
2-3 and 2-3-4 Trees

COL 106

Shweta Agrawal, Amit Kumar, Dr.
Ilyas Cicekli

Multi-Way Trees

• A binary search tree:
– One value in each node
– At most 2 children

• An M-way search tree:
– Between 1 to (M-1) values in each node

– At most M children per node

M-way Search Tree Details

Each internal node of an M-way search has:

– Between 1 and M children

– Up to M-1 keys k1 , k2 , ... , kM-1

Keys are ordered such that:
k1 < k2 < ... < kM-1

kM-1. ki-1 kik1

Properties of M-way Search Tree

• For a subtree Ti that is the i-th child of a node:

all keys in Ti must be between keys ki-1 and ki

i.e. ki-1 < keys(Ti)< ki

• All keys in first subtree T1, keys(T1)< k1

• All keys in last subtree TM, keys(TM) > kM-1

k1

TT ii

. kk i-1 kk ii

TT MTT 11

kkM-1

.

Example: 3-way search tree

Try: search 68
68

Search for X

At a node consisting of values V1...Vk, there are four possible
cases:
– If X < V1, recursively search for X in the subtree that is left

of V1
– If X > Vk, recursively search for X in the subtree that is right

of Vk

– If X=Vi, for some i, then we are done
(X has been found)

– Else, for some i, Vi < X < Vi+1. In this case recursively search
for X in the subtree that is between Vi and Vi+1

• Time Complexity: O((M-1)*h)=O(h) [M is a constant]

Insert X

The algorithm for binary search tree can be generalized

• Follow the search path

– Add new key into the last leaf, or

– add a new leaf if the last leaf is fully occupied

Example: Add 52,69

52

69

Delete X

The algorithm for binary search tree can be generalized:

• A leaf node can be easily deleted

• An internal node is replaced

by its successor and the

successor is deleted

Example:
• Delete 10, Delete 44,
Time complexity: O(Mh)=O(h), but h can be O(n)

M-way Search Tree

What we know so far:

• What is an M-way search tree

• How to implement Search, Insert, and Delete

• The time complexity of each of these operations is:
O(Mh)=O(h)

The problem (as usual): h can be O(n).

• B-tree: balanced M-way Search Tree

2-3 Tree

Why care about advanced implementations?

Same entries, different insertion sequence:

 Not good! Would like to keep tree balanced.

2-3 Trees

 each internal node has either 2 or 3 children

 all leaves are at the same level

Features

2-3 Trees with Ordered Nodes
2-node 3-node

• leaf node can be either a 2-node or a 3-node

Example of 2-3 Tree

What did we gain?

What is the time efficiency of searching for an item?

Gain: Ease of Keeping the Tree Balanced

Binary Search
Tree

2-3 Tree

both trees after
inserting items

39, 38, ... 32

Inserting Items
Insert 39

Inserting Items
Insert 38

insert in leaf
divide leaf

and move middle
value up to parent

result

Inserting Items
Insert 37

Inserting Items
Insert 36

insert in leaf

divide leaf
and move middle
value up to parent

overcrowded
node

Inserting Items
... still inserting 36

divide overcrowded node,
move middle value up to parent,

attach children to smallest and largest

result

Inserting Items
After Insertion of 35, 34, 33

Inserting so far

Inserting so far

Inserting Items
How do we insert 32?

Inserting Items
 creating a new root if necessary
 tree grows at the root

Inserting Items
Final Result

70

Deleting Items
Delete 70

80

Deleting Items
Deleting 70: swap 70 with inorder successor (80)

Deleting Items
Deleting 70: ... get rid of 70

Deleting Items
Result

Deleting Items
Delete 100

Deleting Items
Deleting 100

Deleting Items
Result

Deleting Items
Delete 80

Deleting Items
Deleting 80 ...

Deleting Items
Deleting 80 ...

Deleting Items
Deleting 80 ...

Deleting Items
Final Result

comparison with
binary search tree

Deletion Algorithm I

1. Locate node n, which contains item I

2. If node n is not a leaf swap I with inorder successor

 deletion always begins at a leaf

3. If leaf node n contains another item, just delete item I
else

try to redistribute nodes from siblings (see next slide)
if not possible, merge node (see next slide)

Deleting item I:

Deletion Algorithm II

A sibling has 2 items:

 redistribute item
between siblings and
parent

No sibling has 2 items:

 merge node
 move item from parent

to sibling

Redistribution

Merging

Deletion Algorithm III

Internal node n has no item left

 redistribute

Redistribution not possible:

 merge node
 move item from parent

to sibling
 adopt child of n

If n's parent ends up without item, apply process recursively

Redistribution

Merging

Deletion Algorithm IV

If merging process reaches the root and root is without item
 delete root

Operations of 2-3 Trees

all operations have time complexity of log n

Fall 2015 CS202 - Fundamental Structures of Computer Science II 45

2-3-4 Trees

• A 2-3-4 tree is like a 2-3 tree, but it allows 4-nodes, which are nodes
that have four children and three data items.

• 2-3-4 trees are also known as 2-4 trees in other books.
– A specialization of M-way tree (M=4)

– Sometimes also called 4th order B-trees

– Variants of B-trees are very useful in databases and file systems

• MySQL, Oracle, MS SQL all use B+ trees for indexing

• Many file systems (NTFS, Ext2FS etc.) use B+ trees for indexing metadata (file
size, date etc.)

• Although a 2-3-4 tree has more efficient insertion and deletion
operations than a 2-3 tree, a 2-3-4 tree has greater storage
requirements.

Fall 2015 CS202 - Fundamental Structures of Computer Science II 46

2-3-4 Trees -- Example

Fall 2015 47

2-3-4 Trees

T is a 2-3-4 tree of height h if

1. T is empty (a 2-3-4 tree of height 0), or

1. T is of the form

where r is a node containing one data item and TL and TR

are both 2-3-4 trees, each of height h-1, or

3. T is of the form

where r is a node containing two data items and TL , TM
and TR are 2-3-4 trees, each of height h-1, or

4. T is of the form

where r is a node containing three data items and TL ,
TML , TMR , and TR are 2-3-4 trees, each of height h-1.

2-node

3-node

4-node

r

TL TR

r

TL TRTM

r

TL TRTML TMR

CS202 - Fundamental Structures of Computer Science II

2-3-4 Trees -- Operations

• Searching and traversal algorithms for a 2-3-4 tree are similar to the 2-
3 algorithms.

• For a 2-3-4 tree, insertion and deletion algorithms that are used for 2-
3 trees, can similarly be used.

• But, we can also use a slightly different insertion and deletion
algorithms for 2-3-4 trees to gain some efficiency.

Fall 2015 CS202 - Fundamental Structures of Computer Science II 48

Inserting into a 2-3-4 Tree

• Splits 4-nodes by moving one of its items up to its parent node.

• For a 2-3 tree, the insertion algorithm traces a path from the root to a
leaf and then backs up from the leaf as it splits nodes.

• To avoid this return path after reaching a leaf, the insertion algorithm
for a 2-3-4 tree splits 4-nodes as soon as it encounters them on the
way down the tree from the root to a leaf.
– As a result, when a 4-node is split and an item is moved up to node’s parent, the

parent cannot possibly be a 4-node and so can accommodate another item.

Fall 2015 CS202 - Fundamental Structures of Computer Science II 49

Insert[20 50 40 70 80 15 90 100] to
this 2-3-4 tree

10 30 60

Inserting into a 2-3-4 Tree -- Example

Fall 2015 CS202 - Fundamental Structures of Computer Science II 50

Insert 20

• Root is a 4-node

• So, we split it before insertion

• And, then add 20

10 30 60

Split 4-nodes as they are encountered

30

6010

30

6010 20

10 30 60

Inserting into a 2-3-4 Tree -- Example

Fall 2015 CS202 - Fundamental Structures of Computer Science II 51

Insert 50 and 40

• No 4-nodes have been encountered
during their insertion

 No split operation

30

6010 20

30

10 20 50 6040 50 60

30

10 20

Inserting into a 2-3-4 Tree -- Example

Fall 2015 CS202 - Fundamental Structures of Computer Science II 52

Insert 70

• A 4-node is encountered

• So, we split it before insertion

• And, then add 70

40 50 60

30

10 20 40 50 60

30

10 2010 20

30 50

40 6010 20

30 50

40 60 70

Inserting into a 2-3-4 Tree -- Example

Fall 2015 CS202 - Fundamental Structures of Computer Science II 53

Insert 80 and 15

• No 4-nodes have been encountered
during their insertion

 No split operation

10 20

30 50

40 60 7010 20

30 50

40 60 70 8010 15 20

30 50

40 60 70 80

Inserting into a 2-3-4 Tree -- Example

Fall 2015 CS202 - Fundamental Structures of Computer Science II 55

Insert 100

• A 4-node is encountered

• So, we split it before insertion

• And, then add 100

10 15 20 40

30 50 70

60 80 9010 15 20 40

30 50 70

60 80 90

10 15 20 40 60 80 90

50

30 70

10 15 20 40 60

50

30 70

80 90 100

Fall 2015 CS202 - Fundamental Structures of Computer Science II 56

Splitting 4-nodes during insertion

• We split each 4-node as soon as we encounter it during our search
from the root to a leaf that will accommodate the new item to be
inserted.

• The 4-node which will be split can:

– be the root, or

– have a 2-node parent, or

– have a 3-node parent.

Splitting 4-nodes during insertion

Fall 2015 CS202 - Fundamental Structures of Computer Science II 57

Splitting a 4-node root

Splitting 4-nodes during insertion

Fall 2015 CS202 - Fundamental Structures of Computer Science II 58

Splitting a 4-node whose parent is a 2-node

Splitting 4-nodes during insertion

Splitting a 4-node whose parent is a 3-node

Fall 2015 CS202 - Fundamental Structures of Computer Science II 59

Fall 2015 CS202 - Fundamental Structures of Computer Science II 60

Deleting from a 2-3-4 tree

• For a 2-3 tree, the deletion algorithm traces a path from the root to a
leaf and then backs up from the leaf, fixing empty nodes on the path
back up to root.

• To avoid this return path after reaching a leaf, the deletion algorithm
for a 2-3-4 tree transforms each 2-node into either 3-node or 4-node
as soon as it encounters them on the way down the tree from the root
to a leaf.
– If an adjacent sibling is a 3-node or 4-node, transfer an item from that sibling to

our 2-node.

– If adjacent sibling is a 2-node, merge them.

