
Binary Search Trees

COL 106

Amit Kumar and Shweta Agrawal

Most slides courtesy : Douglas Wilhelm Harder, MMath, 
Uwaterloo; Linda Shapiro, UW



Reminder: Binary Tree terminology

Winter 2015 CSE373: Data Structures & Algorithms 2

A

E

B

D F

C

G

IH

LJ MK N

Node / Vertex

Edges

Root

Leaves

Left subtree
Right subtree



Last time..

• We saw Preorder, Inorder, Postorder
traversals

• One more useful traversal…



Breadth first traversal

– The breadth-first traversal visits all nodes at depth k

before proceeding onto depth k + 1

– Easy to implement using a queue

8

Order:  A B H C D G I E F J K



Breadth-First Traversal

Breadth-first traversals visit all nodes at a given 

depth

– Memory:  max nodes at given depth

– Create a queue and push the root node onto queue

– While the queue is not empty:
• Push all of its children of the front node onto the queue

• Pop the front node



Binary Search Trees

Recall that with a binary tree, we can 
dictate an order on the two children

We will exploit this order:

– Require all objects in the left sub-tree to be 
less than the object stored in the root node, 
and

– Require all objects in the right sub-tree to be 
greater than the object in the root object



Binary Search Tree (BST) Data Structure

4

121062

115

8

14

13

7 9

• Structure property (binary tree)

– Each node has  2 children

– Result: keeps operations simple

• Order property
– All keys in left subtree smaller

than node’s key

– All keys in right subtree larger
than node’s key

– Result: easy to find any given key

Winter 2015 12CSE373: Data Structures & Algorithms

A binary search tree is a type of binary tree 
(but not all binary trees are binary search trees!)



Are these BSTs?

3

1171

84

5

4

181062

115

8

20

21

7

15

Winter 2015 13
CSE373: Data Structures & 

Algorithms

Activity! What 

nodes violate the 

BST properties?



Examples

Here are other examples of binary search trees:



Examples
Unfortunately, it is possible to construct degenerate
binary search trees

– This is equivalent to a linked list,           i.e., O(n)



Examples

All these binary search trees store the same data



Duplicate Elements

We will assume that in any binary tree, we 
are not storing duplicate elements unless 
otherwise stated

– In reality, it is seldom the case where duplicate 
elements in a container must be stored as 
separate entities

You can always consider duplicate elements 
with modifications to the algorithms we will 
cover



Implementation

Any class which uses this binary-search-

tree class must therefore implement:

bool operator<=( Type const &, Type const & );

bool operator< ( Type const &, Type const & );

bool operator==( Type const &, Type const & );

That is, we are allowed to compare two 

instances of this class

– Examples: int and double



Find in BST, (Tail) Recursive

2092

155

12

307 1710

Data find(Key key, Node root){

if(root == null)

return null;

if(root.key == key)

return root.data;

if(key < root.key)

return find(key,root.left);

if(key > root.key)

return find(key,root.right);

}

Winter 2015 22
CSE373: Data Structures & 

Algorithms

Worst case running time is O(n).
- Happens if the tree is very lopsided (e.g. list)

321 4

What is the time complexity? O(h)



Find in BST, Iterative

2092

155

12

307 1710

Data find(Key key, Node root){

while(root != null

&& root.key != key) {

if(key < root.key)

root = root.left;

else(key > root.key)

root = root.right;

}

if(root == null)

return null;

return root.data;

}

Winter 2015 23
CSE373: Data Structures & 

Algorithms

Worst case running time is O(n).
- Happens if the tree is very lopsided (e.g. list)



Bonus: Other BST “Finding” Operations

• FindMin: Find minimum node

– Left-most node

• FindMax: Find maximum node

– Right-most node 2092

155

12

307 1710

Winter 2015 24CSE373: Data Structures & Algorithms

How would we implement?



Finding the Minimum Object

The minimum object may be found recursively

– The run time O(h) int findMin(Node root){

if(root == null)

return null;

if(root.left == null)

return root.data;

return findMin(root.left);

}



Insert

Recall that a Sorted List is implicitly 

ordered

– It does not make sense to have member 

functions such as push_front and 

push_back

– Insertion will be performed by a single insert
member function which places the object into 

the correct location



Insert

An insertion will be performed at a leaf node:
– Any empty node is a possible location for an insertion

The values which may be inserted at any empty 
node depend on the surrounding nodes



Insert

For example, this node may hold 48, 49, or 50



Insert

An insertion at this location must be 35, 36, 37, or 38



Insert

This empty node may hold values from 71 to 74



Insert

Like find, we will step through the tree

– If we find the object already in the tree, we will 

return

• The object is already in the binary search tree (no 

duplicates)

– Otherwise, we will arrive at an empty node

– The object will be inserted into that location

– The run time is O(h)



Insert

In inserting the value 52, we traverse the 

tree until we reach an empty node

– The left sub-tree of 54 is an empty node



Insert

A new leaf node is created and assigned 

to the member variable left_tree



Insert

In inserting 40, we determine the right sub-

tree of 39 is an empty node



Insert

A new leaf node storing 40 is created and 

assigned to the member variable 
right_tree



Erase

A node being erased is not always going 

to be a leaf node

There are three possible scenarios:

– The node is a leaf node,

– It has exactly one child, or

– It has two children (it is a full node)



Erase

A leaf node simply must be removed and the appropriate 

member variable of the parent is set to nullptr

– Consider removing 75



Erase

The node is deleted and left_tree of 81 

is set to nullptr



Erase

Erasing the node containing 40 is similar



Erase

The node is deleted and right_tree of 

39 is set to nullptr



Erase

If a node has only one child, we can simply promote the 

sub-tree associated with the child

– Consider removing 8 which has one left child



Erase

The node 8 is deleted and the left_tree of 11 is 

updated to point to 3



Erase

There is no difference in promoting a 

single node or a sub-tree

– To remove 39, it has a single child 11



Erase

The node containing 39 is deleted and 

left_node of 42 is updated to point to 11

– Notice that order is still maintained



Erase

Consider erasing the node containing 99



Erase

The node is deleted and the left sub-tree is promoted:

– The member variable right_tree of 70 is set to point 

to 92

– Again, the order of the tree is maintained



Erase

Finally, we will consider the problem of 

erasing a full node, e.g., 42

We will perform two operations:

– Replace 42 with the minimum object in the 

right sub-tree

– Erase that object from the right sub-tree



Erase

In this case, we replace 42 with 47

– We temporarily have two copies of 47 in the 

tree



Erase

We now recursively erase 47 from the right sub-tree

– We note that 47 is a leaf node in the right sub-tree



Erase

Leaf nodes are simply removed and left_tree of 51 is set 

to nullptr

– Notice that the tree is still sorted:

47 was the least object in the right sub-tree



Erase

Suppose we want to erase the root 47 again:

– We must copy the minimum of the right sub-tree

– We could promote the maximum object in the left sub-

tree and achieve similar results



Erase

We copy 51 from the right sub-tree



Erase

We must proceed by delete 51 from the 

right sub-tree



Erase

In this case, the node storing 51 has just a 

single child



Erase

We delete the node containing 51 and 

assign the member variable left_tree of 

70 to point to 59



Erase

Note that after seven removals, the 

remaining tree is still correctly sorted



Erase
In the two examples of removing a full node, we 

promoted:

– A node with no children

– A node with right child

Is it possible, in removing a full node, to promote a child 

with two children? 



Erase

Recall that we promoted the minimum element in the 

right sub-tree

– If that node had a left sub-tree, that sub-tree would 

contain a smaller value



Previous and Next Objects

To find the next largest object:

– If the node has a right sub-tree, the minimum object in 

that sub-tree is the next-largest object 



Previous and Next Objects

If, however, there is no right sub-tree:

– It is the next largest object (if any) that exists 

in the path from the root to the node

– Go up and right to find this



Lazy Deletion

• Lazy deletion can work well for a BST
– Simpler

– Can do “real deletions” later as a batch

– Some inserts can just “undelete” a tree node

• But
– Can waste space and slow down find operations

– Make some operations more complicated:
• e.g., findMin and findMax?

Winter 2015 62
CSE373: Data Structures & 

Algorithms



Finding the kth Object

Another operation on sorted lists may be finding 

the kth largest object

–Recall that k goes from 0 to n – 1

– If the left-sub-tree has ℓ = k entries, return the 

current node,

– If the left sub-tree has ℓ > k entries, return the 

kth entry of the left sub-tree,

–Otherwise, the left sub-tree has ℓ < k entries, so 

return the (k – ℓ – 1)th entry of the right sub-tree



BuildTree for BST
• Let’s consider buildTree

– Insert all, starting from an empty tree

• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

– If inserted in given order, 
what is the tree?  

– What big-O runtime for this kind of sorted input?
1 + 2 + 3 + . . . + n = n(n+1)/2

– Is inserting in the reverse order 
any better?

1

2

3O(n2)

Not a happy place

Winter 2015 64
CSE373: Data Structures & 

Algorithms



BuildTree for BST
• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

• What if we could somehow re-arrange them
– median first, then left median, right median, etc.

– 5, 3, 7, 2, 1, 4, 8, 6, 9

– What tree does that give us? 

– What big-O runtime?

– So the order the values

come in is important!

842

73

5

9

6

1

O(n log n), definitely better

Winter 2015 65
CSE373: Data Structures & 

Algorithms



Complexity of Building a Binary Search 
Tree

• Worst case: O(n2)

• Best case: O(n log n)

• We do better by keeping the tree balanced.

Winter 2015 66
CSE373: Data Structures & 

Algorithms


