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The Need for Speed

• Data structures we have looked at so far

– Use comparison operations to find items

– Need O(log N) time for Find and Insert

• In real world applications, N is typically between 100 
and 100,000 (or more)

– log N is between 6.6 and 16.6

• Hash tables are an abstract data type designed for 
O(1) Find and Inserts
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Fewer Functions Faster

• compare trees and hash tables

– trees provide for known ordering of all elements

– hash tables just let you (quickly) find an element



Limited Set of Hash Operations

• For many applications, a limited set of operations is 
all that is needed

– Insert, Find, and Delete

– Note that no ordering of elements is implied

• For example, a compiler needs to maintain 
information about the symbols in a program

– user defined

– language keywords

Say that our data has format (key, value). How 
should we store it for efficient insert, find, delete? 
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Direct Address Tables

• Direct addressing using an array is very fast

• Assume

– keys are integers in the set U={0,1,…m-1}

– m is small

– no two elements have the same key

• Then just store each element at the array location 
array[key]

– search, insert, and delete are trivial



12/26/03 Hashing - Lecture 10 6

Direct Access Table
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An Issue

• If most keys in U are used

– direct addressing can work very well (m small)

• The largest possible key in U , say m, may be much 
larger than the number of elements actually stored 
(|U| much greater than |K|)

– the table is very sparse and wastes space

– in worst case, table too large to have in memory

• If most keys in U are not used

– need to map U to a smaller set closer in size to K
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Mapping the Keys
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Hashing Schemes

• We want to store N items in a table of size M, 
at a location computed from the key K (which 
may not be numeric!)

• Hash function
– Method for computing table index from key

• Need of a collision resolution strategy
– How to handle two keys that hash to the same 

index
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“Find”  an Element in an Array

• Data records can be stored in arrays.
– A[0] = {“CHEM 110”, Size 89}

– A[3] = {“CSE 142”, Size 251} 

– A[17] = {“CSE 373”, Size 85}

• Class size for CSE 373?
– Linear search the array – O(N) worst case time

– Binary search - O(log N) worst case

Key element



12/26/03 Hashing - Lecture 10 11

Go Directly to the Element

• What if we could directly index into the array 
using the key?

– A[“CSE 373”] = {Size 85}

• Main idea behind hash tables

– Use a key based on some aspect of the data to 
index directly into an array

– O(1) time to access records
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Indexing into Hash Table

• Need a fast hash function to convert the element key 
(string or number) to an integer (the hash value)  (i.e, 
map from U to index)

– Then use this value to index into an array

– Hash(“CSE 373”) = 157, Hash(“CSE 143”) = 101

• Output of the hash function

– must always be less than size of array

– should be as evenly distributed as possible
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Choosing the Hash Function

• What properties do we want from a hash 
function?
– Want universe of hash values to be distributed 

randomly to minimize collisions

– Don’t want systematic nonrandom pattern in 
selection of keys to lead to systematic collisions

– Want hash value to depend on all values in entire 
key and their positions
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The Key Values are Important

• Notice that one issue with all the hash 
functions is that the actual content of the key 
set matters

• The elements in K (the keys that are used) are 
quite possibly a restricted subset of U, not just 
a random collection
– variable names, words in the English language, 

reserved keywords, telephone numbers, etc, etc
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Simple Hashes

• It's possible to have very simple hash functions if you 
are certain of your keys

• For example, 

– suppose we know that the keys s will be real numbers 
uniformly distributed over 0 ≤ s < 1

– Then a very fast, very good hash function is 
• hash(s) = floor(s·m)

• where m is the size of the table



16

Example of a Very Simple Mapping

• hash(s) = floor(s·m) maps from 0 ≤ s < 1 to 0..m-1

Example m = 10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 1 2 3 4 5 6 7 8 9

s

floor(s*m)

Note the even distribution.  There are collisions, but we will deal with them later.
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Perfect Hashing

• In some cases it's possible to map a known set of 
keys uniquely to a set of index values

• You must know every single key beforehand and be 
able to derive a function that works one-to-one

120 331 912 74 665 47 888 219

0 1 2 3 4 5 6 7 8 9

s

hash(s)
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Mod Hash Function

• One solution for a less constrained key set

– modular arithmetic 

• a mod size

– remainder when "a" is divided by "size"

– in C or Java this is written as r = a % size;

– If TableSize = 251
• 408 mod 251 = 157

• 352 mod 251 = 101
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Modulo Mapping

• a mod m maps from integers to 0..m-1

– one to one? no

– onto? yes

-4 -3 -2 -1 0 1 2 3 4 5 6 7

0 1 2 3 0 1 2 3 0 1 2 3

x

x mod 4
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Hashing Integers

• If keys are integers, we can use the hash function:

– Hash(key) = key mod TableSize

• Problem 1: What if TableSize is 11 and all keys are 2 
repeated digits? (eg, 22, 33, …)

– all keys map to the same index

– Need to pick TableSize carefully: often, a prime number
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Nonnumerical Keys

• Many hash functions assume that the universe of 
keys is the natural numbers N={0,1,…}

• Need to find a function to convert the actual key to a 
natural number quickly and effectively before or 
during the hash calculation

• Generally work with the ASCII character codes when 
converting strings to numbers
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• If keys are strings can get an integer by adding up ASCII 
values of characters in key

• We are converting a very large string c0c1c2 … cn to a 
relatively small number c0+c1+c2+…+cn mod size.

Characters to Integers

67 83 69 32 51 55

C S E 3 7

ASCII value

character

51 0

3 <0>
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Hash Must be Onto Table

• Problem 2: What if TableSize is 10,000 and all 
keys are 8 or less characters long?
– chars have values between 0 and 127

– Keys will hash only to positions 0 through 8*127 = 
1016

• Need to distribute keys over the entire table 
or the extra space is wasted
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Problems with Adding Characters

• Problems with adding up character values for 
string keys

– If string keys are short, will not hash evenly 
to all of the hash table

– Different character combinations hash to 
same value
• “abc”, “bca”, and “cab” all add up to the same 

value (recall this was Problem 1)
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Characters as Integers

• A character string can be thought of as a 
base 256 number. The string c1c2…cn can be 
thought of as the number 
cn + 256cn-1 + 2562cn-2 + … + 256n-1 c1

• Use Horner’s Rule to Hash!

r= 0;

for i = 1 to n do

r := (c[i] + 256*r) mod TableSize
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Collisions

• A collision occurs when two different keys 
hash to the same value

– E.g. For TableSize = 17, the keys 18 and 35 hash to 
the same value for the mod17 hash function

– 18 mod 17 = 1 and 35 mod 17 = 1

• Cannot store both data records in the same 
slot in array!
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Collision Resolution

• Separate Chaining

– Use data structure (such as a linked list) to store 
multiple items that hash to the same slot

• Open addressing (or probing)

– search for empty slots using a second function 
and store item in first empty slot that is found
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Resolution by Chaining

• Each hash table cell holds pointer 
to linked list of records with same 
hash value 

• Collision: Insert item into linked 
list

• To Find an item: compute hash 
value, then do Find on linked list

• Note that there are potentially as 
many as TableSize lists

0

1

2

3

4

5

6

7

bug

zurg

hoppi
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Why Lists?

• Can use List ADT for Find/Insert/Delete in linked list
– O(N) runtime where N is the number of elements in the 

particular chain

• Can also use Binary Search Trees
– O(log N) time instead of O(N)

– But the number of elements to search through should be 
small (otherwise the hashing function is bad or the table is 
too small)

– generally not worth the overhead of BSTs
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Load Factor of a Hash Table

• Let N = number of items to be stored

• Load factor L = N/TableSize
– TableSize = 101 and N =505, then L = 5

– TableSize = 101 and N = 10, then L = 0.1

• Average length of chained list = L and so average 
time for accessing an item = 

O(1) + O(L)
– Want L to be smaller than 1 but close to 1 if good hashing 

function (i.e. TableSize ≈ N)

– With chaining hashing continues to work for L > 1 



Resolution by Open Addressing

• All keys are in the table - no links 

– Reduced overhead saves space

• Cell Full?  Keep Looking 

• A probe sequence: h1(k),h2(k), h3(k),…

• Searching/inserting k: check locations h1(k), 
h2(k), h3(k)

• Deletion k: Lazy deletion needed – mark a cell 
that was deleted

• Various flavors of open addressing differ in which 
probe sequence they use
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Cell Full?  Keep Looking.

• hi(X)=(Hash(X)+F(i)) mod TableSize

–Define F(0) = 0

• F is the collision resolution function. Some 
possibilities:

– Linear: F(i) = i 

–Quadratic: F(i) = i2

–Double Hashing: F(i) = i·Hash2(X)
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Linear Probing

• When searching for K, check locations h(K), 
h(K)+1, h(K)+2, … mod TableSize until either
– K is found; or

– we find an empty location (K not present)

• If table is very sparse, almost like separate 
chaining.

• When table starts filling, we get clustering but still 
constant average search time.

• Full table => infinite loop.



Linear Probing Example
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H(x)= x mod 7



Deletion: Open Addressing

• Must do lazy deletion: Deleted keys are marked as deleted
– Find: done normally
– Insert: treat marked slot as an empty slot and fill it
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Linear Probing Example:
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Another example

Insert these numbers into this initially empty hash table:

19A, 207, 3AD, 488, 5BA, 680, 74C, 826, 946, ACD, B32, C8B, 

DBE, E9C

0 1 2 3 4 5 6 7 8 9 A B C D E F



Start with the first four values:
19A, 207, 3AD, 488

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F



Start with the first four values:
19A, 207, 3AD, 488

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

207 488 19A 3AD



Next we must insert 5BA

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

207 488 19A 3AD



Next we must insert 5BA

– Bin A is occupied

– We search forward for the next empty bin

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

207 488 19A 5BA 3AD



Next we are adding 680, 74C, 826

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

207 488 19A 5BA 3AD



Next we are adding 680, 74C, 826

– All the bins are empty—simply insert them

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 19A 5BA 74C 3AD



Next, we must insert 946

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 19A 5BA 74C 3AD



Next, we must insert 946

– Bin 6 is occupied

– The next empty bin is 9

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 946 19A 5BA 74C 3AD



Next, we must insert ACD

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 946 19A 5BA 74C 3AD



Next, we must insert ACD

– Bin D is occupied

– The next empty bin is E

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 946 19A 5BA 74C 3ADACD



Next, we insert B32

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 826 207 488 946 19A 5BA 74C 3AD ACD



Next, we insert B32

– Bin 2 is unoccupied

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 826 207 488 946 19A 5BA 74C 3AD ACD



Next, we insert C8B

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 826 207 488 946 19A 5BA 74C 3AD ACD



Next, we insert C8B

– Bin B is occupied

– The next empty bin is F

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 826 207 488 946 19A 5BA 74C 3AD ACD C8B



Next, we insert D59

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 826 207 488 946 19A 5BA 74C 3AD ACD C8B



Next, we insert D59

– Bin 9 is occupied

– The next empty bin is 1

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 826 207 488 946 19A 5BA 74C 3AD ACD C8B



Finally, insert E9C

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 826 207 488 946 19A 5BA 74C 3AD ACD C8B



Finally, insert E9C

– Bin C is occupied

– The next empty bin is 3

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E9C 826 207 488 946 19A 5BA 74C 3AD ACD C8B



Having completed these insertions:

– The load factor is l = 14/16 = 0.875

– The average number of probes is 38/14 ≈ 2.71

Example

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C 3AD ACD C8B



Searching

Searching for C8B

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C 3AD ACD C8B



Searching

Searching for C8B

– Examine bins B, C, D, E, F

– The value is found in Bin F
0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C 3AD ACD C8B



Searching

Searching for 23E

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C 3AD ACD C8B



Searching

Searching for 23E

– Search bins E, F, 0, 1, 2, 3, 4

– The last bin is empty; therefore, 23E is not in the table

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 × 826 207 488 946 19A 5BA 74C 3AD ACD C8B



Erasing

We cannot simply remove elements from 

the hash table

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C 3AD ACD C8B



Erasing

We cannot simply remove elements from 

the hash table

– For example, consider erasing 3AD
0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C 3AD ACD C8B



Erasing

We cannot simply remove elements from 

the hash table

– For example, consider erasing 3AD

– If we just erase it, it is now an empty bin

• By our algorithm, we cannot find ACD, C8B and 

D59

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C ACD C8B



Erasing

Instead, we must attempt to fill the empty 

bin

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C ACD C8B



Erasing

Instead, we must attempt to fill the empty 

bin

– We can move ACD into the location
0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C ACDACD C8B



Erasing

Now we have another bin to fill

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C ACD C8B



Erasing

Now we have another bin to fill

– We can move 38B into the location

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C ACD C8B C8B



Erasing

Now we must attempt to fill the bin at F

– We cannot move 680

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C ACD C8B



Erasing

Now we must attempt to fill the bin at F

– We cannot move 680

– We can, however, move D59
0 1 2 3 4 5 6 7 8 9 A B C D E F

680 D59 B32 E93 826 207 488 946 19A 5BA 74C ACD C8B D59



Erasing

At this point, we cannot move B32 or E93 

and the next bin is empty

– We are finished
0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 E93 826 207 488 946 19A 5BA 74C ACD C8B D59



Erasing

Suppose we delete 207

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 E93 826 207 488 946 19A 5BA 74C ACD C8B D59



Erasing

Suppose we delete 207

– Cannot move 488

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 E93 826 488 946 19A 5BA 74C ACD C8B D59



Erasing

Suppose we delete 207

– We could move 946 into Bin 7

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 E93 826 946 488 946 19A 5BA 74C ACD C8B D59



Erasing

Suppose we delete 207

– We cannot move either the next five entries

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 E93 826 946 488 19A 5BA 74C ACD C8B D59



Erasing

Suppose we delete 207

– We cannot move either the next five entries

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 E93 826 946 488 D59 19A 5BA 74C ACD C8B D59



Erasing

Suppose we delete 207

– We cannot fill this bin with 680, and the next 

bin is empty

– We are finished

0 1 2 3 4 5 6 7 8 9 A B C D E F

680 B32 E93 826 946 488 D59 19A 5BA 74C ACD C8B



Primary Clustering

We have already observed the following phenomenon:

– With more insertions, the contiguous regions (or 

clusters) get larger

This results in longer search times

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 C8B 74C ACD 3AD 946 B32 D59 5BA 19A E9C



We currently have three clusters of length four

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 C8B 74C ACD 3AD 946 B32 D59 5BA 19A E9C

Primary Clustering



There is a 5/32 ≈ 16 % chance that an insertion will fill Bin A

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 C8B 74C ACD 3AD 946 B32 D59 5BA 19A E9C

Primary Clustering



There is a 5/32 ≈ 16 % chance that an insertion will fill Bin 

A

– This causes two clusters to coalesce into one larger 

cluster of length 9

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 747 C8B 74C ACD 3AD 946 B32 D59 5BA 19A E9C

Primary Clustering



There is now a 11/32 ≈ 34 % chance that the next 

insertion will increase the length of this cluster

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 747 C8B 74C ACD 3AD 946 B32 D59 5BA 19A E9C

Primary Clustering



As the cluster length increases, the probability of 
further increasing the length increases

In general:

– Suppose that a cluster is of length ℓ

– An insertion either into any bin occupied by the chain 
or into the locations immediately before or after it will 
increase the length of the chain

– This gives a probability of 

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

680 826 207 488 946 747 C8B 74C ACD 3AD 946 B32 D59 5BA 19A E9C

2

M



Primary Clustering
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Quadratic Probing

• When searching for X, check locations 
h1(X), h1(X)+ 1

2, h1(X)+2
2,… 

mod TableSize until either

–X is found; or

–we find an empty location (X not present)



Quadratic Probing

Suppose that an element should appear in bin 
h:

– if bin h is occupied, then check the following 
sequence of bins:

h + 12,  h + 22,  h + 32,  h + 42,   h + 52, ...

h + 1,   h + 4,   h + 9,    h + 16,  h + 25, …

For example, with M = 17:



Quadratic Probing

If one of h + i2 falls into a cluster, this does not 
imply the next one to map into position i will



Quadratic Probing

For example, suppose an element was to be 
inserted in bin 23 in a hash table with 31 bins

The sequence in which the bins would be 
checked is:

23, 24, 27, 1, 8, 17, 28, 10, 25, 11, 30, 20, 12, 6, 2, 0



Quadratic Probing

Even if two bins are initially close, the 
sequence in which subsequent bins are 
checked varies greatly

Again, with M = 31 bins, compare the first 16 
bins which are checked starting with 22 and 
23:

22  22, 23, 26,  0,   7, 16, 27,   9, 24, 10, 29, 19, 11,   5,   1, 30

23  23, 24, 27,  1,   8, 17, 28, 10, 25, 11, 30, 20, 12,   6,   2,   0



Quadratic Probing

Thus, quadratic probing solves the problem of 
primary clustering

Unfortunately, there is a second problem 
which must be dealt with
– Suppose we have M = 8 bins:

12 ≡ 1, 22 ≡ 4, 32 ≡ 1

– In this case, we are checking bin h + 1 twice 
having checked only one other bin



Quadratic Probing

Unfortunately, there is no guarantee that

h + i2 mod M

will cycle through 0, 1, ..., M – 1

What if :
– Require that M be prime

– In this case, h + i2 mod M for i = 0, ..., (M – 1)/2
will cycle through exactly (M + 1)/2 values before 
repeating



Quadratic Probing

Example

M = 11:

0, 1, 4, 9, 16 ≡ 5, 25 ≡ 3, 36 ≡ 3

M = 13:

0, 1, 4, 9, 16 ≡ 3, 25 ≡ 12, 36 ≡ 10, 49 ≡ 10

M = 17:

0, 1, 4, 9, 16, 25 ≡ 8, 36 ≡ 2, 49 ≡ 15, 64 ≡ 13, 81 ≡ 13



Quadratic Probing

Thus, quadratic probing avoids primary 
clustering

– Unfortunately, we are not guaranteed that we will 
use all the bins

In practice, if the hash function is reasonable, 
this is not a significant problem



Secondary Clustering

The phenomenon of primary clustering does 
not occur with quadratic probing

However, if multiple items all hash to the 
same initial bin, the same sequence of 
numbers will be followed
– This is termed secondary clustering

– The effect is less significant than that of primary 
clustering



Secondary Clustering

Secondary clustering may be a problem if the 
hash function does not produce an even 
distribution of entries

One solution to secondary is double hashing:  
associating with each element an initial bin 
(defined by one hash function) and a skip 
(defined by a second hash function)
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Double Hashing

• When searching for X, check locations h1(X), h1(X)+ 
h2(X),h1(X)+2*h2(X),… mod Tablesize until either
– X is found; or

– we find an empty location (X not present)

• Must be careful about h2(X)

– Not 0 and not a divisor of M

– eg, h1(k) = k mod m1, h2(k)=1+(k mod m2)
where m2 is slightly less than m1



Rules of Thumb

• Separate chaining is simple but wastes 
space… 

• Linear probing uses space better, is fast when 
tables are sparse

• Double hashing is space efficient, fast (get 
initial hash and increment at the same time), 
needs careful implementation



Caveats

• Hash functions are very often the cause of 
performance bugs.

• Hash functions often make the code not 
portable.

• If a particular hash function behaves badly on 
your data, then pick another.


