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Motivation

• Large differences between time access to disk, 
cash memory and core memory

• Minimize expensive access
(e.g.,  disk access)

• B-tree: Dynamic sets that is optimized for 
disks



A B-tree is an M-way search tree with two properties :

1. It is perfectly balanced: every leaf node is at the same 

depth

2. Every internal node other than the root, is at least half-

full, i.e. M/2-1 ≤ #keys ≤ M-1

3. Every internal node with k keys has k+1 non-null 

children

For simplicity we consider M even and we use t=M/2:

2.* Every internal node other than the root is at least half-

full, i.e. t-1≤ #keys ≤2t-1, t≤ #children ≤2t

B-Trees



Example: a 4-way B-tree

B-tree 4-way tree

B-tree
1. It is perfectly balanced: every leaf node is at the same depth.
2. Every node, except maybe the root, is at least half-full

t-1≤ #keys ≤2t-1

3. Every internal node with k keys has k+1 non-null children
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B-tree Height
Claim: any B-tree  with n keys, height h and minimum degree t 

satisfies:

Proof:

• The minimum number of KEYS for a tree with height h is 
obtained when:
– The root contains one key

– All other nodes contain t-1 keys
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B-Tree: Insert X

1. As in M-way tree find the leaf node to which X should be 
added

2. Add X to this node in the appropriate place among the 
values already there
(there are no subtrees to worry about)

3. Number of values in the node after adding the key:

– Fewer than 2t-1: done 

– Equal to 2t: overflowed

4. Fix overflowed node



Fix an Overflowed

1. Split the node into three parts, M=2t: 

– Left: the first t values, become a left child node 

– Middle: the middle value at position t, goes up to parent

– Right: the last t-1 values, become a right child node

2. Continue with the parent:
1. Until no overflow occurs in the parent

2. If the root overflows, split it too, and create a new root node
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Insert example

20    40      60      80

0    5    10    15 25    35 45   55 87    98

Insert 3:
20      40       60 80

0    3    5    10 15 25    35 45      55

3;6  tM

62    66    70 74  78

62   66   70   74   78 87   98



61 62  66  70 74  78

20      40 60   80

0    3    5    10    15 25    35 45      55

Insert 61:

3;6  tM

62   66   70   74   78 87   98

20    40      60     80

0    3    5    10    15 25    35 45  55 87   98

74      7861 62  66

OVERFLOW

20    40      60     70    80

0    3    5    10 15 25    35 45 55 87   98

SPLIT IT



Insert 38:

74      7861  62 66

20    40      60     70    80

0    3    5 10 15 25    35 45  55 87   98

74      7861 62 66

20    40      60     70    80

0    3    5 10 15 25  35  38 45      55 87   98

3;6  tM



5  20    40 60 70 80

Insert  4:

0    3    4 25 35 38 45  55 61 62 66 87    98  74      78    10 15

74      7861 62 66

20    40      60     70    80

0    3  4   5 10 15

25    35 38 45  55 87   98

74      7861 62 66

20    40      60     70    80

25    35 38 45 55 87   98

OVERFLOW

0    3    5 10  15

SPLIT IT

OVERFLOW

SPLIT IT

3;6  tM



0    3    4 25 35 38 45 55 61 62  66 87    9874      78

60

5     20  40 70    80 

10 15

5  20 40  60    70 80

0    3    4 25 35 38 45 55 61 62 66 87    98  74      78    10   15

OVERFLOW

SPLIT IT

3;6  tM



Complexity Insert

• Inserting a key into a B-tree of height h is done in a 
single pass down the tree and a single pass up the 
tree

Complexity: )(log)( nOhO t



B-Tree: Delete X

• Delete as in M-way tree

• A problem:

– might cause underflow: the number of keys 
remain in a node < t-1

Recall: The root should have at least 1 value in it, and all other nodes should 

have at least t-1 values in them



0    3    4 25 35 38 45 55 61 62 66 87    9874      78
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5     20    40 70    80 
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3;6  tM

Underflow  Example

Delete  87:

0    3    4 25 35 38 45 55 61 62 66 9874      78

60

5     20    40 70    80 

10 15

B-tree

UNDERFLOW



B-Tree: Delete X,k

• Delete as in M-way tree
• A problem:

– might cause underflow: the number of keys remain in a 
node < t-1

• Solution: 
– make sure a node that is visited has at least t instead of t-1 

keys.
– If it doesn’t have k

• (1) either take from sibling via a rotate, or 
• (2) merge with the parent

– If it does have k
• See next slides

Recall: The root should have at least 1 value in it, and all other nodes should 

have at least t-1 (at most 2t-1) values in them



62   66   70    74 62   70   74

B-Tree-Delete(x,k)

1st case: k is in x and x is a leaf   delete k

How many keys are left?

k=66

Example t=3

x x



30    50  70    90

35     40  45

30    45 70    90

35      40 45

5 6 7 5 6 7

Example t=3

k=50

x x

y y



35      40 55        60 35   40   50  55   65

2nd case cont.: 

c. Both a and b are not satisfied: y and z have t-1
keys

– Merge the two children, y and z

– Recursively delete k from the merged cell

30    50  70    90
30         70 90

1 2 3 54 6 1 2 3 54 6

Example t=3

x

y z

x

y



Questions

• When does the height of the tree shrink?

• Why do we need the number of keys to be at least t
and not t-1 when we proceed down in the tree?
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Delete Complexity

• Basically downward pass: 

– Most of the keys are in the leaves – one 
downward pass

– When deleting a key in internal node – may 
have to go one step up to replace the key with 
its predecessor or successor

Complexity )(log)( nOhO t



Run Time Analysis of 
B-Tree Operations

• For a B-Tree of order M=2t

– #keys in internal node: M-1

– #children of internal node: between M/2 and M

–  Depth of B-Tree storing n items is O(log M/2 N)

• Find run time is:
– O(log M) to binary search which branch to take at each node, since M is 

constant it is O(1).

– Total time to find an item is O(h*log M) = O(log n)

• Insert & Delete
– Similar to find but update a node may take : O(M)=O(1)

Note: if M is >32 it worth using binary search at each node
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A typical B-Tree



Why B-Tree?

• B-trees is an implementation of dynamic sets that is 
optimized for disks

– The memory has an hierarchy and there is a tradeoff 
between size of units/blocks and access time

– The goal is to optimize the number of times needed to  
access an “expensive access time memory”

– The size of a node is determined by characteristics of the 
disk – block size – page size

– The number of access is proportional to the tree depth


