2-3 and 2-3-4 Trees

COL 106

Shweta Agrawal, Amit Kumar, Dr.
Ilyas Cicekli

Multi-Way Trees

- A binary search tree:
- One value in each node
- At most 2 children
- An M-way search tree:

- Between 1 to (M-1) values in each node
- At most M children per node

M-way Search Tree Details

Each internal node of an M-way search has:

- Between 1 and M children
- Up to M-1 keys $\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{M}-1}$

Keys are ordered such that:

$$
\mathrm{k}_{1}<\mathrm{k}_{2}<\ldots<\mathrm{k}_{\mathrm{M}-1}
$$

Properties of M-way Search Tree

- For a subtree T_{i} that is the i-th child of a node: all keys in T_{i} must be between keys $\mathrm{k}_{\mathrm{i}-1}$ and k_{i}

$$
\text { i.e. } k_{i-1}<\operatorname{keys}\left(T_{i}\right)<k_{i}
$$

- All keys in first subtree $T_{1}, \operatorname{keys}\left(T_{1}\right)<\mathrm{k}_{1}$
- All keys in last subtree $\mathrm{T}_{\mathrm{M}}, \operatorname{keys}\left(\mathrm{T}_{\mathrm{M}}\right)>\mathrm{k}_{\mathrm{M}-1}$

Example: 3-way search tree

$$
68
$$

Try: search 68

Search for X

At a node consisting of values $V_{1} \ldots V_{k}$, there are four possible cases:

- If $X<V_{1}$, recursively search for X in the subtree that is left of V1
- If $X>V_{k}$, recursively search for X in the subtree that is right of V_{k}
- If $X=V_{i}$, for some i, then we are done (X has been found)
- Else, for some $i, V_{i}<X<V_{i+1}$. In this case recursively search for X in the subtree that is between V_{i} and V_{i+1}
- Time Complexity: $O\left((M-1)^{*} h\right)=O(h)[M$ is a constant]

Insert X

The algorithm for binary search tree can be generalized

- Follow the search path
- Add new key into the last leaf, or
- add a new leaf if the last leaf is fully occupied

Example: Add 52,69

Delete X

The algorithm for binary search tree can be generalized:

- A leaf node can be easily deleted
- An internal node is replaced by its successor and the successor is deleted

Example:

- Delete 10, Delete 44,

Time complexity: $\mathrm{O}(\mathrm{Mh})=\mathrm{O}(\mathrm{h})$, but h can be $O(n)$

M-way Search Tree

What we know so far:

- What is an M-way search tree
- How to implement Search, Insert, and Delete
- The time complexity of each of these operations is: $O(M h)=O(h)$

The problem (as usual): h can be $O(n)$.

- B-tree: balanced M-way Search Tree

2-3 Tree

Why care about advanced implementations?
Same entries, different insertion sequence:

\rightarrow Not good! Would like to keep tree balanced.

2-3 Trees
Features
each internal node has either 2 or 3 children
> all leaves are at the same level

2-3 Trees with Ordered Nodes

> 2-node 3-node

- leaf node can be either a 2-node or a 3-node

Example of 2-3 Tree

What did we gain?

(b)

What is the time efficiency of searching for an item?

Gain: Ease of Keeping the Tree Balanced

Binary Search Tree

Inserting Items

Insert 39

Inserting Items

Insert 38
insert in leaf
divide leaf
and move middle value up to parent

Inserting Items

Insert 37

Inserting Items

Insert 36

insert in leaf

divide leaf
and move middle value up to parent

Inserting Items

... still inserting 36
divide overcrowded node, move middle value up to parent, attach children to smallest and largest

Inserting Items

After Insertion of 35, 34, 33

Inserting so far
(a)

(b)

Inserting so far

Inserting Items

How do we insert 32?

Inserting Items

\rightarrow creating a new root if necessary
\rightarrow tree grows at the root

Inserting Items

Final Result

Deleting Items

Delete 70
(a)

Swap with inorder successor

Deleting Items

Deleting 70: swap 70 with inorder successor (80)

Swap with inorder successor

Deleting Items

Deleting 70: ... get rid of 70

Delete value from leaf
(c)

Merge nodes by deleting empty leaf and moving 80 down

Deleting Items

Result
(e)

Deleting Items

Delete 100
(e)

Deleting Items

Deleting 100

(b)

(c)

Deleting Items

Result
(d)

Deleting Items

Delete 80
(d)

Deleting Items

Deleting 80 ...
(a)

Deleting Items

Deleting 80 ...

Delete value from leaf

Merge by moving 90 down and removing empty leaf

Deleting Items

Deleting 80 ...
(d)

Merge: move 50 down, adopt empty leaf's child, remove empty node

Deleting Items

Final Result

Deletion Algorithm I

Deleting item $/$:

1. Locate node n, which contains item /
2. If node n is not a leaf \rightarrow swap / with inorder successor
\rightarrow deletion always begins at a leaf
3. If leaf node n contains another item, just delete item I else
try to redistribute nodes from siblings (see next slide) if not possible, merge node (see next slide)

Deletion Algorithm II

Redistribution

A sibling has 2 items:
\rightarrow redistribute item between siblings and parent
(a)

(b)

No sibling has 2 items:
\rightarrow merge node
\rightarrow move item from parent to sibling
Merging

Redistribute

Deletion Algorithm III

Redistribution
(c)

Internal node n has no item left
\rightarrow redistribute

Merging
Redistribution not possible:
\rightarrow merge node
\rightarrow move item from parent to sibling
(d)

\rightarrow adopt child of n
If n 's parent ends up without item, apply process recursively

Deletion Algorithm IV

If merging process reaches the root and root is without item
\rightarrow delete root
(e)

Operations of 2-3 Trees

all operations have time complexity of $\log n$

2-3-4 Trees

- A 2-3-4 tree is like a 2-3 tree, but it allows 4-nodes, which are nodes that have four children and three data items.
- 2-3-4 trees are also known as 2-4 trees in other books.
- A specialization of M-way tree ($\mathrm{M}=4$)
- Sometimes also called $4^{\text {th }}$ order B-trees
- Variants of B-trees are very useful in databases and file systems
- MySQL, Oracle, MS SQL all use B+ trees for indexing
- Many file systems (NTFS, Ext2FS etc.) use B+ trees for indexing metadata (file size, date etc.)
- Although a 2-3-4 tree has more efficient insertion and deletion operations than a 2-3 tree, a 2-3-4 tree has greater storage requirements.

2-3-4 Trees -- Example

2-3-4 Trees

T is a 2-3-4 tree of height h if

1. T is empty (a 2-3-4 tree of height 0), or
2. T is of the form

where r is a node containing one data item and T_{L} and T_{F} are both 2-3-4 trees, each of height h-1, or
3. Tis of the form

where r is a node containing two data items and T_{L}, T_{M}

Search keys $>S$ and $<$ L and T_{R} are 2-3-4 trees, each of height $h-1$, or

where r is a node containing three data items and T_{L},
$T_{M L}, T_{M R}$, and T_{R} are 2-3-4 trees, each of height $\mathrm{h}-1$.

2-3-4 Trees -- Operations

- Searching and traversal algorithms for a 2-3-4 tree are similar to the 23 algorithms.
- For a 2-3-4 tree, insertion and deletion algorithms that are used for 23 trees, can similarly be used.
- But, we can also use a slightly different insertion and deletion algorithms for 2-3-4 trees to gain some efficiency.

Inserting into a 2-3-4 Tree

- Splits 4-nodes by moving one of its items up to its parent node.
- For a 2-3 tree, the insertion algorithm traces a path from the root to a leaf and then backs up from the leaf as it splits nodes.
- To avoid this return path after reaching a leaf, the insertion algorithm for a 2-3-4 tree splits 4-nodes as soon as it encounters them on the way down the tree from the root to a leaf.
- As a result, when a 4-node is split and an item is moved up to node's parent, the parent cannot possibly be a 4-node and so can accommodate another item.

Insert[$\left.20 \begin{array}{llllllll}20 & 50 & 40 & 70 & 80 & 15 & 90 & 100\end{array}\right]$ to this 2-3-4 tree

```
10}303
```


Inserting into a 2-3-4 Tree -- Example

Insert 20

- Root is a 4-node \rightarrow Split 4-nodes as they are encountered
- So, we split it before insertion
- And, then add 20

Inserting into a 2-3-4 Tree -- Example

Insert 50 and 40

- No 4-nodes have been encountered \rightarrow No split operation during their insertion

Inserting into a 2-3-4 Tree -- Example

Insert 70

- A 4-node is encountered
- So, we split it before insertion
- And, then add 70

Inserting into a 2-3-4 Tree -- Example

Insert 80 and 15

- No 4-nodes have been encountered \rightarrow No split operation during their insertion

Inserting into a 2-3-4 Tree -- Example

Insert 100

- A 4-node is encountered
- So, we split it before insertion
- And, then add 100

Splitting 4-nodes during insertion

- We split each 4-node as soon as we encounter it during our search from the root to a leaf that will accommodate the new item to be inserted.
- The 4-node which will be split can:
- be the root, or
- have a 2-node parent, or
- have a 3-node parent.

Splitting 4-nodes during insertion

Splitting a 4-node root

Splitting 4-nodes during insertion

Splitting a 4-node whose parent is a 2-node

Splitting 4-nodes during insertion

Splitting a 4-node whose parent is a 3-node

Deleting from a 2-3-4 tree

- For a 2-3 tree, the deletion algorithm traces a path from the root to a leaf and then backs up from the leaf, fixing empty nodes on the path back up to root.
- To avoid this return path after reaching a leaf, the deletion algorithm for a 2-3-4 tree transforms each 2-node into either 3-node or 4-node as soon as it encounters them on the way down the tree from the root to a leaf.
- If an adjacent sibling is a 3-node or 4-node, transfer an item from that sibling to our 2-node.
- If adjacent sibling is a 2-node, merge them.

