
HASHING

COL 106

Shweta Agrawal, Amit Kumar

Slide Courtesy : Linda Shapiro, Uwash

Douglas W. Harder, UWaterloo

12/26/03 Hashing - Lecture 10 2

The Need for Speed

• Data structures we have looked at so far

– Use comparison operations to find items

– Need O(log N) time for Find and Insert

• In real world applications, N is typically between 100
and 100,000 (or more)

– log N is between 6.6 and 16.6

• Hash tables are an abstract data type designed for
O(1) Find and Inserts

12/26/03 Hashing - Lecture 10 3

Fewer Functions Faster

• compare trees and hash tables

– trees provide for known ordering of all elements

– hash tables just let you (quickly) find an element

Limited Set of Hash Operations

• For many applications, a limited set of operations is
all that is needed

– Insert, Find, and Delete

– Note that no ordering of elements is implied

• For example, a compiler needs to maintain
information about the symbols in a program

– user defined

– language keywords

Say that our data has format (key, value). How
should we store it for efficient insert, find, delete?

12/26/03 Hashing - Lecture 10 5

Direct Address Tables

• Direct addressing using an array is very fast

• Assume

– keys are integers in the set U={0,1,…m-1}

– m is small

– no two elements have the same key

• Then just store each element at the array location
array[key]

– search, insert, and delete are trivial

12/26/03 Hashing - Lecture 10 6

Direct Access Table

U

(universe of keys)

K

(Actual keys)

2

5 8

3

1

9

4

0
7

6

0

1

2

3

4

5

6

7

8

9

2

5

8

3

datakey

table

12/26/03 Hashing - Lecture 10 7

An Issue

• If most keys in U are used

– direct addressing can work very well (m small)

• The largest possible key in U , say m, may be much
larger than the number of elements actually stored
(|U| much greater than |K|)

– the table is very sparse and wastes space

– in worst case, table too large to have in memory

• If most keys in U are not used

– need to map U to a smaller set closer in size to K

12/26/03 Hashing - Lecture 10 8

Mapping the Keys

U

2

5 8

31

9

4

0
7

6

0

1

2

3

4

5

6

7

8

9

254

datakey

table254

54724 81

3456

103673

928104

432

0
72345

52

K

Hash Function
3456

54724

81

Key Universe

Table
indices

12/26/03 Hashing - Lecture 10 9

Hashing Schemes

• We want to store N items in a table of size M,
at a location computed from the key K (which
may not be numeric!)

• Hash function
– Method for computing table index from key

• Need of a collision resolution strategy
– How to handle two keys that hash to the same

index

12/26/03 Hashing - Lecture 10 10

“Find” an Element in an Array

• Data records can be stored in arrays.
– A[0] = {“CHEM 110”, Size 89}

– A[3] = {“CSE 142”, Size 251}

– A[17] = {“CSE 373”, Size 85}

• Class size for CSE 373?
– Linear search the array – O(N) worst case time

– Binary search - O(log N) worst case

Key element

12/26/03 Hashing - Lecture 10 11

Go Directly to the Element

• What if we could directly index into the array
using the key?

– A[“CSE 373”] = {Size 85}

• Main idea behind hash tables

– Use a key based on some aspect of the data to
index directly into an array

– O(1) time to access records

12/26/03 Hashing - Lecture 10 12

Indexing into Hash Table

• Need a fast hash function to convert the element key
(string or number) to an integer (the hash value) (i.e,
map from U to index)

– Then use this value to index into an array

– Hash(“CSE 373”) = 157, Hash(“CSE 143”) = 101

• Output of the hash function

– must always be less than size of array

– should be as evenly distributed as possible

12/26/03 Hashing - Lecture 10 13

Choosing the Hash Function

• What properties do we want from a hash
function?
– Want universe of hash values to be distributed

randomly to minimize collisions

– Don’t want systematic nonrandom pattern in
selection of keys to lead to systematic collisions

– Want hash value to depend on all values in entire
key and their positions

12/26/03 Hashing - Lecture 10 14

The Key Values are Important

• Notice that one issue with all the hash
functions is that the actual content of the key
set matters

• The elements in K (the keys that are used) are
quite possibly a restricted subset of U, not just
a random collection
– variable names, words in the English language,

reserved keywords, telephone numbers, etc, etc

12/26/03 Hashing - Lecture 10 15

Simple Hashes

• It's possible to have very simple hash functions if you
are certain of your keys

• For example,

– suppose we know that the keys s will be real numbers
uniformly distributed over 0 ≤ s < 1

– Then a very fast, very good hash function is
• hash(s) = floor(s·m)

• where m is the size of the table

16

Example of a Very Simple Mapping

• hash(s) = floor(s·m) maps from 0 ≤ s < 1 to 0..m-1

Example m = 10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 1 2 3 4 5 6 7 8 9

s

floor(s*m)

Note the even distribution. There are collisions, but we will deal with them later.

12/26/03 Hashing - Lecture 10 17

Perfect Hashing

• In some cases it's possible to map a known set of
keys uniquely to a set of index values

• You must know every single key beforehand and be
able to derive a function that works one-to-one

120 331 912 74 665 47 888 219

0 1 2 3 4 5 6 7 8 9

s

hash(s)

12/26/03 Hashing - Lecture 10 18

Mod Hash Function

• One solution for a less constrained key set

– modular arithmetic

• a mod size

– remainder when "a" is divided by "size"

– in C or Java this is written as r = a % size;

– If TableSize = 251
• 408 mod 251 = 157

• 352 mod 251 = 101

12/26/03 Hashing - Lecture 10 19

Modulo Mapping

• a mod m maps from integers to 0..m-1

– one to one? no

– onto? yes

-4 -3 -2 -1 0 1 2 3 4 5 6 7

0 1 2 3 0 1 2 3 0 1 2 3

x

x mod 4

12/26/03 Hashing - Lecture 10 20

Hashing Integers

• If keys are integers, we can use the hash function:

– Hash(key) = key mod TableSize

• Problem 1: What if TableSize is 11 and all keys are 2
repeated digits? (eg, 22, 33, …)

– all keys map to the same index

– Need to pick TableSize carefully: often, a prime number

12/26/03 Hashing - Lecture 10 21

Nonnumerical Keys

• Many hash functions assume that the universe of
keys is the natural numbers N={0,1,…}

• Need to find a function to convert the actual key to a
natural number quickly and effectively before or
during the hash calculation

• Generally work with the ASCII character codes when
converting strings to numbers

12/26/03 Hashing - Lecture 10 22

• If keys are strings can get an integer by adding up ASCII
values of characters in key

• We are converting a very large string c0c1c2 … cn to a
relatively small number c0+c1+c2+…+cn mod size.

Characters to Integers

67 83 69 32 51 55

C S E 3 7

ASCII value

character

51 0

3 <0>

12/26/03 Hashing - Lecture 10 23

Hash Must be Onto Table

• Problem 2: What if TableSize is 10,000 and all
keys are 8 or less characters long?
– chars have values between 0 and 127

– Keys will hash only to positions 0 through 8*127 =
1016

• Need to distribute keys over the entire table
or the extra space is wasted

12/26/03 Hashing - Lecture 10 24

Problems with Adding Characters

• Problems with adding up character values for
string keys

– If string keys are short, will not hash evenly
to all of the hash table

– Different character combinations hash to
same value
• “abc”, “bca”, and “cab” all add up to the same

value (recall this was Problem 1)

25

Characters as Integers

• A character string can be thought of as a
base 256 number. The string c1c2…cn can be
thought of as the number
cn + 256cn-1 + 2562cn-2 + … + 256n-1 c1

• Use Horner’s Rule to Hash!

r= 0;

for i = 1 to n do

r := (c[i] + 256*r) mod TableSize

12/26/03 Hashing - Lecture 10 26

Collisions

• A collision occurs when two different keys
hash to the same value

– E.g. For TableSize = 17, the keys 18 and 35 hash to
the same value for the mod17 hash function

– 18 mod 17 = 1 and 35 mod 17 = 1

• Cannot store both data records in the same
slot in array!

12/26/03 Hashing - Lecture 10 27

Collision Resolution

• Separate Chaining

– Use data structure (such as a linked list) to store
multiple items that hash to the same slot

• Open addressing (or probing)

– search for empty slots using a second function
and store item in first empty slot that is found

12/26/03 Hashing - Lecture 10 28

Resolution by Chaining

• Each hash table cell holds pointer
to linked list of records with same
hash value

• Collision: Insert item into linked
list

• To Find an item: compute hash
value, then do Find on linked list

• Note that there are potentially as
many as TableSize lists

0

1

2

3

4

5

6

7

bug

zurg

hoppi

12/26/03 Hashing - Lecture 10 29

Why Lists?

• Can use List ADT for Find/Insert/Delete in linked list
– O(N) runtime where N is the number of elements in the

particular chain

• Can also use Binary Search Trees
– O(log N) time instead of O(N)

– But the number of elements to search through should be
small (otherwise the hashing function is bad or the table is
too small)

– generally not worth the overhead of BSTs

12/26/03 Hashing - Lecture 10 30

Load Factor of a Hash Table

• Let N = number of items to be stored

• Load factor L = N/TableSize
– TableSize = 101 and N =505, then L = 5

– TableSize = 101 and N = 10, then L = 0.1

• Average length of chained list = L and so average
time for accessing an item =

O(1) + O(L)
– Want L to be smaller than 1 but close to 1 if good hashing

function (i.e. TableSize ≈ N)

– With chaining hashing continues to work for L > 1

Resolution by Open Addressing

• All keys are in the table - no links

– Reduced overhead saves space

• Cell Full? Keep Looking

• A probe sequence: h1(k),h2(k), h3(k),…

• Searching/inserting k: check locations h1(k),
h2(k), h3(k)

• Deletion k: Lazy deletion needed – mark a cell
that was deleted

• Various flavors of open addressing differ in which
probe sequence they use

12/26/03 Hashing - Lecture 10 32

Cell Full? Keep Looking.

• hi(X)=(Hash(X)+F(i)) mod TableSize

–Define F(0) = 0

• F is the collision resolution function. Some
possibilities:

– Linear: F(i) = i

–Quadratic: F(i) = i2

–Double Hashing: F(i) = i·Hash2(X)

12/26/03 Hashing - Lecture 10 33

Linear Probing

• When searching for K, check locations h(K),
h(K)+1, h(K)+2, … mod TableSize until either
– K is found; or

– we find an empty location (K not present)

• If table is very sparse, almost like separate
chaining.

• When table starts filling, we get clustering but still
constant average search time.

• Full table => infinite loop.

Linear Probing Example

0

1

2

3

4

5

6 76

Insert(76)

(6)

0

1

2

3

4

5

6

93

76

Insert(93)

(2)

0

1

2

3

4

5

6

93

40

76

Insert(40)

(5)

0

1

2

3

4

5

6

47

93

40

76

Insert(47)

(5)

0

1

2

3

4

5

6

47

93

10

40

76

Insert(10)

(3)

0

1

2

3

4

5

6

47

55

93

10

40

76

Insert(55)

(6)

Probes 1 1 1 3 1 3

H(x)= x mod 7

Deletion: Open Addressing

• Must do lazy deletion: Deleted keys are marked as deleted
– Find: done normally
– Insert: treat marked slot as an empty slot and fill it

0

1

2

3

4

5

6

16

23

59

76

0

1

2

3

4

5

6

16

30

59

76

h(k) = k mod 7

Linear probing

0

1

2

3

4

5

6

16

mark

59

76

Try:

Delete 23

Find 59

Insert 30

Linear Probing Example:

0

1

2

3

4

5

6

47

55

93

10

x

76

Probes 1 3

H(k)= k mod 7

delete(40)

(5)

0

1

2

3

4

5

6

47

55

93

10

40

76

0

1

2

3

4

5

6

47

93

x

76

search(47)

(5)

55

10

Another example

Insert these numbers into this initially empty hash table:

19A, 207, 3AD, 488, 5BA, 680, 74C, 826, 946, ACD, B32, C8B,

DBE, E9C

0 1 2 3 4 5 6 7 8 9 A B C D E F

Start with the first four values:
19A, 207, 3AD, 488

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

Start with the first four values:
19A, 207, 3AD, 488

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

207 488 19A 3AD

Next we must insert 5BA

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

207 488 19A 3AD

Next we must insert 5BA

– Bin A is occupied

– We search forward for the next empty bin

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

207 488 19A 5BA 3AD

Next we are adding 680, 74C, 826

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

207 488 19A 5BA 3AD

Next we are adding 680, 74C, 826

– All the bins are empty—simply insert them

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 19A 5BA 74C 3AD

Next, we must insert 946

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 19A 5BA 74C 3AD

Next, we must insert 946

– Bin 6 is occupied

– The next empty bin is 9

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 946 19A 5BA 74C 3AD

Next, we must insert ACD

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 946 19A 5BA 74C 3AD

Next, we must insert ACD

– Bin D is occupied

– The next empty bin is E

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 946 19A 5BA 74C 3ADACD

Next, we insert B32

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 946 19A 5BA 74C 3AD ACD

Next, we insert B32

– Bin 2 is unoccupied

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 826 207 488 946 19A 5BA 74C 3AD ACD

Next, we insert C8B

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 826 207 488 946 19A 5BA 74C 3AD ACD

Next, we insert C8B

– Bin B is occupied

– The next empty bin is F

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Next, we insert D59

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Next, we insert D59

– Bin 9 is occupied

– The next empty bin is 1

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Finally, insert E9C

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Finally, insert E9C

– Bin C is occupied

– The next empty bin is 3

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E9C 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Having completed these insertions:

– The load factor is l = 14/16 = 0.875

– The average number of probes is 38/14 ≈ 2.71

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Searching

Searching for C8B

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Searching

Searching for C8B

– Examine bins B, C, D, E, F

– The value is found in Bin F
0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Searching

Searching for 23E

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Searching

Searching for 23E

– Search bins E, F, 0, 1, 2, 3, 4

– The last bin is empty; therefore, 23E is not in the table

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 × 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Erasing

We cannot simply remove elements from

the hash table

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Erasing

We cannot simply remove elements from

the hash table

– For example, consider erasing 3AD
0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C 3AD ACD C8B

Erasing

We cannot simply remove elements from

the hash table

– For example, consider erasing 3AD

– If we just erase it, it is now an empty bin

• By our algorithm, we cannot find ACD, C8B and

D59

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C ACD C8B

Erasing

Instead, we must attempt to fill the empty

bin

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C ACD C8B

Erasing

Instead, we must attempt to fill the empty

bin

– We can move ACD into the location
0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C ACDACD C8B

Erasing

Now we have another bin to fill

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C ACD C8B

Erasing

Now we have another bin to fill

– We can move 38B into the location

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C ACD C8B C8B

Erasing

Now we must attempt to fill the bin at F

– We cannot move 680

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C ACD C8B

Erasing

Now we must attempt to fill the bin at F

– We cannot move 680

– We can, however, move D59
0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C ACD C8B D59

Erasing

At this point, we cannot move B32 or E93

and the next bin is empty

– We are finished
0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 E93 826 207 488 946 19A 5BA 74C ACD C8B D59

Erasing

Suppose we delete 207

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 E93 826 207 488 946 19A 5BA 74C ACD C8B D59

Erasing

Suppose we delete 207

– Cannot move 488

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 E93 826 488 946 19A 5BA 74C ACD C8B D59

Erasing

Suppose we delete 207

– We could move 946 into Bin 7

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 E93 826 946 488 946 19A 5BA 74C ACD C8B D59

Erasing

Suppose we delete 207

– We cannot move either the next five entries

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 E93 826 946 488 19A 5BA 74C ACD C8B D59

Erasing

Suppose we delete 207

– We cannot move either the next five entries

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 E93 826 946 488 D59 19A 5BA 74C ACD C8B D59

Erasing

Suppose we delete 207

– We cannot fill this bin with 680, and the next

bin is empty

– We are finished

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 E93 826 946 488 D59 19A 5BA 74C ACD C8B

Primary Clustering

We have already observed the following phenomenon:

– With more insertions, the contiguous regions (or

clusters) get larger

This results in longer search times

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 C8B 74C ACD 3AD 946 B32 D59 5BA 19A E9C

We currently have three clusters of length four

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 C8B 74C ACD 3AD 946 B32 D59 5BA 19A E9C

Primary Clustering

There is a 5/32 ≈ 16 % chance that an insertion will fill Bin A

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 C8B 74C ACD 3AD 946 B32 D59 5BA 19A E9C

Primary Clustering

There is a 5/32 ≈ 16 % chance that an insertion will fill Bin

A

– This causes two clusters to coalesce into one larger

cluster of length 9

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 747 C8B 74C ACD 3AD 946 B32 D59 5BA 19A E9C

Primary Clustering

There is now a 11/32 ≈ 34 % chance that the next

insertion will increase the length of this cluster

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 747 C8B 74C ACD 3AD 946 B32 D59 5BA 19A E9C

Primary Clustering

As the cluster length increases, the probability of
further increasing the length increases

In general:

– Suppose that a cluster is of length ℓ

– An insertion either into any bin occupied by the chain
or into the locations immediately before or after it will
increase the length of the chain

– This gives a probability of

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 747 C8B 74C ACD 3AD 946 B32 D59 5BA 19A E9C

2

M



Primary Clustering

12/26/03 Hashing - Lecture 10 83

Quadratic Probing

• When searching for X, check locations
h1(X), h1(X)+ 1

2, h1(X)+2
2,…

mod TableSize until either

–X is found; or

–we find an empty location (X not present)

Quadratic Probing

Suppose that an element should appear in bin
h:

– if bin h is occupied, then check the following
sequence of bins:

h + 12, h + 22, h + 32, h + 42, h + 52, ...

h + 1, h + 4, h + 9, h + 16, h + 25, …

For example, with M = 17:

Quadratic Probing

If one of h + i2 falls into a cluster, this does not
imply the next one to map into position i will

Quadratic Probing

For example, suppose an element was to be
inserted in bin 23 in a hash table with 31 bins

The sequence in which the bins would be
checked is:

23, 24, 27, 1, 8, 17, 28, 10, 25, 11, 30, 20, 12, 6, 2, 0

Quadratic Probing

Even if two bins are initially close, the
sequence in which subsequent bins are
checked varies greatly

Again, with M = 31 bins, compare the first 16
bins which are checked starting with 22 and
23:

22 22, 23, 26, 0, 7, 16, 27, 9, 24, 10, 29, 19, 11, 5, 1, 30

23 23, 24, 27, 1, 8, 17, 28, 10, 25, 11, 30, 20, 12, 6, 2, 0

Quadratic Probing

Thus, quadratic probing solves the problem of
primary clustering

Unfortunately, there is a second problem
which must be dealt with
– Suppose we have M = 8 bins:

12 ≡ 1, 22 ≡ 4, 32 ≡ 1

– In this case, we are checking bin h + 1 twice
having checked only one other bin

Quadratic Probing

Unfortunately, there is no guarantee that

h + i2 mod M

will cycle through 0, 1, ..., M – 1

What if :
– Require that M be prime

– In this case, h + i2 mod M for i = 0, ..., (M – 1)/2
will cycle through exactly (M + 1)/2 values before
repeating

Quadratic Probing

Example

M = 11:

0, 1, 4, 9, 16 ≡ 5, 25 ≡ 3, 36 ≡ 3

M = 13:

0, 1, 4, 9, 16 ≡ 3, 25 ≡ 12, 36 ≡ 10, 49 ≡ 10

M = 17:

0, 1, 4, 9, 16, 25 ≡ 8, 36 ≡ 2, 49 ≡ 15, 64 ≡ 13, 81 ≡ 13

Quadratic Probing

Thus, quadratic probing avoids primary
clustering

– Unfortunately, we are not guaranteed that we will
use all the bins

In practice, if the hash function is reasonable,
this is not a significant problem

Secondary Clustering

The phenomenon of primary clustering does
not occur with quadratic probing

However, if multiple items all hash to the
same initial bin, the same sequence of
numbers will be followed
– This is termed secondary clustering

– The effect is less significant than that of primary
clustering

Secondary Clustering

Secondary clustering may be a problem if the
hash function does not produce an even
distribution of entries

One solution to secondary is double hashing:
associating with each element an initial bin
(defined by one hash function) and a skip
(defined by a second hash function)

12/26/03 Hashing - Lecture 10 96

Double Hashing

• When searching for X, check locations h1(X), h1(X)+
h2(X),h1(X)+2*h2(X),… mod Tablesize until either
– X is found; or

– we find an empty location (X not present)

• Must be careful about h2(X)

– Not 0 and not a divisor of M

– eg, h1(k) = k mod m1, h2(k)=1+(k mod m2)
where m2 is slightly less than m1

Rules of Thumb

• Separate chaining is simple but wastes
space…

• Linear probing uses space better, is fast when
tables are sparse

• Double hashing is space efficient, fast (get
initial hash and increment at the same time),
needs careful implementation

Caveats

• Hash functions are very often the cause of
performance bugs.

• Hash functions often make the code not
portable.

• If a particular hash function behaves badly on
your data, then pick another.

