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Multi-Way Trees

• A binary search tree:
– One value in each node 
– At most 2 children

• An M-way search tree:
– Between 1 to (M-1) values in each node

– At most M children per node



M-way Search Tree Details

Each internal node of an M-way search has:

– Between 1 and M children

– Up to M-1 keys k1 , k2 , ... , kM-1

Keys are ordered such that:
k1 < k2 < ... < kM-1

kM-1. . . . . . ki-1 kik1



Properties of M-way Search Tree

• For a subtree Ti that is the i-th child of a node:

all keys in Ti must be between keys ki-1 and ki

i.e. ki-1 < keys(Ti )< ki

• All keys in first subtree T1, keys(T1 )< k1

• All keys in last subtree TM, keys(TM ) > kM-1

k1

TT ii

. . . . . . kk i-1 kk ii

TT MTT 11

kkM-1

. . . . . . 



Example: 3-way search tree

Try: search 68
68



Search for X

At a node consisting of values V1...Vk, there are four possible 
cases:
– If X < V1, recursively search for X in the subtree that is left 

of V1
– If X > Vk, recursively search for X in the subtree that is right 

of Vk

– If X=Vi, for some i, then we are done 
(X has been found)

– Else, for some i, Vi < X < Vi+1. In this case recursively search 
for X in the subtree that is between Vi and Vi+1

• Time Complexity: O((M-1)*h)=O(h) [M is a constant]



Insert X

The algorithm for binary search tree can be generalized

• Follow the search path

– Add new key into the last leaf, or

– add a new leaf if the last leaf is fully occupied

Example: Add 52,69

52

69



Delete X

The algorithm for binary search tree can be generalized:

• A leaf node can be easily deleted

• An internal node is replaced

by its successor and the 

successor is deleted

Example:
• Delete 10, Delete 44, 
Time complexity: O(Mh)=O(h), but h can be O(n)



M-way Search Tree

What we know so far:

• What is an M-way search tree

• How to implement Search, Insert, and Delete

• The time complexity of each of these operations is: 
O(Mh)=O(h)

The problem (as usual): h can be O(n).

• B-tree: balanced M-way Search Tree



2-3 Tree



Why care about advanced implementations?

Same entries, different insertion sequence:

 Not good! Would like to keep tree balanced.



2-3 Trees

 each internal node has either 2 or 3 children

 all leaves are at the same level

Features



2-3 Trees with Ordered Nodes
2-node 3-node

• leaf node can be either a 2-node or a 3-node



Example of 2-3 Tree



What did we gain?

What is the time efficiency of searching for an item? 



Gain: Ease of Keeping the Tree Balanced

Binary Search
Tree

2-3 Tree

both trees after
inserting items

39, 38, ... 32



Inserting Items
Insert 39



Inserting Items
Insert 38

insert in leaf
divide leaf

and move middle
value up to parent

result



Inserting Items
Insert 37



Inserting Items
Insert 36

insert in leaf

divide leaf
and move middle
value up to parent

overcrowded
node



Inserting Items
... still inserting 36

divide overcrowded node,
move middle value up to parent,

attach children to smallest and largest

result



Inserting Items
After Insertion of 35, 34, 33



Inserting so far



Inserting so far



Inserting Items
How do we insert 32?



Inserting Items
 creating a new root if necessary
 tree grows at the root



Inserting Items
Final Result



70

Deleting Items
Delete 70

80



Deleting Items
Deleting 70: swap 70 with inorder successor (80)



Deleting Items
Deleting 70: ... get rid of 70



Deleting Items
Result



Deleting Items
Delete 100



Deleting Items
Deleting 100



Deleting Items
Result



Deleting Items
Delete 80



Deleting Items
Deleting 80 ...



Deleting Items
Deleting 80 ...



Deleting Items
Deleting 80 ...



Deleting Items
Final Result

comparison with
binary search tree



Deletion Algorithm I

1. Locate node n, which contains item I

2. If node n is not a leaf  swap I with inorder successor

 deletion always begins at a leaf

3. If leaf node n contains another item, just delete item I
else

try to redistribute nodes from siblings (see next slide)
if not possible, merge node (see next slide)

Deleting item I:



Deletion Algorithm II

A sibling has 2 items:

 redistribute item
between siblings and
parent

No sibling has 2 items:

 merge node
 move item from parent

to sibling

Redistribution

Merging



Deletion Algorithm III

Internal node n has no item left

 redistribute 

Redistribution not possible:

 merge node
 move item from parent

to sibling
 adopt child of n

If n's parent ends up without item, apply process recursively

Redistribution

Merging



Deletion Algorithm IV

If merging process reaches the root and root is without item
 delete root



Operations of 2-3 Trees

all operations have time complexity of log n
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2-3-4 Trees

• A 2-3-4 tree is like a 2-3 tree, but it allows 4-nodes, which are nodes 
that have four children and three data items.

• 2-3-4 trees are also known as 2-4 trees in other books.
– A specialization of M-way tree (M=4)

– Sometimes also called 4th order B-trees 

– Variants of B-trees are very useful in databases and file systems

• MySQL, Oracle, MS SQL all use B+ trees for indexing

• Many file systems (NTFS, Ext2FS etc.) use B+ trees for indexing metadata (file 
size, date etc.)

• Although a 2-3-4 tree has more efficient insertion and deletion 
operations than a 2-3 tree, a 2-3-4 tree has greater storage 
requirements.
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2-3-4 Trees -- Example
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2-3-4 Trees

T is a 2-3-4 tree of height h if

1. T is empty (a 2-3-4 tree of height 0), or

1. T is of the form 

where r is a node containing one data item and TL and TR

are both 2-3-4 trees, each of height h-1, or

3. T is of the form

where r is a node containing two data items and TL , TM 
and TR are 2-3-4 trees, each of height h-1, or

4. T is of the form

where r is a node containing three data items and TL , 
TML , TMR , and TR are 2-3-4 trees, each of height h-1.

2-node

3-node

4-node

r

TL TR

r

TL TRTM

r

TL TRTML TMR

CS202 - Fundamental Structures of Computer Science II



2-3-4 Trees -- Operations

• Searching and traversal algorithms for a 2-3-4 tree are similar to the 2-
3 algorithms.

• For a 2-3-4 tree, insertion and deletion algorithms that are used for 2-
3 trees, can similarly be used.

• But, we can also use a slightly different insertion and deletion 
algorithms for 2-3-4 trees to gain some efficiency.
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Inserting into a 2-3-4 Tree

• Splits 4-nodes by moving one of its items up to its parent node.

• For a 2-3 tree, the insertion algorithm traces a path from the root to a 
leaf and then backs up from the leaf as it splits nodes.

• To avoid this return path after reaching a leaf, the insertion algorithm 
for a 2-3-4 tree splits 4-nodes as soon as it encounters them on the 
way down the tree from the root to a leaf.
– As a result, when a 4-node is split and an item is moved up to node’s parent, the 

parent cannot possibly be a 4-node and so can accommodate another item. 
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Insert[ 20   50   40   70   80   15   90   100 ]  to 
this 2-3-4 tree

10     30     60



Inserting into a 2-3-4 Tree -- Example
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Insert 20

• Root is a 4-node

• So, we split it before insertion

• And, then add 20

10     30     60

Split 4-nodes as they are encountered

30

6010

30

6010        20

10     30     60



Inserting into a 2-3-4 Tree -- Example
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Insert 50 and 40

• No 4-nodes have been encountered 
during their insertion

 No split operation

30

6010        20

30

10        20 50        6040     50     60

30

10        20



Inserting into a 2-3-4 Tree -- Example
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Insert 70

• A 4-node is encountered

• So, we split it before insertion

• And, then add 70

40     50     60

30

10        20 40     50     60

30

10        2010        20

30        50

40 6010        20

30        50

40 60        70



Inserting into a 2-3-4 Tree -- Example
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Insert 80 and 15

• No 4-nodes have been encountered 
during their insertion

 No split operation

10        20

30        50

40 60        7010        20

30        50

40 60     70     8010     15  20

30        50

40 60     70     80



Inserting into a 2-3-4 Tree -- Example
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Insert 100

• A 4-node is encountered

• So, we split it before insertion

• And, then add 100

10     15  20 40

30     50     70

60 80        9010     15  20 40

30     50     70

60 80        90

10     15 20 40 60 80        90

50

30 70

10     15 20 40 60

50

30 70

80     90 100
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Splitting 4-nodes during insertion

• We split each 4-node as soon as we encounter it during our search 
from the root to a leaf that will accommodate the new item to be 
inserted.

• The 4-node which will be split can:

– be the root, or

– have a 2-node parent, or

– have a 3-node parent.



Splitting 4-nodes during insertion
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Splitting a 4-node root



Splitting 4-nodes during insertion
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Splitting a 4-node whose parent is a 2-node



Splitting 4-nodes during insertion

Splitting a 4-node whose parent is a 3-node
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Deleting from a 2-3-4 tree

• For a 2-3 tree, the deletion algorithm traces a path from the root to a 
leaf and then backs up from the leaf, fixing empty nodes on the path 
back up to root.

• To avoid this return path after reaching a leaf, the deletion algorithm 
for a 2-3-4 tree transforms each 2-node into either 3-node or 4-node 
as soon as it encounters them on the way down the tree from the root 
to a leaf.
– If an adjacent sibling is a 3-node or 4-node, transfer an item from that sibling to 

our 2-node.

– If adjacent sibling is a 2-node, merge them. 


