B- Trees

COL 106
 Shweta Agrawal, Amit Kumar

Slide Credit : Yael Moses, IDC Herzliya

Animated demo: http://ats.oka.nu/b-tree/b-tree.html https://www.youtube.com/watch?v=coRJrclYbF4

Motivation

- Large differences between time access to disk, cash memory and core memory
- Minimize expensive access
(e.g., disk access)
- B-tree: Dynamic sets that is optimized for disks

B-Trees

A B-tree is an M-way search tree with two properties :

1. It is perfectly balanced: every leaf node is at the same depth
2. Every internal node other than the root, is at least halffull, i.e. $M / 2-1 \leq \# k e y s \leq M-1$
3. Every internal node with k keys has $k+1$ non-null children

For simplicity we consider M even and we use $\mathrm{t}=\mathrm{M} / 2$:
2.* Every internal node other than the root is at least halffull, i.e. $t-1 \leq$ \#keys $\leq 2 t-1$, $t \leq$ \#children $\leq 2 t$

Example: a 4-way B-tree

B-tree

4-way tree

B-tree

1. It is perfectly balanced: every leaf node is at the same depth.
2. Every node, except maybe the root, is at least half-full $t-1 \leq$ \#keys $\leq 2 t-1$
3. Every internal node with k keys has $k+1$ non-null children

B-tree Height

Claim: any B-tree with n keys, height h and minimum degree t satisfies:

$$
h \leq \log _{t} \frac{n+1}{2}
$$

Proof:

- The minimum number of KEYS for a tree with height h is obtained when:
- The root contains one key
- All other nodes contain t-1 keys

B-Tree: Insert X

1. As in M-way tree find the leaf node to which X should be added
2. Add X to this node in the appropriate place among the values already there
(there are no subtrees to worry about)
3. Number of values in the node after adding the key:

- Fewer than 2t-1: done
- Equal to 2t: overflowed

4. Fix overflowed node

Fix an Overflowed

1. Split the node into three parts, $M=2 t$:

- Left: the first t values, become a left child node
- Middle: the middle value at position t, goes up to parent
- Right: the last $t-1$ values, become a right child node

2. Continue with the parent:
3. Until no overflow occurs in the parent
4. If the root overflows, split it too, and create a new root node

Insert example

$$
M=6 ; t=3
$$

Insert 4:

$$
M=6 ; t=3
$$

```
0
```


$$
M=6 ; t=3
$$

Complexity Insert

- Inserting a key into a B-tree of height h is done in a single pass down the tree and a single pass up the tree

Complexity: $\quad O(h)=O\left(\log _{t} n\right)$

B-Tree: Delete X

- Delete as in M-way tree
- A problem:
- might cause underflow: the number of keys remain in a node < t-1

Recall: The root should have at least 1 value in it, and all other nodes should have at least $\mathrm{t}-1$ values in them

$$
M=6 ; t=3
$$

Underflow Example

B-Tree: Delete X,k

- Delete as in M-way tree
- A problem:
- might cause underflow: the number of keys remain in a node < t-1
- Solution:
- make sure a node that is visited has at least t instead of $t-1$ keys.
- If it doesn't have k
- (1) either take from sibling via a rotate, or
- (2) merge with the parent
- If it does have k
- See next slides

Recall: The root should have at least 1 value in it, and all other nodes should have at least $\mathrm{t}-1$ (at most $2 \mathrm{t}-1$) values in them
B-Tree-Delete (x,k)

1st case: k is in x and x is a leaf \rightarrow delete k

How many keys are left?
Example t=3

2nd case: k in the internal node x, y and z are the preceding and succeeding nodes of the key $\mathrm{k} \in x$
a. If y has at least t keys:
\triangleright Replace k in $x k^{\prime} \in y$, where k^{\prime} is the predecessor of k in y
\triangleright Delete k ' recursively
b. Similar check for successor case

2nd case cont.:

c. Both a and b are not satisfied: y and z have $t-1$ keys

- Merge the two children, y and z
- Recursively delete k from the merged cell

Questions

- When does the height of the tree shrink?
- Why do we need the number of keys to be at least t and not $t-1$ when we proceed down in the tree?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Delete Complexity

- Basically downward pass:
- Most of the keys are in the leaves - one downward pass
- When deleting a key in internal node - may have to go one step up to replace the key with its predecessor or successor

$$
\text { Complexity } \quad O(h)=O\left(\log _{t} n\right)
$$

Run Time Analysis of B-Tree Operations

- For a B-Tree of order $M=2 t$
- \#keys in internal node: M-1
- \#children of internal node: between $M / 2$ and M
\rightarrow Depth of B-Tree storing n items is $O\left(\log _{M / 2} N\right)$
- Find run time is:
- $O(\log M)$ to binary search which branch to take at each node, since M is constant it is $O(1)$.
- Total time to find an item is $O\left(h^{*} \log M\right)=O(\log n)$
- Insert \& Delete
- Similar to find but update a node may take : $O(M)=O(1)$

Note: if M is >32 it worth using binary search at each node

A typical B-Tree

1 node, 1000 keys

1001 nodes, 1,001,000 keys

1,002,001 nodes, $1,002,001,000$ keys

Figure 18.3 A B-tree of height 2 containing over one billion keys. Each internal node and leaf contains 1000 keys. There are 1001 nodes at depth 1 and over one million leaves at depth 2 . Shown inside each node x is $n[x]$, the number of keys in x.

Why B-Tree?

- B-trees is an implementation of dynamic sets that is optimized for disks
- The memory has an hierarchy and there is a tradeoff between size of units/blocks and access time
- The goal is to optimize the number of times needed to access an "expensive access time memory"
- The size of a node is determined by characteristics of the disk - block size - page size
- The number of access is proportional to the tree depth

