
(A,B) is incident
to A and to B

Self-loop
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Directed Terminology

• Vertex u is adjacent to vertex v in a directed graph 
G if (u,v) is an edge in G
– vertex u is the initial vertex of (u,v)

• Vertex v is adjacent from vertex u
– vertex v is the terminal (or end) vertex of (u,v)

• Degree
– in-degree is the number of edges with the vertex as 

the terminal vertex

– out-degree is the number of edges with the vertex as 
the initial vertex



12/26/03 Graph Terminology - Lecture 13 20

Directed Terminology

A

B
C

ED

F

In-degree = 2
Out-degree = 1

In-degree = 0
Out-degree = 0

B adjacent to C and C adjacent from B
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Handshaking Theorem

• Let G=(V,E) be an undirected graph with |E|=e edges.  
Then

• Every edge contributes +1 to the degree of each of 
the two vertices it is incident with

– number of edges is exactly half the sum of deg(v)

– the sum of the deg(v) values must be even





Vv

deg(v)2e Add up the degrees of all vertices.
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• Space and time are analyzed in terms of:

• Number of vertices = |V|   and

• Number of edges = |E|

• There are at least two ways of representing 
graphs:

• The  adjacency matrix representation

• The  adjacency list representation

Graph Representations
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A     B     C     D     E     F

0      1      0      1      0     0     

1      0      1      0      0     0     

0      1      0      1      1     0     

1      0      1      0      1     0     

0      0      1      1      0     0     

0      0      0      0      0     0     
M(v, w)  =  

1 if (v, w) is in E

0 otherwise

A

B

C

D

E

F

Space = |V|2

A

B
C

E
D

F

Adjacency Matrix
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A     B     C     D     E     F

0      1      0      1      0     0     

0      0      1      0      0     0     

0      0      0      1      1     0     

0      0      0      0      1     0     

0      0      0      0      0     0     

0      0      0      0      0     0     

A

B

C

D

E

F

Space = |V|2

M(v, w)  =  
1 if (v, w) is in E

0 otherwise

A

B
C

E
D

F

Adjacency Matrix for a Digraph
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B D

B D

C

A C E

D

E

A C

A

B

C

D

E

F

A

B
C

E
D

F

Space = a |V| + 2 b |E|

For each v in V, L(v) = list of w such that (v, w) is in E
a b

Adjacency List

list of
neighbors
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B D

E

D

C

a b

A

B

C

D

E

F

E

A

B
C

E
D

F

For each v in V, L(v) = list of w such that (v, w) is in E

Space = a |V| + b |E|

Adjacency List for a Digraph
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Searching in graphs

• Find Properties of Graphs
– Spanning trees

– Connected components

– Bipartite structure

– Biconnected components

• Applications
– Finding the web graph – used by Google and others

– Garbage collection – used in Java run time system
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Graph Searching Methodology Depth-
First Search (DFS)

• Depth-First Search (DFS)

– Searches down one path as deep as possible

– When no  nodes available, it backtracks

– When backtracking, it explores side-paths that 
were not taken

– Uses a stack (instead of a queue in BFS)

– Allows an easy recursive implementation
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Depth First Search Algorithm

• Recursive marking algorithm

• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do 

if j is unmarked then DFS(j)
end{DFS}

Marks all vertices reachable from i

i

j

k

DFS(i)

DFS(j)
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DFS Application: Spanning Tree

• Given a (undirected) connected graph G(V,E) a 
spanning tree of G is a graph G’(V’,E’)

– V’ = V, the tree touches all vertices  (spans) the 
graph

– E’ is a subset of E such that G’ is connected and 
there is no cycle in G’
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Example of DFS: Graph connectivity 
and spanning tree

1
2

7

5

4

6

3

DFS(1)
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Example Step 2

1
2

7

5

4

6

3

DFS(1)
DFS(2)

Red links will define the spanning tree if the graph 
is connected
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Example Step 5

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)
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Example Steps 6 and 7

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)
DFS(3)
DFS(7)
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Example Steps 8 and 9

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)
DFS(7)

Now back up.
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Example Step 10 (backtrack)

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(5)

Back to 5,
but it has no
more neighbors.
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Example Step 12

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(6)   

Back up to 4.
From 4 we can
get to 6.
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Example Step 13

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)
DFS(6)

From 6 there is
nowhere new 
to go.  Back up.
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Example Step 14

1
2

7

5

4

6

3

DFS(1)
DFS(2)
DFS(3)
DFS(4)

Back to 4.
Keep backing up.
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Example Step 17

1
2

7

5

4

6

3

DFS(1)

All nodes are marked so graph is connected; red links 
define a spanning tree

All the way 
back to 1.

Done.
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Finding Connected Components using DFS

1
2

3

9

8
6

10 4

5

7

11

3 connected components
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Connected Components

1
2

3

9

8
6

10 4

5

7

11

3 connected components are labeled
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Performance DFS

• n vertices and m edges

• Storage complexity O(n + m)

• Time complexity O(n + m)

• Linear Time! 



Another Example

Perform a recursive depth-first traversal on this 
graph



Another Example

– Visit the first node

A



Another Example

– A has an unvisited neighbor

A, B



Another Example

– B has an unvisited neighbor

A, B, C



Another Example

– C has an unvisited neighbor

A, B, C, D



Another Example

– D has no unvisited neighbors, so we return to C

A, B, C, D, E



Another Example

– E has an unvisited neighbor

A, B, C, D, E, G



Another Example

– F has an unvisited neighbor

A, B, C, D, E, G, I



Another Example

– H has an unvisited neighbor

A, B, C, D, E, G, I, H



Another Example

– We recurse back to C which has an unvisited neighbour

A, B, C, D, E, G, I, H, F



Another Example

– We recurse finding that no nodes have unvisited neighbours

A, B, C, D, E, G, I, H, F
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Graph Searching Methodology 
Breadth-First Search (BFS)

• Breadth-First Search (BFS)

– Use a queue to explore neighbors of source 
vertex, then neighbors of neighbors etc.

– All nodes at a given distance (in number of edges) 
are explored before we go further



Example
Consider the graph from previous example



Example
Performing a breadth-first traversal

– Push the first vertex onto the queue

A



Example
Performing a breadth-first traversal

– Pop A and push B, C and E

A

B C E



Example
Performing a breadth-first traversal:

– Pop B and push D

A, B

C E D



Example
Performing a breadth-first traversal:

– Pop C and push F

A, B, C

E D F



Example
Performing a breadth-first traversal:

– Pop E and push G and H

A, B, C, E

D F G H



Example
Performing a breadth-first traversal:

– Pop D

A, B, C, E, D

F G H



Example
Performing a breadth-first traversal:

– Pop F

A, B, C, E, D, F

G H



Example
Performing a breadth-first traversal:

– Pop G and push I

A, B, C, E, D, F, G

H I



Example
Performing a breadth-first traversal:

– Pop H

A, B, C, E, D, F, G, H

I



Example
Performing a breadth-first traversal:

– Pop I

A, B, C, E, D, F, G, H, I



Example
Performing a breadth-first traversal:

– The queue is empty:  we are finished

A, B, C, E, D, F, G, H, I
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Breadth-First Search

BFS
Initialize Q to be empty;
Enqueue(Q,1) and mark 1;
while Q is not empty do

i := Dequeue(Q);
for each j adjacent to i do

if j is not marked then
Enqueue(Q,j) and mark j;

end{BFS}



The order in which vertices can differ greatly

Comparison

A, B, C, D, E, G, I, H, FA, B, C, E, D, F, G, H, I
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Depth-First vs Breadth-First

• Depth-First

– Stack or recursion

– Many applications

• Breadth-First

– Queue (recursion no help)

– Can be used to find shortest paths from the start vertex



Topological Sort
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Topological Sort

321
143

322

326

341370

378

401

421

Problem: Find an order in
which all these courses can 
be taken.

Example: 142  143  378
 370  321  341  322
 326  421  401

In order to take a course, you must 
take all of its prerequisites first

142
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Given a digraph G = (V, E), find a linear ordering of 
its vertices such that: 

for any edge (v, w) in E, v precedes w in the ordering

A

B
C

F

D E

Topological Sort
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A

B
C

F

D E

EA DFB C

Any linear ordering in which
all the arrows go to the right
is a valid solution

Topo sort - good example

Note that F can go anywhere in this list because it is not connected.

Also the solution is not unique.
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A

B
C

F

D E

DA EFB C

Any linear ordering in which
an arrow goes to the left
is not a valid solution

Topo sort - bad example

NO!
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Paths and Cycles

• Given a digraph G = (V,E), a path is a sequence of 
vertices v1,v2, …,vk such that:

– (vi,vi+1) in E for 1 < i < k

– path length = number of edges in the path

– path cost = sum of costs of each edge 

• A path is a cycle if :

– k > 1; v1 = vk 

• G is acyclic if it has no cycles.
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Only acyclic graphs can be topo. sorted

• A directed graph with a cycle cannot be 
topologically sorted.

A

B
C

F

D E
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Step 1: Identify vertices that have no incoming edges
• The “in-degree” of these vertices is zero

A

B
C

F

D E

Topo sort algorithm - 1
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Step 1: Identify vertices that have no incoming edges
• If no such vertices, graph has only cycle(s) (cyclic graph)
• Topological sort not possible – Halt.

A

B
C

D

Example of a cyclic graph

Topo sort algorithm - 1a
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Step 1: Identify vertices that have no incoming edges
• Select one such vertex

A

B
C

F

D E

Select

Topo sort algorithm - 1b
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A

B
C

F

D E

Step 2: Delete this vertex of in-degree 0 and all its 
outgoing edges from the graph. Place it in the 
output.

Topo sort algorithm - 2

A
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A

B
C

F

D E

Repeat Step 1 and Step 2 until graph is empty

Select

Continue until done
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A

B
C

F

D E

B

Select B.  Copy to sorted list.  Delete B and its edges.

B
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A

C

F

D E

B C

Select C.  Copy to sorted list.  Delete C and its edges.

C
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AF

D E

B C D

Select D.  Copy to sorted list.  Delete D and its edges.

D
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AF

E

B C D E F

Select E.  Copy to sorted list.  Delete E and its edges.
Select F.  Copy to sorted list.  Delete F and its edges.

E, F
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A B C D E F

Done

A

B
C

F

D E
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A

B
C

F

D E

2 4

5

54

3

1

2

3

4

5

6

Assume adjacency list
representation

Implementation

A B C D E F
1   2   3   4   5   6Translation

array

value next
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0

1

0

2

2

1In-Degree 
array; or add a 
field to array A

Calculate In-degrees

2 4

5

54

3

1

2

3

4

5

6

AD
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Calculate In-degrees

for i = 1 to n do D[i] := 0; endfor

for i = 1 to n do 

x := A[i];

while x ≠ null do

D[x.value] := D[x.value] + 1;

x := x.next;

endwhile

endfor
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Key idea: Initialize and maintain a queue (or stack)
of vertices with In-Degree 0

1Queue 6

1

2 3
6

4 5

Maintaining Degree 0 Vertices

0

1

0

2

2

1

2 4

5

54

3

1

2

3

4

5

6

AD
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After each vertex is output, when updating In-Degree array, 
enqueue any vertex whose In-Degree becomes zero

1

Queue 6

Output

2

dequeue enqueue

1

2 3
6

4 5

Topo Sort using a Queue 
(breadth-first)

0

0

0

1

2

1

2 4

5

54

3

1

2

3

4

5

6

AD
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Topological Sort Algorithm

1. Store each vertex’s In-Degree in an array D

2. Initialize queue with all “in-degree=0” vertices

3. While there are vertices remaining in the queue:
(a) Dequeue and output a vertex

(b) Reduce In-Degree of all vertices adjacent to it by 1

(c) Enqueue any of these vertices whose In-Degree became 
zero

4. If all vertices are output then success, otherwise 
there is a cycle.


