Graphs

COL 106

Slide Courtesy : http://courses.cs.washington.edu/courses/cse373/

Douglas W. Harder, U Waterloo

What are graphs?

• Yes, this is a graph....

• But we are interested in a different kind of "graph"

Graphs

- Graphs are composed of
 - Nodes (vertices)
 - Edges (arcs) node

Varieties

- Nodes
 - Labeled or unlabeled
- Edges
 - Directed or undirected
 - Labeled or unlabeled

Motivation for Graphs

- Consider the data structures we have looked at so far...
- <u>Linked list</u>: nodes with 1 incoming edge + 1 outgoing edge
- <u>Binary trees/heaps</u>: nodes with 1 incoming edge + 2 outgoing edges
- <u>B-trees</u>: nodes with 1 incoming edge + multiple outgoing edges

Motivation for Graphs

- How can you generalize these data structures?
- Consider data structures for representing the following problems...

Representing a Maze

Nodes = rooms Edge = door or passage

Representing Electrical Circuits

Program statements

Precedence

 $S_1 = 0;$ $S_2 = b=1;$ $S_3 = c=a+1$ $S_4 = d=b+a;$ $S_5 = c=d+1;$ $S_6 = c+d;$

Which statements must execute before S_6 ?

S₁, S₂, S₃, S₄

Nodes = statements Edges = precedence requirements

Information Transmission in a Computer Network

Traffic Flow on Highways

Graph Definition

- A graph is simply a collection of nodes plus edges
 Linked lists, trees, and heaps are all special cases of graphs
- The nodes are known as vertices (node = "vertex")
- Formal Definition: A graph G is a pair (V, E) where
 - V is a set of vertices or nodes
 - E is a set of edges that connect vertices

Graph Example

- Here is a directed graph G = (V, E)
 - Each <u>edge</u> is a pair (v_1, v_2) , where v_1, v_2 are vertices in V
 - $V = \{A, B, C, D, E, F\}$

 $E = \{(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)\}$

Directed vs Undirected Graphs

 If the order of edge pairs (v₁, v₂) matters, the graph is directed (also called a digraph): (v₁, v₂) ≠(v₂, v₁)

• If the order of edge pairs (v_1, v_2) does not matter, the graph is called an undirected graph: in this case, $(v_1, v_2) = (v_2, v_1)$

Undirected Terminology

- Two vertices u and v are adjacent in an undirected graph
 G if {u,v} is an edge in G
 - edge e = {u,v} is incident with vertex u and vertex v
- A graph is connected if given any two vertices u and v, there is a path from u to v
- The degree of a vertex in an undirected graph is the number of edges incident with it
 - a self-loop counts twice (both ends count)
 - denoted with deg(v)

Undirected Terminology

Directed Terminology

 Vertex u is adjacent to vertex v in a directed graph G if (u,v) is an edge in G

vertex u is the initial vertex of (u,v)

- Vertex v is adjacent from vertex u
 - vertex v is the terminal (or end) vertex of (u,v)
- Degree
 - in-degree is the number of edges with the vertex as the terminal vertex
 - out-degree is the number of edges with the vertex as the initial vertex

Directed Terminology

Handshaking Theorem

 Let G=(V,E) be an undirected graph with |E|=e edges. Then

$$2e = \sum_{v \in V} deg(v)$$

Add up the degrees of all vertices.

- Every edge contributes +1 to the degree of each of the two vertices it is incident with
 - number of edges is exactly half the sum of deg(v)
 - the sum of the deg(v) values must be even

Graph Representations

- Space and time are analyzed in terms of:
 - Number of vertices = |V| and
 - Number of edges = |E|
- There are at least two ways of representing graphs:
 - The *adjacency matrix* representation
 - The *adjacency list* representation

Adjacency Matrix

Adjacency Matrix for a Digraph

Adjacency List

For each v in V, L(v) = list of w such that (v, w) is in E

Adjacency List for a Digraph

For each v in V, L(v) = list of w such that (v, w) is in E

Searching in graphs

• Find Properties of Graphs

- Spanning trees
- Connected components
- Bipartite structure
- Biconnected components

• Applications

- Finding the web graph used by Google and others
- Garbage collection used in Java run time system

Graph Searching Methodology Depth-First Search (DFS)

- Depth-First Search (DFS)
 - Searches down one path as deep as possible
 - When no nodes available, it backtracks
 - When backtracking, it explores side-paths that were not taken
 - Uses a stack (instead of a queue in BFS)
 - Allows an easy recursive implementation

Depth First Search Algorithm

- Recursive marking algorithm
- Initially every vertex is unmarked

DFS(i: vertex) mark i; for each j adjacent to i do if j is unmarked then DFS(j) end{DFS}

Marks all vertices reachable from i

DFS Application: Spanning Tree

- Given a (undirected) connected graph G(V,E) a spanning tree of G is a graph G'(V',E')
 - V' = V, the tree touches all vertices (spans) the graph
 - E' is a subset of E such that G' is connected and there is no cycle in G'

Example of DFS: Graph connectivity and spanning tree

DFS(1)

Example Step 2

DFS(1) DFS(2)

Red links will define the spanning tree if the graph is connected

Example Step 5

Example Steps 6 and 7

Example Steps 8 and 9

Now back up.

Example Step 10 (backtrack)

DFS(1) DFS(2) DFS(3) DFS(4) DFS(5)

Back to 5, but it has no more neighbors.

DFS(1) DFS(2) DFS(3) DFS(4) DFS(6)

Back up to 4. From 4 we can get to 6.

DFS(1) DFS(2) DFS(3) DFS(4) DFS(6)

From 6 there is nowhere new to go. Back up.

DFS(1) DFS(2) DFS(3) DFS(4)

Back to 4. Keep backing up.

DFS(1)

All the way back to 1.

Done.

All nodes are marked so graph is connected; red links define a spanning tree

Finding Connected Components using DFS

3 connected components

Connected Components

3 connected components are labeled

Performance DFS

- n vertices and m edges
- Storage complexity O(n + m)
- Time complexity O(n + m)
- Linear Time!

Perform a recursive depth-first traversal on this graph

– Visit the first node

A has an unvisited neighbor

Α, Β

B has an unvisited neighbor

A, B, C

C has an unvisited neighbor

A, B, C, D

D has no unvisited neighbors, so we return to C
A, B, C, D, E

– E has an unvisited neighbor

A, B, C, D, E, G

– F has an unvisited neighbor

A, B, C, D, E, G, I

– H has an unvisited neighbor

A, B, C, D, E, G, I, H

We recurse back to C which has an unvisited neighbour

A, B, C, D, E, G, I, H, F

We recurse finding that no nodes have unvisited neighbours
A, B, C, D, E, G, I, H, F

Graph Searching Methodology Breadth-First Search (BFS)

- Breadth-First Search (BFS)
 - Use a queue to explore neighbors of source vertex, then neighbors of neighbors etc.
 - All nodes at a given distance (in number of edges) are explored before we go further

Consider the graph from previous example

Performing a breadth-first traversal

- Push the first vertex onto the queue

Performing a breadth-first traversal

– Pop A and push B, C and E

Performing a breadth-first traversal:

– Pop B and push D

A, B

Performing a breadth-first traversal:

– Pop C and push F

A, B, C

Performing a breadth-first traversal:

– Pop E and push G and H

A, B, C, E

Performing a breadth-first traversal:

– Pop D

Performing a breadth-first traversal: – Pop F

Performing a breadth-first traversal:

– Pop G and push I

Performing a breadth-first traversal:

– Pop H

Performing a breadth-first traversal: – Pop I

Performing a breadth-first traversal:

- The queue is empty: we are finished

A, B, C, E, D, F, G, H, I

Breadth-First Search

BFS

Initialize Q to be empty; Enqueue(Q,1) and mark 1; while Q is not empty do i := Dequeue(Q); for each j adjacent to i do if j is not marked then Enqueue(Q,j) and mark j; end{BFS}

Comparison

The order in which vertices can differ greatly

A, B, C, E, D, F, G, H, I

A, B, C, D, E, G, I, H, F

Depth-First vs Breadth-First

- Depth-First
 - Stack or recursion
 - Many applications
- Breadth-First
 - Queue (recursion no help)
 - Can be used to find shortest paths from the start vertex

Topological Sort

Topological Sort

Topological Sort

Given a digraph G = (V, E), find a linear ordering of its vertices such that:

for any edge (v, w) in E, v precedes w in the ordering

Topo sort - good example

Note that F can go anywhere in this list because it is not connected. Also the solution is not unique.

Digraphs - Lecture 14

Topo sort - bad example

Any linear ordering in which an arrow goes to the left is not a valid solution

Paths and Cycles

- Given a digraph G = (V,E), a path is a sequence of vertices v₁,v₂, ...,v_k such that:
 - (v_i, v_{i+1}) in E for $1 \le i \le k$
 - path length = number of edges in the path
 - path cost = sum of costs of each edge
- A path is a cycle if :
 - $k > 1; v_1 = v_k$
- G is acyclic if it has no cycles.

Only acyclic graphs can be topo. sorted

• A directed graph with a cycle cannot be topologically sorted.

Topo sort algorithm - 1

<u>Step 1</u>: Identify vertices that have no incoming edges

• The "in-degree" of these vertices is zero

Topo sort algorithm - 1a

<u>Step 1</u>: Identify vertices that have no incoming edges

- If *no such vertices*, graph has only <u>cycle(s)</u> (cyclic graph)
- Topological sort not possible Halt.

Topo sort algorithm - 1b

Step 1: Identify vertices that have no incoming edges

• Select one such vertex

Topo sort algorithm - 2

<u>Step 2</u>: Delete this vertex of in-degree 0 and all its outgoing edges from the graph. Place it in the output.

Continue until done

Repeat <u>Step 1</u> and <u>Step 2</u> until graph is empty

Β

Select B. Copy to sorted list. Delete B and its edges.

С

Select C. Copy to sorted list. Delete C and its edges.

D

Select D. Copy to sorted list. Delete D and its edges.

E, **F**

Select E. Copy to sorted list. Delete E and its edges. Select F. Copy to sorted list. Delete F and its edges.

Done

Implementation

Calculate In-degrees

Calculate In-degrees

```
for i = 1 to n do D[i] := 0; endfor
for i = 1 to n do
  x := A[i];
  while x ≠ null do
    D[x.value] := D[x.value] + 1;
    x := x.next;
  endwhile
endfor
```

Maintaining Degree 0 Vertices

Key idea: Initialize and maintain a *queue (or stack)* of vertices with In-Degree 0 D A

Topo Sort using a Queue (breadth-first)

After each vertex is output, when updating In-Degree array, enqueue any vertex whose In-Degree becomes zero

Topological Sort Algorithm

- 1. Store each vertex's In-Degree in an array D
- 2. Initialize queue with all "in-degree=0" vertices
- 3. While there are vertices remaining in the queue:(a) Dequeue and output a vertex
 - (b) Reduce In-Degree of all vertices adjacent to it by 1
 - (c) Enqueue any of these vertices whose In-Degree became zero
- 4. If all vertices are output then success, otherwise there is a cycle.