Binary Search Trees

COL 106
 Amit Kumar and Shweta Agrawal

Most slides courtesy : Douglas Wilhelm Harder, MMath, Uwaterloo; Linda Shapiro, UW

Reminder: Binary Tree terminology

Last time..

- We saw Preorder, Inorder, Postorder traversals
- One more useful traversal...

Breadth first traversal

- The breadth-first traversal visits all nodes at depth k before proceeding onto depth $k+1$
- Easy to implement using a queue

Order: ABHCDGIEFJK

Breadth-First Traversal

Breadth-first traversals visit all nodes at a given depth

- Memory: max nodes at given depth
- Create a queue and push the root node onto queue
- While the queue is not empty:
- Push all of its children of the front node onto the queue
- Pop the front node

Binary Search Trees

Recall that with a binary tree, we can dictate an order on the two children

We will exploit this order:

- Require all objects in the left sub-tree to be less than the object stored in the root node, and
- Require all objects in the right sub-tree to be greater than the object in the root object

Binary Search Tree (BST) Data Structure

- Structure property (binary tree)
- Each node has ≤ 2 children
- Result: keeps operations simple
- Order property
- All keys in left subtree smaller than node's key
- All keys in right subtree larger than node's key
- Result: easy to find any given key

Are these BSTs?
Activity! What nodes violate the BST properties?

Examples

Here are other examples of binary search trees:

Examples

Unfortunately, it is possible to construct degenerate binary search trees

Examples

All these binary search trees store the same data

Duplicate Elements

We will assume that in any binary tree, we are not storing duplicate elements unless otherwise stated

- In reality, it is seldom the case where duplicate elements in a container must be stored as separate entities

You can always consider duplicate elements with modifications to the algorithms we will cover

Implementation

Any class which uses this binary-searchtree class must therefore implement:

```
bool operator<=( Type const &, Type const & );
bool operator< ( Type const &, Type const & );
bool operator==( Type const &, Type const & );
```

That is, we are allowed to compare two instances of this class

- Examples: int and double

Find in BST, (Tail) Recursive


```
Data find(Key key, Node root) {
    if(root == null)
    return null;
    if(root.key == key)
    return root.data;
    if(key < root.key)
    return find(key,root.left);
    if(key > root.key)
    return find(key,root.right);
}
```

What is the time complexity? $\mathrm{O}(\mathrm{h})$
Worst case running time is $O(n)$.

- Happens if the tree is very lopsided (e.g. list)

Find in BST, Iterative


```
Data find(Key key, Node root) {
    while(root != null
                        && root.key != key) {
        if(key < root.key)
            root = root.left;
        else(key > root.key)
            root = root.right;
    }
    if(root == null)
        return null;
    return root.data;
}
```

Worst case running time is $\mathrm{O}(\mathrm{n})$.

- Happens if the tree is very lopsided (e.g. list)

Bonus: Other BST "Finding" Operations

- FindMin: Find minimum node
- Left-most node
- FindMax: Find maximum node
- Right-most node

How would we implement?

Finding the Minimum Object

The minimum object may be found recursively

- The run time $\mathbf{O}(h)$ int findMin(Node root) \{
if (root == null)
return null;
if(root.left == null)
return root.data;
return findMin(root.left);

Insert

Recall that a Sorted List is implicitly ordered

- It does not make sense to have member functions such as push_front and push_back
- Insertion will be performed by a single insert member function which places the object into the correct location

Insert

An insertion will be performed at a leaf node:

- Any empty node is a possible location for an insertion

The values which may be inserted at any empty node depend on the surrounding nodes

Insert

For example, this node may hold 48, 49, or 50

Insert

An insertion at this location must be $35,36,37$, or 38

Insert

This empty node may hold values from 71 to 74

Insert

Like find, we will step through the tree

- If we find the object already in the tree, we will return
- The object is already in the binary search tree (no duplicates)
- Otherwise, we will arrive at an empty node
- The object will be inserted into that location
- The run time is $\mathbf{O}(h)$

Insert

In inserting the value 52, we traverse the

 tree until we reach an empty node- The left sub-tree of 54 is an empty node

Insert

A new leaf node is created and assigned to the member variable left_tree

Insert

In inserting 40, we determine the right subtree of 39 is an empty node

Insert

A new leaf node storing 40 is created and assigned to the member variable right_tree

Erase

A node being erased is not always going to be a leaf node
There are three possible scenarios:

Erase

A leaf node simply must be removed and the appropriate member variable of the parent is set to nullptr

- Consider removing 75

Erase

The node is deleted and left_tree of 81 is set to nullptr

Erase

Erasing the node containing 40 is similar

Erase

The node is deleted and right_tree of 39 is set to nullptr

Erase

If a node has only one child, we can simply promote the sub-tree associated with the child

- Consider removing 8 which has one left child

Erase

The node 8 is deleted and the left_tree of 11 is updated to point to 3

Erase

There is no difference in promoting a single node or a sub-tree

- To remove 39, it has a single child 11

Erase

The node containing 39 is deleted and left_node of 42 is updated to point to 11

- Notice that order is still maintained

Erase

Consider erasing the node containing 99

Erase

The node is deleted and the left sub-tree is promoted:

- The member variable right_tree of 70 is set to point to 92
- Again, the order of the tree is maintained

Erase

Finally, we will consider the problem of erasing a full node, e.g., 42

Erase

In this case, we replace 42 with 47

- We temporarily have two copies of 47 in the tree

Erase

We now recursively erase 47 from the right sub-tree

- We note that 47 is a leaf node in the right sub-tree

Erase

Leaf nodes are simply removed and left_tree of 51 is set to nullptr

- Notice that the tree is still sorted:

47 was the least object in the right sub-tree

Erase

Suppose we want to erase the root 47 again:

- We must copy the minimum of the right sub-tree
- We could promote the maximum object in the left subtree and achieve similar results

Erase

We copy 51 from the right sub-tree

Erase

We must proceed by delete 51 from the right sub-tree

Erase

In this case, the node storing 51 has just a single child

Erase

We delete the node containing 51 and assign the member variable left_tree of 70 to point to 59

Erase

Note that after seven removals, the remaining tree is still correctly sorted

Erase

In the two examples of removing a full node, we promoted:

- A node with no children
- A node with right child

Is it possible, in removing a full node, to promote a child with two children?

Erase

Recall that we promoted the minimum element in the right sub-tree

- If that node had a left sub-tree, that sub-tree would contain a smaller value

Previous and Next Objects

To find the next largest object:

- If the node has a right sub-tree, the minimum object in that sub-tree is the next-largest object

Previous and Next Objects

If, however, there is no right sub-tree:

- It is the next largest object (if any) that exists in the path from the root to the node

- Go up and right to find this

Lazy Deletion

- Lazy deletion can work well for a BST
- Simpler
- Can do "real deletions" later as a batch
- Some inserts can just "undelete" a tree node
- But
- Can waste space and slow down find operations
- Make some operations more complicated:
- e.g., findMin and findMax?

Finding the $k^{\text {th }}$ Object

Another operation on sorted lists may be finding the $k^{\text {th }}$ largest object

- Recall that k goes from 0 to $n-1$
- If the left-sub-tree has $\ell=k$ entries, return the current node,
- If the left sub-tree has $\ell>k$ entries, return the $k^{\text {th }}$ entry of the left sub-tree,
- Otherwise, the left sub-tree has $\ell<k$ entries, so return the $(k-\ell-1)^{\text {th }}$ entry of the right sub-tree

BuildTree for BST

- Let's consider buildTree
- Insert all, starting from an empty tree
- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BSI
- If inserted in given order, what is the tree?
- What big-O runtime for this kind of sorted input?

$$
1+2+3+\ldots+n=n(n+1) / 2
$$

- Is inserting in the reverse order any better?

BuildTree for BST

- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
- What if we could somehow re-arrange them
- median first, then left median, right median, etc.
$-5,3,7,2,1,4,8,6,9$
- What tree does that give us?
- What big-O runtime?
$O(n \log n)$, definitely better
- So the order the values come in is important!

Complexity of Building a Binary Search

 Tree- Worst case: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Best case: O(n log n)
- We do better by keeping the tree balanced.

