
1

The tree data structure

Trees
COL 106

1

Acknowledgement :Many slides are courtesy

Douglas Harder, UWaterloo

Amit Kumar

Shweta Agrawal

3

The tree data structure

Trees

A rooted tree data structure stores information in nodes

– Similar to linked lists:

• There is a first node, or root

• Each node has variable number of references to successors

(children)

• Each node, other than the root, has exactly one node as its

predecessor (or parent)

4

The tree data structure

What are trees suitable for ?

4

5

The tree data structure

To store hierarchy of people

6

The tree data structure

To store organization of departments

6

7

The tree data structure

To capture the evolution of languages

7

8

The tree data structure

To organize file-systems

Unix file system

9

The tree data structure

Markup elements in a webpage

9

10

The tree data structure

To store phylogenetic data

10

This will be our running example. Will illustrate tree

concepts using actual phylogenetic data.

11

The tree data structure

Terminology

All nodes will have zero or more child nodes or children

– I has three children: J, K and L

For all nodes other than the root node, there is one

parent node

– H is the parent of I

12

The tree data structure

Terminology

The degree of a node is defined as the number of its

children: deg(I) = 3

Nodes with the same parent are siblings

– J, K, and L are siblings

13

The tree data structure

Terminology

Phylogenetic trees have nodes with degree 2 or 0:

14

The tree data structure

Terminology

Nodes with degree zero are also called leaf nodes

All other nodes are said to be internal nodes, that is, they

are internal to the tree

15

The tree data structure

Terminology

Leaf nodes:

16

The tree data structure

Terminology

Internal nodes:

17

The tree data structure

Terminology

These trees are equal if the order of the children is
ignored (Unordered trees)

They are different if order is relevant (ordered
trees)
– We will usually examine ordered trees (linear orders)

– In a hierarchical ordering, order is not relevant

18

The tree data structure

Terminology

The shape of a rooted tree gives a natural

flow from the root node, or just root

19

The tree data structure

Terminology

A path is a sequence of nodes

(a0, a1, ..., an)

where ak + 1 is a child of ak is

The length of this path is n

E.g., the path (B, E, G)

has length 2

20

The tree data structure

Terminology

Paths of length 10 (11 nodes) and 4 (5 nodes)

Start of these paths

End of these paths

21

The tree data structure

Terminology

For each node in a tree, there exists a unique path from

the root node to that node

The length of this path is the depth of the node, e.g.,

– E has depth 2

– L has depth 3

22

The tree data structure

Terminology

Nodes of depth up to 17

9

14

17

4

0

23

The tree data structure

Terminology

The height of a tree is defined as the
maximum depth of any node within the
tree

The height of a tree with one node is 0

– Just the root node

For convenience, we define the height of
the empty tree to be –1

24

The tree data structure

Terminology

The height of this tree is 17

17

25

The tree data structure

Terminology

If a path exists from node a to node b:
– a is an ancestor of b

– b is a descendent of a

Thus, a node is both an ancestor and a
descendant of itself
– We can add the adjective strict to exclude

equality: a is a strict descendent of b if a is a
descendant of b but a ≠ b

The root node is an ancestor of all nodes

26

The tree data structure

Terminology

The descendants of node B are B, C, D, E, F, and G:

The ancestors of node I are I, H, and A:

27

The tree data structure

Terminology

All descendants (including itself) of the indicated node

28

The tree data structure

Terminology

All ancestors (including itself) of the indicated node

29

The tree data structure

Terminology

Another approach to a tree is to define the tree
recursively:
– A degree-0 node is a tree

– A node with degree n is a tree if it has n children and all
of its children are disjoint trees (i.e., with no intersecting
nodes)

Given any node a within a tree
with root r, the collection of a and
all of its descendants is said to
be a subtree of the tree with
root a

30

The tree data structure

Example: XHTML

Consider the following XHTML document

<html>

<head>

<title>Hello World!</title>

</head>

<body>

<h1>This is a <u>Heading</u></h1>

<p>This is a paragraph with some

<u>underlined</u> text.</p>

</body>

</html>

31

The tree data structure

Example: XHTML

Consider the following XHTML document
<html>

<head>

<title>Hello World!</title>

</head>

<body>

<h1>This is a <u>Heading</u></h1>

<p>This is a paragraph with some

<u>underlined</u> text.</p>

</body>

</html>

heading

underlining

paragraph

body of page

title

32

The tree data structure

Example: XHTML

The nested tags define a tree rooted at the HTML tag
<html>

<head>

<title>Hello World!</title>

</head>

<body>

<h1>This is a <u>Heading</u></h1>

<p>This is a paragraph with some

<u>underlined</u> text.</p>

</body>

</html>

33

The tree data structure

Example: XHTML

Web browsers render this tree as a web page

Iterator ADT
Most ADTs in Java can provide an
iterator object, used to traverse all
the data in any linear ADT.

Iterator Interface

public interface Iterator<E>{

boolean hasNext();

E next();

void remove(); // Optional

}

Getting an Iterator

You get an iterator from an ADT by calling
the method iterator();

Iterator<Integer> iter = myList.iterator();

Now a simple while loop can process
each data value in the ADT:

while(iter.hasNext()) {

process iter.next()

}

Adding Iterators to
SimpleArrayList is easy

First, we add the iterator() method to
SimpleArrayList:

public Iterator<E> iterator(){

return new

ArrayListIterator<E>(this);

}

Then we implement the iterator class for Lists:

import java.util.*;

public class ArrayListIterator<E>

implements Iterator<E> {

// *** fields ***

private SimpleArrayList<E> list;

private int curPos;

public ArrayListIterator(

SimpleArrayList<E> list) {

this.list = list;

curPos = 0;

}

public boolean hasNext() {

return curPos < list.size();

}

public E next() {

if (!hasNext()) throw

new NoSuchElementException();

E result = list.get(curPos);

curPos++;

return result;

}

public void remove() {

throw new UnsupportedOperationException();

}

}

43

The tree data structure

Position ADT
• Say vector contains an element “Delhi”

that we want to keep track of
• The index of the element may keep

changing depending on insert/delete
operations

• A position s, may be associated with
the element Delhi (say at time of
insertion)

• s lets us access Delhi via s.element()
even if the index of Delhi changes in
the container, unless we explicitly
remove s

• A position ADT is associated with a
particular container.

43

Delhi

s

44

The tree data structure

Tree ADT

• We use positions to abstract
nodes

• Generic methods:

• integer size()

• boolean isEmpty()

• objectIterator elements()

• positionIterator positions()

• Accessor methods:

• position root()

• position parent(p)

• positionIterator children(p)

44

• Query methods:

• boolean isInternal(p)

• boolean isLeaf (p)

• boolean isRoot(p)

• Update methods:

• swapElements(p, q)

• object replaceElement(p, o)

• Additional update methods may

be defined by data structures

implementing the Tree ADT

45

The tree data structure

0

A Linked Structure for General Trees
• A node is represented by

an object storing
• Element
• Parent node
• Sequence of children

nodes

• Node objects implement
the Position ADT

45

B

DA

C E

F

B

0 0

A D F

0

C

0

E

46

The tree data structure

Tree using Array

• Each node contains a field for data and an array
of pointers to the children for that node

– Missing child will have null pointer

• Tree is represented by pointer to root

• Allows access to ith child in O(1) time

• Very wasteful in space when only few nodes in
tree have many children (most pointers are null)

46

47

The tree data structure

Tree Traversals

• A traversal visits the nodes of a tree in a
systematic manner

• We will see three types of traversals

• Pre-order

• Post-order

• In-order

47

48

The tree data structure

Flavors of (Depth First) Traversal

• In a preorder traversal, a node is visited before
its descendants

• In a postorder traversal, a node is visited after
its descendants

• In an inorder traversal a node is visited after
its left subtree and before its right subtree

48

49

The tree data structure

Preorder Traversal

Process the root

 Process the nodes in the all subtrees in their order

Lecture 5: Trees

Algorithm preOrder(v)

visit(v)

for each child w of v

preOrder(w)

Preorder Traversal

A

S

A

M

P

L

E

R

T E

E

Preorder traversal: node is visited before its descendants

51

The tree data structure

Postorder traversal

1. Process the nodes in all subtrees in their order

2. Process the root

51

Algorithm postOrder(v)

for each child w of v

postOrder(w)

visit(v)

A

S

A

M

P

L

E

R

T E

E

Postorder traversal: node is visited before its descendants

Postorder Traversal

53

The tree data structure

Inorder traversal

1. Process the nodes in the left subtree

2. Process the root

3. Process the nodes in the right subtree

53

Algorithm InOrder(v)

InOrder(v->left)

visit(v)

InOrder(v->right)

For simplicity, we consider tree having at most 2
children, though it can be generalized.

A

S

A

M

P

L

E

R

T E

E

Inorder Traversal

Inorder traversal: node is visited after its left subtree

and before its right subtree

55

The tree data structure

Non-Recursive preorder traversal

1. Start from root.

2. Print the node.

3. Push right child onto to stack.

4. Push left child onto to stack.

5. Pop node from the stack.

6. Repeat Step 2 to 5 till stack is not empty.

55

Computing Height of Tree

58

Can be computed using the following idea:

1. The height of a leaf node is 0

2. The height of a node other than the leaf is the
maximum of the height of the left subtree and the
height of the right subtree plus 1.

Height(v) = max[height(vleft) + height(vright)] + 1

Details left as exercise.

59

The tree data structure

Binary Trees

59

Every node has degree up to 2.

Proper binary tree: each internal node has

degree exactly 2.

60

The tree data structure

Binary Tree

• A binary tree is a tree with the
following properties:
• Each internal node has two children

• The children of a node are an ordered
pair

• We call the children of an internal
node left child and right child

• Alternative recursive definition: a
binary tree is either
• a tree consisting of a single node, or

• a tree whose root has an ordered pair
of children, each of which is a disjoint
binary tree

• Applications:

• arithmetic expressions

• decision processes

• searching

A

B C

F GD E

H I

60

61

The tree data structure

Arithmetic Expression Tree

• Binary tree associated with an arithmetic expression
• internal nodes: operators
• leaves: operands

• Example: arithmetic expression tree for the expression
(2 * (a - 1) + (3 * b))

+

**

-2

a 1

3 b

61

64

How many leaves L does a proper binary tree of height

h have?

The number of leaves at depth d = 2d

If the height of the tree is h it has 2h

leaves.

L = 2h.

Data Structures and Algorithms 65

What is the height h of a proper binary tree with L

leaves?

leaves = 1 height = 0

leaves = 2 height = 1

leaves = 4 height = 2

leaves = L height = Log2L

Since L = 2h

log2L = log22
h

h = log2L

66

The number of internal nodes of a proper binary

tree of height h is ?

Internal nodes = 0 height = 0

Internal nodes = 1 height = 1

Internal nodes = 1 + 2 height = 2

Internal nodes = 1 + 2 + 4 height = 3

1 + 2 + 22 + . . . + 2 h-1 = 2h -1

Thus, a complete binary tree of height = h has 2h-1 internal

nodes.

Geometric series

67

The number of nodes n of a proper binary

tree of height h is ?

nodes = 1 height = 0

nodes = 3 height = 1

nodes = 7 height = 2

nodes = 2h+1- 1 height = h

Since L = 2h

and since the number of internal nodes = 2h-1 the

total number of nodes n = 2h+ 2h-1 = 2(2h) – 1 = 2h+1- 1.

68

If the number of nodes is n then what is the

height?

nodes = 1 height = 0

nodes = 3 height = 1

nodes = 7 height = 2

nodes = n height = Log2(n+1) - 1

Since n = 2h+1-1

n + 1 = 2h+1

Log2(n+1) = Log2 2
h+1

Log2(n+1) = h+1

h = Log2(n+1) - 1

BinaryTree ADT

• The BinaryTree ADT
extends the Tree ADT,
i.e., it inherits all the
methods of the Tree
ADT

• Additional methods:

• position leftChild(p)

• position rightChild(p)

• position sibling(p)

• Update methods may
be defined by data
structures
implementing the
BinaryTree ADT

69

