
Animated demo: http://ats.oka.nu/b-tree/b-tree.html

https://www.youtube.com/watch?v=coRJrcIYbF4

B- Trees

Slide Credit : Yael Moses, IDC Herzliya

COL 106
Shweta Agrawal, Amit Kumar

http://ats.oka.nu/b-tree/b-tree.html

Motivation

• Large differences between time access to disk,
cash memory and core memory

• Minimize expensive access
(e.g., disk access)

• B-tree: Dynamic sets that is optimized for
disks

A B-tree is an M-way search tree with two properties :

1. It is perfectly balanced: every leaf node is at the same

depth

2. Every internal node other than the root, is at least half-

full, i.e. M/2-1 ≤ #keys ≤ M-1

3. Every internal node with k keys has k+1 non-null

children

For simplicity we consider M even and we use t=M/2:

2.* Every internal node other than the root is at least half-

full, i.e. t-1≤ #keys ≤2t-1, t≤ #children ≤2t

B-Trees

Example: a 4-way B-tree

B-tree 4-way tree

B-tree
1. It is perfectly balanced: every leaf node is at the same depth.
2. Every node, except maybe the root, is at least half-full

t-1≤ #keys ≤2t-1

3. Every internal node with k keys has k+1 non-null children

20 40

0 5 10 25 35 45 55

20 40

0 5 25 35 45 55

10

B-tree Height
Claim: any B-tree with n keys, height h and minimum degree t

satisfies:

Proof:

• The minimum number of KEYS for a tree with height h is
obtained when:
– The root contains one key

– All other nodes contain t-1 keys

2

1
log

n
h t

B-Tree: Insert X

1. As in M-way tree find the leaf node to which X should be
added

2. Add X to this node in the appropriate place among the
values already there
(there are no subtrees to worry about)

3. Number of values in the node after adding the key:

– Fewer than 2t-1: done

– Equal to 2t: overflowed

4. Fix overflowed node

Fix an Overflowed

1. Split the node into three parts, M=2t:

– Left: the first t values, become a left child node

– Middle: the middle value at position t, goes up to parent

– Right: the last t-1 values, become a right child node

2. Continue with the parent:
1. Until no overflow occurs in the parent

2. If the root overflows, split it too, and create a new root node

y

… 56 98 ….

60 65 68 83 86 90

… 56 68 98 ….

60 65 83 86 90

split

J
x x

y z

Insert example

20 40 60 80

0 5 10 15 25 35 45 55 87 98

Insert 3:
20 40 60 80

0 3 5 10 15 25 35 45 55

3;6 tM

62 66 70 74 78

62 66 70 74 78 87 98

61 62 66 70 74 78

20 40 60 80

0 3 5 10 15 25 35 45 55

Insert 61:

3;6 tM

62 66 70 74 78 87 98

20 40 60 80

0 3 5 10 15 25 35 45 55 87 98

74 7861 62 66

OVERFLOW

20 40 60 70 80

0 3 5 10 15 25 35 45 55 87 98

SPLIT IT

Insert 38:

74 7861 62 66

20 40 60 70 80

0 3 5 10 15 25 35 45 55 87 98

74 7861 62 66

20 40 60 70 80

0 3 5 10 15 25 35 38 45 55 87 98

3;6 tM

5 20 40 60 70 80

Insert 4:

0 3 4 25 35 38 45 55 61 62 66 87 98 74 78 10 15

74 7861 62 66

20 40 60 70 80

0 3 4 5 10 15

25 35 38 45 55 87 98

74 7861 62 66

20 40 60 70 80

25 35 38 45 55 87 98

OVERFLOW

0 3 5 10 15

SPLIT IT

OVERFLOW

SPLIT IT

3;6 tM

0 3 4 25 35 38 45 55 61 62 66 87 9874 78

60

5 20 40 70 80

10 15

5 20 40 60 70 80

0 3 4 25 35 38 45 55 61 62 66 87 98 74 78 10 15

OVERFLOW

SPLIT IT

3;6 tM

Complexity Insert

• Inserting a key into a B-tree of height h is done in a
single pass down the tree and a single pass up the
tree

Complexity:)(log)(nOhO t

B-Tree: Delete X

• Delete as in M-way tree

• A problem:

– might cause underflow: the number of keys
remain in a node < t-1

Recall: The root should have at least 1 value in it, and all other nodes should

have at least t-1 values in them

0 3 4 25 35 38 45 55 61 62 66 87 9874 78

60

5 20 40 70 80

10 15

3;6 tM

Underflow Example

Delete 87:

0 3 4 25 35 38 45 55 61 62 66 9874 78

60

5 20 40 70 80

10 15

B-tree

UNDERFLOW

B-Tree: Delete X,k

• Delete as in M-way tree
• A problem:

– might cause underflow: the number of keys remain in a
node < t-1

• Solution:
– make sure a node that is visited has at least t instead of t-1

keys.
– If it doesn’t have k

• (1) either take from sibling via a rotate, or
• (2) merge with the parent

– If it does have k
• See next slides

Recall: The root should have at least 1 value in it, and all other nodes should

have at least t-1 (at most 2t-1) values in them

62 66 70 74 62 70 74

B-Tree-Delete(x,k)

1st case: k is in x and x is a leaf delete k

How many keys are left?

k=66

Example t=3

x x

30 50 70 90

35 40 45

30 45 70 90

35 40 45

5 6 7 5 6 7

Example t=3

k=50

x x

y y

35 40 55 60 35 40 50 55 65

2nd case cont.:

c. Both a and b are not satisfied: y and z have t-1
keys

– Merge the two children, y and z

– Recursively delete k from the merged cell

30 50 70 90
30 70 90

1 2 3 54 6 1 2 3 54 6

Example t=3

x

y z

x

y

Questions

• When does the height of the tree shrink?

• Why do we need the number of keys to be at least t
and not t-1 when we proceed down in the tree?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Delete Complexity

• Basically downward pass:

– Most of the keys are in the leaves – one
downward pass

– When deleting a key in internal node – may
have to go one step up to replace the key with
its predecessor or successor

Complexity)(log)(nOhO t

Run Time Analysis of
B-Tree Operations

• For a B-Tree of order M=2t

– #keys in internal node: M-1

– #children of internal node: between M/2 and M

– Depth of B-Tree storing n items is O(log M/2 N)

• Find run time is:
– O(log M) to binary search which branch to take at each node, since M is

constant it is O(1).

– Total time to find an item is O(h*log M) = O(log n)

• Insert & Delete
– Similar to find but update a node may take : O(M)=O(1)

Note: if M is >32 it worth using binary search at each node

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A typical B-Tree

Why B-Tree?

• B-trees is an implementation of dynamic sets that is
optimized for disks

– The memory has an hierarchy and there is a tradeoff
between size of units/blocks and access time

– The goal is to optimize the number of times needed to
access an “expensive access time memory”

– The size of a node is determined by characteristics of the
disk – block size – page size

– The number of access is proportional to the tree depth

