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The tree data structure

Trees

A rooted tree data structure stores information in nodes

— Similar to linked lists:
e There is a first node, or root

« Each node has variable number of references to successors
(children)

« Each node, other than the root, has exactly one node as its
predecessor (or parent)




The tree data structure

What are trees suitable for ?



The tree data structure

To store hierarchy of people
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The tree data structure

To store organization of departments
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The tree data structure

To capture the evolution of languages

HOW ARE THE WORLD'S LANGUAGES RELATED?

The language tree

The Bible tells a simple tale of the origin of the world’s many tongues. Humanity, it claims,
once lived all together and spoke just one language. The people worked together on a
great tower in the centre of a great city until God came and scattered them, altering their

Proto-Indo-Curopean

languages until hundreds existed, and the tower - the Tower of Babel - was abandoned

languages

k
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ike all the best stories, this one contains an
1 element of truth: many of our languages

share the same root, and changed as
we spread out and wandered into new lands.
While it’s probably not true that we all spoke
one language, many of the world’s most prolific
languages have the same origin: Proto-Indo-
European, spoken around 6,000 years ago.

It lies at the root of the language tree for
many present-day tongues: English, Spanish,
Hindi, German, French, Urdu, Russian and more.
Almost half of all humans on the planet are native
speakers of an Indo-European language, and we
can count hundreds of such languages even if
you ignore the thorny issue of where to draw
the line between what some would think of as a
dialect and others might consider a language in

L\

b

ANGUAGE

its own right.

Iflanguage is a tree, it's a gnarly and complex
one: it's not as if languages subdivide and never
re-merge. Take English: at various points in its
history (usually thanks to invading or being
invaded) it's come into contact with Latin (the
Romans), Germanic languages (Vikings), French
(the Normans) and others. It has constantly
evolved and assimilated words and structures,
and every few hundred years changes so much
that a speaker of a few hundred years before
would struggle to understand.

Perhaps language is less of a tree than a river:
while the banks stay roughly where they are, the
water is al i 5 ini
... but never the same.
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This language tree is divided into two
parts: the Centum { ) languages are
western European, and the Satem { )
languages are eastern European and
Asian, Tocharian is an exception, but it's
complicated. Languages marked with an
astarisk (") are official languages of the
European Union.



The tree data structure

To organize file-systems
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Unix file system
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Markup elements in a webpage

OO0



The tree data structure

To store phylogenetic data
Phylogenetic Tree of Life

10
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This will be our running example. Will illustrate tree
concepts using actual phylogenetic data. 10



The tree data structure

Terminology

All nodes will have zero or more child nodes or children
— | has three children: J, Kand L

For all nodes other than the root node, there is one
parent node

— H is the parent of |

11



The tree data structure

Terminology

The degree of a node is defined as the number of its
children: deg(l) =3

Nodes with the same parent are siblings
— J, K, and L are siblings

12



The tree data structure

13
Terminology
Phylogenetic trees have nodes with degree 2 or O:
)
Q.0
) O
00O ¢ O Carnivoramorpha
OO0 O )

Wesley-Hunt, G. D.; Flynn, J. J. “Phylogeny of the Carnivora: basal relationships
among the Carnivoramorphans, and assessment of the position of ‘Miacoidea’



The tree data structure

Terminology

Nodes with degree zero are also called leaf nodes

All other nodes are said to be internal nodes, that is, they
are internal to the tree

14



The tree data structure

Terminology

Leaf nodes:
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Wesley-Hunt, G. D.; Flynn, J. J. “Phylogeny of the Carnivora: basal relationships
among the Carnivoramorphans, and assessment of the position of ‘Miacoidea’

15



The tree data structure

Terminology
Internal nodes:

O O Carnivoramorpha

Wesley-Hunt, G. D.; Flynn, J. J. “Phylogeny of the Carnivora: basal relationships
among the Carnivoramorphans, and assessment of the position of ‘Miacoidea’

16



The tree data structure
17

Terminology

These trees are equal Iif the order of the children is
ignored (Unordered trees )

They are different if order is relevant (ordered
trees)

— We will usually examine ordered trees (linear orders)
— In a hierarchical ordering, order is not relevant



The tree data structure

Terminology

The shape of a rooted tree gives a natural
flow from the root node, or just root

18



The tree data structure

Terminology

A path is a sequence of nodes
(@, 8y, -, @)

where a, ., Is a child of a, is

The length of this path is n

E.g., the path (B, E, G)
has length 2

19




The tree data structure

20
Terminology
Paths of length and 4 (5 nodes)
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0.0
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Wesley-Hunt, G. D.; Flynn, J. J. “Phylogeny of the Carnivora: basal relationships
among the Carnivoramorphans, and assessment of the position of ‘Miacoidea’



The tree data structure

Terminology

21

For each node in a tree, there exists a unique path from
the root node to that node

The length of this path is the depth of the node, e.g.,
— E has depth 2
— L has depth 3




The tree data structure

Terminology

Nodes of depth up to 17

..A Carnivoramorpha

oy W,

® ®

Wesley-Hunt, G. D.; Flynn, J. J. “Phylogeny of the Carnivora: basal relationships
among the Carnivoramorphans, and assessment of the position of ‘Miacoidea’

22



The tree data structure

Terminology

23

The height of a tree Is defined as the
maximum depth of any node within the
tree

The height of a tree with one node is O
— Just the root node

For convenience, we define the height of
the empty tree to be -1



The tree data structure

Terminology
The height of this tree i1s 17

Carnivoramorpha

A4 ® ®

Wesley-Hunt, G. D.; Flynn, J. J. “Phylogeny of the Carnivora: basal relationships
among the Carnivoramorphans, and assessment of the position of ‘Miacoidea’

24



The tree data structure

Terminology

25

If a path exists from node a to node b:

— a s an ancestor of b
— b Is a descendent of a

Thus, a node Is both an ancestor and a
descendant of itself

— We can add the adjective strict to exclude
equality: a Is a strict descendentof b ifais a
descendantof b buta #Db

The root node Is an ancestor of all nodes



The tree data structure

Terminology

The descendants of node B are B, C, D, E, F, and G:

(A)
(H)
(1 M
W ® O

The ancestors of node | are I, H, and A:

© O KUY

26



The tree data structure

Terminology

All descendants (including itself) of the indicated node
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OO Q O Carnivoramorpha
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Wesley-Hunt, G. D.; Flynn, J. J. “Phylogeny of the Carnivora: basal relationships
among the Carnivoramorphans, and assessment of the position of ‘Miacoidea’

27



The tree data structure

Terminology

28

All ancestors (including itself) of the indicated node
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Wesley-Hunt, G. D.; Flynn, J. J. “Phylogeny of the Carnivora: basal relationships
among the Carnivoramorphans, and assessment of the position of ‘Miacoidea’



The tree data structure

Terminology

29

Another approach to a tree Is to define the tree
recursively:

— A degree-0 node is a tree

— A node with degree n is a tree If it has n children and all
of its children are disjoint trees (i.e., with no intersecting
nodes)

(&
Given any node a within a tree

with root r, the collection ofaand @
all of its descendants is said to

be a subtree of the tree with G
root a

©



The tree data structure

Example: XHTML

Consider the following XHTML document

<html>
<head>
<title>Hello World!</title>
</head>
<body>
<h1>This is a <u>Heading</u></h1l>

<p>This is a paragraph with some
<u>underlined</u> text.</p>
</body>
</html>

30



The tree data structure

Example: XHTML

31

Consider the following XHTML document

<html> title
<head> x’///

<title>Hello World!</title> heading

</head>
<bogy>

<h1>This is a <u>Heading</u></h1l>
body of page

<p>This is a paragraph with some

<u>un ined</u> text.</p>
</body>

</html>

paragraph
underlining



The tree data structure

Example: XHTML

32

The nested tags define a tree rooted at the HTML tag

<html>
<head>
<title>Hello World!</title>
</head>
<body>
<h1>This is a <u>Heading</u></hl>

<p>This is a paragraph with some
<u>underlined</u> text.</p>

</body> ””””,,,_hUnLﬂﬁﬂﬁxﬁﬁﬂ\“
</html>

head

“Hello World!” i i
“Heading”

“This is a paragraph with ” W text.”

“underlined”



The tree data structure

Example: XHTML

33

Web browsers render this tree as a web page

ek / \\

“This ils a paragraph with ” W text.”

“underlined”

@ Hell\ World! - Mo%illa Firefox g@

\ - [%] o | L htip:/fcheetah visiuwaterloo, caf~dwharder fece250.html V @ so |

-Mal (Gl 6-MNdws 2 GaM & ECE UG 4@ cBC & SE 240 B wo
This is a Heading

This 15 a paragraph with some underlined text.

Cione




Ilterator ADT

Most ADTs in Java can provide an
iterator object, used to traverse all
the data in any linear ADT.



Iterator Interface

public interface Iterator<kE>{
boolean hasNext () ;

E next();

void remove(); // Optional



Getting an lterator

You get an iterator from an ADT by calling
the method iterator () ;

lterator<Integer> iter = mylList.iterator();



Now a simple while loop can process
each data value in the ADT:

while (iter.hasNext ()) {

process 1ter.next ()



Adding Iterators to
SimpleArraylList is easy

First, we add the iterator () method to
SimpleArrayList:

public Iterator<E> 1terator () {
return new

ArraylListIterator<E>(this);



Then we implement the iterator class for Lists:

import java.util.¥*;
public class ArraylListlIterator<k>
implements Iterator<iE> {
// * Kk % fleldS * Kk %k

private SimpleArrayList<E> 1list;
private 1nt curPos;

public ArraylListIterator (

SimpleArrayList<E> list) {
this.list = list;
curPos = 0;



public boolean hasNext () {
return curPos < list.size();

public E next () {
1f ('hasNext()) throw
new NoSuchElementException();

E result = list.get (curPos);
curPos++;
return result;

public void remove ()
throw new UnsupportedOperationException();



Position ADT

Say vector contains an element “Delhi”
that we want to keep track of

The index of the element may keep
changing depending on insert/delete
operations

A position s, may be associated with
the element Delhi (say at time of
insertion)

s lets us access Delhi via s.element()
even if the index of Delhi changes in
the container, unless we explicitly
remove s

A position ADT is associated with a
particular container. S

\’

—

The tree data structure
1]

1150, YoU'RE APPLYINGT |13
71 FoR A PCSITION OF
A WEB-DESIGNER.

Delhi

43




We use positions to abstract

nodes

Generic methods:

integer size()

boolean isEmpty()
objectlterator elements()
positionlterator positions()

Accessor methods:

position root()
position parent(p)
positionlterator children(p)

The tree data structure

Tree ADT

Query methods:
boolean isinternal(p)
boolean isLeaf (p)
boolean isRoot(p)

Update methods:
swapElements(p, q)
object replaceElement(p, o)

Additional update methods may
be defined by data structures
implementing the Tree ADT

44

44



The tree data structure

A Linked Structure for General Trees

45

« A node is represented by
an object storing

e Element 0 “_‘]
e Parent node i

* Sequence of children B
nodes

 Node objects implement

the Position ADT 0 0

45



The tree data structure

Tree using Array

46

* Each node contains a field for data and an array
of pointers to the children for that node

— Missing child will have null pointer
* Tree is represented by pointer to root
* Allows access to it" child in O(1) time

* Very wasteful in space when only few nodes in
tree have many children (most pointers are null)

info

Do D1 Pvy—1




The tree data structure

Tree Traversals

e A traversal visits the nodes of a tree in a
systematic manner

 We will see three types of traversals
* Pre-order
e Post-order
* In-order

47



The tree data structure

Flavors of (Depth First) Traversal

48

* |n a preorder traversal, a node is visited before
its descendants

* |n a postorder traversal, a node is visited after
its descendants

 Inan inorder traversal a node is visited after
its left subtree and before its right subtree

48



The tree data structure

Preorder Traversal

—7Process the root

Process the nodes in the all subtrees in their order

Algorithm preOrder (v)
visit (v)
for each child w of v

preOrder (w)

Lecture 5: Trees

49



Preorder Traversal
pEl
il
o 5
]

Preorder traversal: node is visited before its descendants




1.
2.

The tree data structure

Postorder traversal

Process the nodes in all subtrees in their order

Process the root

Algorithm postOrder (v)
for each child w of v
postOrder (w)

visit (v)

51



Postorder Traversal
pEl
il
o 5
7 [ d —
]

Postorder traversal: node is visited before its descendants




1.
2.
3.

The tree data structure

Inorder traversal

Process the nodes in the left subtree
Process the root

Process the nodes in the right subtree

Algorithm InOrder (v)
InOrder (v—->left)
visit (v)

InOrder (v—->right)

For simplicity, we consider tree having at most 2
children, though it can be generalized.

53



Inorder Traversal

[ 1]
[
1 ]
EI j db\

Inorder traversal: node is visited after its left subtree

and before its right subtree
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Non-Recursive preorder traversal

5

1. Start from root.

2. Print the node.

Push right child onto to stack.
Push left child onto to stack.

Pop node from the stack.

o AW

. Repeat Step 2 to 5 till stack is not empty.



Computing Height of Tree

Can be computed using the following idea:
1. The height of a leaf node is O

2. The height of a node other than the leaf is the
maximum of the height of the left subtree and the
height of the right subtree plus 1.

Height(v) = max[height(v—=2>left) + height(v2>right)] + 1

Detalls left as exercise.



The tree data structure
59

Binary Trees

16 17 18 19 20 21 22 23 24 25

Every node has degree up to 2.
Proper binary tree: each internal node has
degree exactly 2.

59



The tree data structure

60
A binary tree is a tree with the e Applications:
following properties: . arithmetic expressions
» Each internal node has two children . decision processes
» The children of a node are an ordered . searching
pair

We call the children of an internal
node left child and right child

Alternative recursive definition: a
binary tree is either
* atree consisting of a single node, or

* atree whose root has an ordered pair
of children, each of which is a disjoint
binary tree




The tree data structure

Arithmetic Expression Tree

* Binary tree associated with an arithmetic expression
* internal nodes: operators
* |eaves: operands

 Example: arithmetic expression tree for the expression
(2*(a—1)+ (3 * b))

61



How many leaves L does a proper binary tree of heigh
h have?

O
TN
60\ 7~
O O O
The number of leaves at depth d = 24

If the height of the tree is h it has 2"
leaves.

L= 2n

64



What is the height h of a proper binary tree with L
leaves?

leaves = 1 height =0
leaves = 2 height =1
leaves = 4 height = 2

leaves = L height = Log,L

Since L = 2"
log,L = log,2"
h =log,L

Data Structures and Algorithms 65



The number of internal nodes of a proper binary
tree of height h is ?

Internal nodes =0 height =0
Internal nodes = 1 height =1
Internal nodes =1 + 2 height = 2

Internal nodes=1+2+4 height = 3
142422+  4+2hl=20_1 Geometric series

Thus, a complete binary tree of height = h has 2"-1 internal
nodes.

66



The number of nodes n of a proper binary
tree of height his ?

nodes =1 height = 0
/Q\
) ? nodes = 3 height = 1
\ \ |
Q Q Q nodes = 7 height = 2
nodes = 2h+1- 1 height =h

Since L= 2h
and since the number of internal nodes = 2"-1 the
total number of nodes n = 2"+ 2h-1 =2(2") -1 = 2"+l 1,

67



If the number of nodes is n then what is the
height?

Q nodes =1 height = 0

6@\ ?\ nodes = 3 height = 1

Q Q Q nodes = 7 height = 2

nodes =n height = Log,(n+1) - 1

Since n = 2"+1-1
n+1=2h1
Log,(n+1) = Log, 2h*1
Log,(n+1) = h+1
h=Log,(n+1) -1

68
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BinaryTree ADT

 The BinaryTree ADT
extends the Tree ADT,
i.e., it inherits all the

methods of the Tree
ADT

e Additional methods:
e position leftChild(p)
» position rightChild(p)
e position sibling(p)

 Update methods may
be defined by data
structures
implementing the
BinaryTree ADT



