
Reading and Writing

Mathematical Proofs

Slides by Arthur van Goetham

What is a proof?

Why explanations are not proofs…

What is a proof?

A method for establishing truth

What establishes truth depends on context

Physics Sufficient experimental

evidence

Courtroom Admissible evidence

and witness testimony

Mathematical proof Not a doubt possible!

What is a proof?

A form of communication

Proof must convince reader (not the writer!) of correctness

Proofs must be:

 Clearly written

 Should be easy to follow

 Very different from “proving process”

 Very precise

 No ambiguities!

 Leaving no doubts

Definition

Mathematical proof
A convincing argument for the reader to establish the correctness of a

mathematical statement without any doubt.

3 + 6

3 + 6 = 9

Definition

Mathematical proof
A convincing argument for the reader to establish the correctness of a

mathematical statement without any doubt.

Statement must be true or false

Definition

Mathematical proof
A convincing argument for the reader to establish the correctness of a

mathematical statement without any doubt.

In what format should a proof be?

Logical derivation

Good

 Very systematic

 Hard to make mistakes

Bad

 Not convenient for statements

not stated in logical formulas

 Emphasis on logical reasoning

→ detract from crux argument

 Hard to read

 Cumbersome

Common English

Theorem

If x is odd, then x2 is odd

Proof

Since x is odd, there exists a k ϵ ℤ

such that x = 2k + 1. Then,

x2 = (2k + 1)2 = 4k2 + 4k + 1 =

2(2k2 + 2k) + 1 = 2m+1.

As there exists a m ϵ ℤ such that

x2 = 2m + 1, x2 is odd. □

Good

 Short and to the point

 Easy to read

Bad

 Logical reasoning

somewhat hidden

 Natural language can be

ambiguous

This is the kind of proof we expect

in Data Structures!

Basic Proving Techniques

Proving 101…

Overview

Basic Proving Techniques

Overview

Basic Proving Techniques

1. Forward-backward method

2. Mathematical induction

3. Case analysis

4. Proof by contradiction

Forward-Backward Method

How to get from A to B and B to A…

Forward-Backward Method

The most basic approach

Logically combine axioms, definitions, and earlier theorems (forward)

Simplify the goal (backward)

This should always be your default approach

FACTS GOAL

When to use?

Generally used for statements of the form: If P then Q

Reason forward from the premise

Reason backward from the goal

Usage

Premise Goal

Basic Example

Theorem

If my hamsters do excessive exercise, I will be tired in the morning.

Proof

My hamsters do excessive exercise

They are running in their exercise wheel

The exercise wheel is making noise

Something is keeping me awake

I do not get a good night’s sleep

I am tired in the morning

Example

Theorem

If f1(n) = O(g1(n)) and f2(n) = O(g2(n)), then f1(n)f2(n) = O(g1(n)g2(n))

Proof

What does f(n) = O(g(n)) mean again?

There exist positive constants c and n0 such that f(n) ≤ c g(n)

for all n ≥ n0.

Example

Theorem

If f1(n) = O(g1(n)) and f2(n) = O(g2(n)), then f1(n)f2(n) = O(g1(n)g2(n))

Proof

By definition there exist positive constants c’ and n0’ such that

f1(n) ≤ c’ g1(n) for all n ≥ n0’. Similarly, there exist positive constants

c’’ and n0’’ such that f2(n) ≤ c’’ g2(n) for all n ≥ n0’’. We need to

show that there exist positive constants c and n0 such that

f1(n)f2(n) ≤ c g1(n)g2(n) for all n ≥ n0.

We must be very careful with variables! Use different names!

Example

Theorem

If f1(n) = O(g1(n)) and f2(n) = O(g2(n)), then f1(n)f2(n) = O(g1(n)g2(n))

Proof

By definition there exist positive constants c’ and n0’ such that

f1(n) ≤ c’ g1(n) for all n ≥ n0’. Similarly, there exist positive constants

c’’ and n0’’ such that f2(n) ≤ c’’ g2(n) for all n ≥ n0’’. We need to

show that there exist positive constants c and n0 such that

f1(n)f2(n) ≤ c g1(n)g2(n) for all n ≥ n0.

Example

Theorem

If f1(n) = O(g1(n)) and f2(n) = O(g2(n)), then f1(n)f2(n) = O(g1(n)g2(n))

Proof

By definition there exist positive constants c’ and n0’ such that

f1(n) ≤ c’ g1(n) for all n ≥ n0’. Similarly, there exist positive constants

c’’ and n0’’ such that f2(n) ≤ c’’ g2(n) for all n ≥ n0’’. We need to

show that there exist positive constants c and n0 such that

f1(n)f2(n) ≤ c g1(n)g2(n) for all n ≥ n0.

To establish this, we need to find suitable values for c and n0.

Example

Theorem

If f1(n) = O(g1(n)) and f2(n) = O(g2(n)), then f1(n)f2(n) = O(g1(n)g2(n))

Proof

By definition there exist positive constants c’ and n0’ such that

f1(n) ≤ c’ g1(n) for all n ≥ n0’. Similarly, there exist positive constants

c’’ and n0’’ such that f2(n) ≤ c’’ g2(n) for all n ≥ n0’’. We need to

show that there exist positive constants c and n0 such that

f1(n)f2(n) ≤ c g1(n)g2(n) for all n ≥ n0.

To establish this, we need to find suitable values for c and n0.

We already are given constants c’, c’’, n0’, and n0’’.

Example

Theorem

If f1(n) = O(g1(n)) and f2(n) = O(g2(n)), then f1(n)f2(n) = O(g1(n)g2(n))

Proof

By definition there exist positive constants c’ and n0’ such that

f1(n) ≤ c’ g1(n) for all n ≥ n0’. Similarly, there exist positive constants

c’’ and n0’’ such that f2(n) ≤ c’’ g2(n) for all n ≥ n0’’. We need to

show that there exist positive constants c and n0 such that

f1(n)f2(n) ≤ c g1(n)g2(n) for all n ≥ n0.

To establish this, we need to find suitable values for c and n0.

We already are given constants c’, c’’, n0’, and n0’’.

Note that f1(n)f2(n) ≤ c’g1(n) c’’g2(n) = c’ c’’ g1(n)g2(n) ,

Example

Theorem

If f1(n) = O(g1(n)) and f2(n) = O(g2(n)), then f1(n)f2(n) = O(g1(n)g2(n))

Proof

By definition there exist positive constants c’ and n0’ such that

f1(n) ≤ c’ g1(n) for all n ≥ n0’. Similarly, there exist positive constants

c’’ and n0’’ such that f2(n) ≤ c’’ g2(n) for all n ≥ n0’’. We need to

show that there exist positive constants c and n0 such that

f1(n)f2(n) ≤ c g1(n)g2(n) for all n ≥ n0.

To establish this, we need to find suitable values for c and n0.

We already are given constants c’, c’’, n0’, and n0’’.

Note that f1(n)f2(n) ≤ c’g1(n) c’’g2(n) = c’ c’’ g1(n)g2(n) ,

but only if n ≥ n0’ and n ≥ n0’’ .

So n ≥ n0 should imply n ≥ n0’ and n ≥ n0’’ .

Example

Theorem

If f1(n) = O(g1(n)) and f2(n) = O(g2(n)), then f1(n)f2(n) = O(g1(n)g2(n))

Proof

By definition there exist positive constants c’ and n0’ such that

f1(n) ≤ c’ g1(n) for all n ≥ n0’. Similarly, there exist positive constants

c’’ and n0’’ such that f2(n) ≤ c’’ g2(n) for all n ≥ n0’’. We need to

show that there exist positive constants c and n0 such that

f1(n)f2(n) ≤ c g1(n)g2(n) for all n ≥ n0.

Let n0 = max(n0’, n0’’) and c = c’ c’’. Then, for all n ≥ n0 (which

implies n ≥ n0’ and n ≥ n0’’), f1(n)f2(n) ≤ c’ g1(n) c’’ g2(n) = c’ c’’ g1(n)

g2(n) = c g1(n) g2(n).

We have f1(n)f2(n) ≤ c g1(n) g2(n) for all n ≥ n0.

Thus, f1(n)f2(n) = O(g1(n)g2(n)). □

Example

Theorem

If f1(n) = O(g1(n)) and f2(n) = O(g2(n)), then f1(n)f2(n) = O(g1(n)g2(n))

Proof

By definition there exist positive constants c’ and n0’ such that

f1(n) ≤ c’ g1(n) for all n ≥ n0’. Similarly, there exist positive constants

c’’ and n0’’ such that f2(n) ≤ c’’ g2(n) for all n ≥ n0’’. We need to

show that there exist positive constants c and n0 such that

f1(n)f2(n) ≤ c g1(n)g2(n) for all n ≥ n0.

Let n0 = max(n0’, n0’’) and c = c’ c’’. Then, for all n ≥ n0 (which

implies n ≥ n0’ and n ≥ n0’’), f1(n)f2(n) ≤ c’ g1(n) c’’ g2(n) = c’ c’’ g1(n)

g2(n) = c g1(n) g2(n).

We have f1(n)f2(n) ≤ c g1(n) g2(n) for all n ≥ n0.

Thus, f1(n)f2(n) = O(g1(n)g2(n)). □

Overview

Basic Proving Techniques

1. Forward-backward method

2. Mathematical induction

3. Case analysis

4. Proof by contradiction

Mathematical Induction

An introduction to induction…

Recurring structures

Many algorithms and (data)structures have recurrences

 Loop

 List

 Tree

sum = 0

for i = 1 to A.length

do sum = sum + A[i]

The Idea

The Base Idea of Induction

Base Case

One (or more) very simple cases that we can trivially proof.

Induction Hypothesis

The statement that we want to prove (for any 𝑛).

Induction Step

Prove that if the statement holds for a small instance, it must also hold for

a larger instance.

P(1) P(2) P(3)P(2) P(n)…

Usage

When to use?

 Whenever you need to prove something is true for all values of 𝑛.

 (or all values ≥ 𝑥)

 Infinite possibilities!

 When there is a clear structure in the problem (e.g., trees)

 We will talk more about this later

Basic Example

Theorem

If 𝑛 dominos are placed in a row and I push the first; they all fall.

Proof:

We use induction on 𝑛.

Base Case (𝑛 = 1):

If there is only 1 domino, it must also be the first.

I will push the first over, so trivially they all fall.

Basic Example

Proof:

We use induction on 𝑛.

Base Case (𝑛 = 1):

If there is only 1 domino, it must also be the first.

I will push the first over, so trivially they all fall and the IH holds.

Induction Hypothesis:

If 𝑛 dominos are placed in a row and I push the first; they all fall.

Induction Step:

Assume the IH holds for 𝑛 dominos.

If there were 𝑛 + 1 dominos in a row, the first 𝑛 form a row of length 𝑛.

By IH the first 𝑛 dominos will all fall. As all 𝑛 dominos fall, so must the

𝑛th domino. If the 𝑛th domino falls, then it will tip over the 𝑛 + 1th. The

first 𝑛 dominos fall over and the 𝑛 + 1th domino also falls over.

So all 𝑛 + 1 dominos fall over. Thus, the IH holds.

Basic Example

Proof:

We use induction on 𝑛.

Base Case (𝑛 = 1):

If there is only 1 domino, it must also be the first.

I will push the first over, so trivially they all fall and the IH holds.

Induction Hypothesis:

If 𝑛 dominos are placed in a row and I push the first; they all fall.

Induction Step:

Assume the IH holds for 𝑛 dominos.

If there were 𝑛 + 1 dominos in a row, the first 𝑛 form a row of length 𝑛.

By IH the first 𝑛 dominos will all fall. As all 𝑛 dominos fall, so must the

𝑛th domino. If the 𝑛th domino falls, then it will tip over the 𝑛 + 1th. The

first 𝑛 dominos fall over and the 𝑛 + 1th domino also falls over.

So all 𝑛 + 1 dominos fall over. Thus, the IH holds.

Example

Theorem

For all positive integers 𝑛, 3𝑛 − 1 is even.

Proof:

We use induction on 𝑛.

Base Case (n = 1): 31 − 1 = 2, which is indeed even.

IH: 3𝑛 − 1 is even.

Induction Step (n >= 1):

Assume that 3𝑛 − 1 is even. (IH)

We need to show that 3𝑛+1 − 1 is even.

We have: 3𝑛+1 − 1 = 3 ∗ 3𝑛 − 1 = (2 ∗ 3𝑛) + (3𝑛 − 1).

A multiplication with an even number is always even (2 ∗ 3𝑛).

By IH, (3𝑛 − 1) is also even. The sum of two even numbers is also even.

Thus, 3𝑛+1 − 1 must be even. The IH holds. □

Practice 1

Theorem

For all positive integers 𝑛, 𝑘=1
𝑛 𝑘 = 𝑛(𝑛 + 1)/2

Practice 1

Proof:

We use induction on 𝑛.

Base case (𝑛 = 1):

 𝑘=1
𝑛 𝑘 = 𝑘=1

1 𝑘 = 1 =
1 1+1

2
=
𝑛 𝑛+1

2
.

As both values equate to the same the IH holds.

IH: 𝑘=1
𝑛 𝑘 = 𝑛(𝑛 + 1)/2

Induction Step (𝑛 ≥ 1):

Suppose that 𝑘=1
𝑛 𝑘 = 𝑛(𝑛 + 1)/2. (IH)

We need to show that 𝑘=1
𝑛+1𝑘 = (𝑛 + 1)(𝑛 + 2)/2.

We have: 𝑘=1
𝑛+1𝑘 = 𝑘=1

𝑛 𝑘 + 𝑛 + 1 =
𝑛 𝑛+1

2
+ 𝑛 + 1 (by IH)

=
𝑛 𝑛+1 +2(𝑛+1)

2
=

𝑛+1 (𝑛+2)

2
.

Thus the IH holds and it follows by induction that
 𝑘=1
𝑛 𝑘 = 𝑛(𝑛 + 1)/2 for all positive integers 𝑛. □

Practice 2

Theorem

For every integer 𝑛 ≥ 5, 2𝑛 > 𝑛2

Practice 2

Proof:

We use induction on 𝑛.

Base case (𝑛 = 5): 2𝑛 = 25 = 32 > 25 = 52 = 𝑛2

IH: 2𝑛 > 𝑛2

Induction Step (𝑛 ≥ 5):

Suppose that 2𝑛 > 𝑛2 (IH).

We need to show that 2𝑛+1 > (𝑛 + 1)2 .

We have:

2𝑛+1 = 2 ∗ 2𝑛 > 2 ∗ 𝑛2 (by IH)

So it is sufficient to show that 2 ∗ 𝑛2 ≥ (𝑛 + 1)2 = 𝑛2 + 2𝑛 + 1 for

𝑛 ≥ 5. This can be simplified to 𝑛2 – 2𝑛 – 1 ≥ 0 or (𝑛 − 1)2 ≥ 2.

This is clearly true for 𝑛 ≥ 5.

So it follows by induction that 2𝑛 > 𝑛2 for 𝑛 ≥ 5. □

Strong Induction

P(1)

P(1) ⋀ … ⋀ P(n) ⇒ P(n+1)

P(1)

P(2)

P(n)

P(n+1)

….

P(3)

Strong Induction

Theorem (Nim)

If the two piles contain the same number of matches at the start of the

game, then the second player can always win.

Strong Induction

Theorem (Nim)

If the two piles contain the same number of matches at the start of the

game, then the second player can always win.

Player 1 Player 2

Strong Induction

Theorem (Nim)

If the two piles contain the same number of matches at the start of the

game, then the second player can always win.

Proof

We use strong induction on 𝑛.

IH: “If the two piles both contain 𝑛 matches at the … always win”

Base Case (𝑛 = 1):

The first player only has one option, emptying one of the piles. The

second player can empty the second pile and, thus, wins.

Induction Step (𝑛 ≥ 1):

Assume the second player can always win if there are two piles with 𝑘
matchsticks each, for 1 ≤ 𝑘 ≤ 𝑛. (IH)

We prove the IH for two piles with 𝑛 + 1 matchsticks each. Assume

w.l.o.g. that player 1 takes 𝑚 ≥ 1 matchsticks from the first pile.

The second player can then always take 𝑚 matchsticks from the other

pile. We are now left with two piles with both 𝑛 + 1 −𝑚 ≤ 𝑛 matchsticks.

By IH, player two can always win from this setting. □

Strong Induction

Theorem (Nim)

If the two piles contain the same number of matches at the start of the

game, then the second player can always win.

Proof

We use strong induction on 𝑛.

IH: “If the two piles both contain 𝑛 matches at the … always win”

Base Case (𝑛 = 1):

The first player only has one option, emptying one of the piles. The

second player can empty the second pile and, thus, wins.

Induction Step (𝑛 ≥ 1):

Assume the second player can always win if there are two piles with 𝑘
matchsticks each, for 1 ≤ 𝑘 ≤ 𝑛. (IH)

We prove the IH for two piles with 𝑛 + 1 matchsticks each. Assume

w.l.o.g. that player 1 takes 𝑚 ≥ 1 matchsticks from the first pile.

The second player can then always take 𝑚 matchsticks from the other

pile. We are now left with two piles with both 𝑛 + 1 −𝑚 ≤ 𝑛 matchsticks.

By IH, player two can always win from this setting. □

Practice 1

Theorem

It takes 𝑛 – 1 breaks to break a chocolate bar with 𝑛 ≥ 1 squares into

individual squares

Proof:

We use strong induction on 𝑛.

Base case (𝑛 = 1):

It’s just 1 square, so 1 − 1 = 0 breaks is trivially correct.

IH: …

Induction Step (𝑛 ≥ 2):

Consider a chocolate bar with 𝑛 squares.

Suppose the chocolate bar is broken into 2 pieces of 𝑎 and 𝑏 squares,

where 1 ≤ 𝑎, 𝑏 < 𝑛 and 𝑎 + 𝑏 = 𝑛.

By the IH we need 𝑎 – 1 breaks for the first part and 𝑏 – 1 for the second.

Thus, we need 1 + (𝑎 – 1) + (𝑏 – 1) = 𝑎 + 𝑏 – 1 = 𝑛 – 1 breaks. □

Loop Invariant

An introduction to proving loops…

Loop Invariant

What do we want?

How do we prove something is true at the end?

What do we really know?

sum = 0

for i = 1 to A.length

do sum = sum + A[i]

Loop Invariant

What do we really know?

sum = 0

for i = 1 to A.length

do sum = sum + A[i]

At the start:

Sum = 0

= Sum first 0 elements

𝑖 = 1

𝑖 = 1

Loop Invariant

What do we really know?

sum = 0

for i = 1 to A.length

do sum = sum + A[i]

At the start:

Sum = 0

= Sum first 0 elements

𝑖 = 2

After first iteration:

Sum = 0 + 𝐴[1]

= Sum first 1 element

𝑖 = 2

Loop Invariant

What do we really know?

sum = 0

for i = 1 to A.length

do sum = sum + A[i]

At the start:

Sum = 0

= Sum first 0 elements

𝑖 = 3

After first iteration:

Sum = 0 + 𝐴[1]

= Sum first 1 element

After second iteration:

Sum = 0 + 𝐴 1 + 𝐴[2]

= Sum first 2 elements

Loop Invariant

Loop Invariants replicate the chain of logical derivations

To prove a claim is true at the end, we show…

 …it is true at the start

 …if it is true at the start of a random iteration 𝑖,

it is still true at the start of the next iteration 𝑖 + 1

 …the claim is true at the end of the loop.

At the start:

Sum = 0

= Sum first 0 elements

After first iteration:

Sum = 0 + 𝐴[1]

= Sum first 1 element

After second iteration:

Sum = 0 + 𝐴 1 + 𝐴[2]

= Sum first 2 elements

Loop Invariant

Loop Invariants replicate the chain of logical derivations

To prove a statement is true at the end, we need..

 Invariant (What remains true)

 Initialization (Starting conditions)

 Maintenance (Making sure it remains true)

 Termination (Ending conditions)

At the start:

Sum = 0

= Sum first 0 elements

After first iteration:

Sum = 0 + 𝐴[1]

= Sum first 1 element

After second iteration:

Sum = 0 + 𝐴 1 + 𝐴[2]

= Sum first 2 elements

Invariant

At the start of iteration 𝑖, 𝑠𝑢𝑚 contains the sum of 𝐴[1. . 𝑖 − 1].

Initialization

At the start of the loop 𝑖 = 1 and 𝑠𝑢𝑚 = 0.

For the loop invariant to hold, 𝑠𝑢𝑚must contains the sum of 𝐴 1. . 0 = ∅.

The sum of no elements is trivially 0.

So 𝑠𝑢𝑚 is correctly set to 0.

Basic Example

sum = 0

for i = 1 to A.length

do sum = sum + A[i]

Invariant

At the start of iteration 𝑖, 𝑠𝑢𝑚 contains the sum of 𝐴[1. . 𝑖 − 1].

Maintenance

At the start of iteration 𝑖, by the loop invariant 𝑠𝑢𝑚 contains the sum of 𝐴[1. . 𝑖 −
1]. In iteration 𝑖, sum is increased by 𝐴[𝑖]. So 𝑠𝑢𝑚 is the sum of elements

𝐴[1. . 𝑖 − 1] + 𝐴[𝑖] = the sum of elements 𝐴 1. . 𝑖 = 𝐴[1. . 𝑖 + 1 − 1]. Thus the

invariant will be maintained.

Basic Example

sum = 0

for i = 1 to A.length

do sum = sum + A[i]

Invariant

At the start of iteration 𝑖, 𝑠𝑢𝑚 contains the sum of 𝐴 1. . 𝑖 − 1 .

Termination

The loop terminates when 𝑖 > 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ, so 𝑖 = 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ + 1.

By the loop invariant we know that 𝑠𝑢𝑚 contains the sum

of 𝐴 1. . 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ + 1 − 1 = 𝐴[1. . 𝐴. 𝑙𝑒𝑛𝑔𝑡ℎ].

This is exactly what we wanted to compute.

Basic Example

sum = 0

for i = 1 to A.length

do sum = sum + A[i]

Tips and Tricks

Finding a Loop Invariant

What do you want to know at the end?

Loop Invariant (generally) proves something that is growing

I.e., 𝐴[1. . 𝑖 − 1]

Think about a specific iteration.

What do you know.

Which indices do you need at the start and end.

Tips and Tricks

What do you want to know at the end?

I want to show that 𝑠𝑢𝑚 contains the sum of all elements in 𝐴.

So I need to know something about 𝑠𝑢𝑚 and 𝐴.

I now know the loop invariant should contain 𝐴 and 𝑠𝑢𝑚.

sum = 0

for i = 1 to A.length

do sum = sum + A[i]

Tips and Tricks

Loop Invariant (generally) proves something that is growing

What does my loop do?

In each iteration I know something more about the array 𝐴.

I’m going through the loop starting at the beginning of 𝐴.

So perhaps I can do something like 𝐴[1. . 𝑖 − 1].

sum = 0

for i = 1 to A.length

do sum = sum + A[i]

Tips and Tricks

Think about a specific iteration

Let’s think about a random iteration 5. What do I know?

I will have seen items 1, 2, 3 and 4.

And assuming my program works, 𝑠𝑢𝑚 should be their sum.

The rest of the array I do not yet know.

It seems that:

At the start of iteration 5, sum contains the sum of A[1..4]

sum = 0

for i = 1 to A.length

do sum = sum + A[i]

Tips and Tricks

Finding a Loop Invariant

What do you want to know at the end?

Loop Invariant (generally) proves something that is growing

I.e., 𝐴[1. . 𝑖 − 1]

Think about a specific iteration.

What do you know.

Which indices do you need at the start and end.

Loop Invariant

At the start of iteration 𝑖, 𝑠𝑢𝑚 contains the sum of 𝐴[1. . 𝑖 − 1].

Notes

Invariant

Be careful with 𝑖 or 𝑖 − 1.

Maintenance

Use loop invariant at start of loop to prove loop invariant at start of next loop.

Termination

Requires loop invariant

At which value does the loop terminate?

1. for i = n downto 1

2. do stuff

1. while x2 < n

2. do x = x + 1

1. while x ≤ n

2. do x = x + 2

Termination values?

i = 0 x = ⌈√n⌉ x = n+1 or x = n+2

Practice

Prove using loop invariant that… 𝑦 = 𝑐 after the loop.

x = c

y = 0

while x > 0

do x--;

y++;

Practice

Loop Invariant:

At the start of iteration, 𝑥 + 𝑦 = 𝑐.

Initialization:

At the start, x = c and 𝑦 = 0,

so 𝑥 + 𝑦 = 𝑐 which is correct.

x = c

y = 0

while x > 0

do x--;

y++;

Practice

Maintenance:

Assume that the loop invariance holds at the start

of loop 𝑖. Then 𝑥 + 𝑦 = 𝑐. Let 𝑥’ and 𝑦’ be the

Values of x and y at the end of the loop.

We know 𝑥’ = 𝑥 – 1 and 𝑦’ = 𝑦 + 1.

But then at the end of the loop it holds that

𝑥’ + 𝑦’ = 𝑥 − 1 + 𝑦 + 1 = 𝑥 + 𝑦 = 𝑐.

Thus the loop invariant is maintained.

Termination:

At termination, x = 0. By the loop invariant we know 𝑥 + 𝑦 = 𝑐.

Combining both statements gives 𝑦 = 𝑐.

x = c

y = 0

while x > 0

do x--;

y++;

Loop Invariant or Induction??

Differences and similarities…

(Dis)similarities

Loop Invariant

 … is a special kind of induction

 … used to prove loops (…obviously…)

 … has a termination condition

Induction

 Induction can have multiple base cases

 There are other forms of induction (e.g, structural induction)

Always

 Induction Hypothesis is like Loop Invariant

 Maintenance (/Step), assumes LI (/IH) and proves it for next.

Overview

Basic Proving Techniques

1. Forward-backward method

2. Mathematical induction

3. Case analysis

4. Proof by contradiction

Case Analysis

A) Suitcase B) Bookcase C) In case …

Case Analysis

Case analysis

Prove the theorem by considering a small number of cases

P1, P2, and P3 describe the different cases

Don’t forget to prove: P1 or P2 or P3 (one of the cases must hold)!

Let’s prove P ⇒ Q P1 ⇒ Q

P2 ⇒ Q

P ⇒ P1 ⋁ P2 ⋁ P3

P3 ⇒ Q

Usage

When to use?

Generally useful for a “for all”-quantifier

Can be broken down into a small number of configurations

Examples

 An integer is odd or even

 An integer is positive, negative, or zero

 x ≤ y or y < x

 A quadrilateral is convex or not

Basic Example

Theorem

I do not like any teletubby. Let’s prove P ⇒ Q

Basic Example

Theorem

For any teletubby, I do not like it.

Case 1 (Tinky-Winky):

Is purple.

I don’t like purple.

Thus, I do not like Tinky-Winky.

Let’s prove P ⇒ Q

P1 ⇒ Q

Basic Example

Theorem

For any teletubby, I do not like it.

Case 2 (Po):

Has a circle on his head.

I don’t like circles.

Thus, I do not like Po.

Let’s prove P ⇒ Q

P2 ⇒ Q

Basic Example

Theorem

For any teletubby, I do not like it.

Case 1 (Tinky-Winky):

…

…

Case 4 (Dispy):

…

As any teletubby must fall into these categories

(by definition), I do not like any teletubby.

Let’s prove P ⇒ Q

P1 ⇒ Q

P4 ⇒ Q

P ⇒ P1 ⋁ P2 ⋁ P3⋁ P4

Example

Theorem

For any integer 𝑥, 𝑥(𝑥 + 1) is even

Proof

Right now we know nothing about 𝑥, which makes it hard to prove

that 𝑥(𝑥 + 1) is even (we have nothing to work with).

What happens if x is odd?

In that case (𝑥 + 1) is even, and hence the multiplication must be

even.

What happens if x is even?

Doesn’t really matter, the multiplication will be even.

Example

Theorem

For any integer 𝑥, 𝑥(𝑥 + 1) is even

Proof

We consider two cases:

Case (1): 𝑥 is odd

Then there exists an integer 𝑘 such that 𝑥 = 2𝑘 + 1. Hence,

𝑥(𝑥 + 1) = (2𝑘 + 1) (2𝑘 + 2) = 2 (2𝑘 + 1) (𝑘 + 1).

Thus, 𝑥(𝑥 + 1) is even.

Case (2): 𝑥 is even

Then there exists an integer 𝑘 such that 𝑥 = 2𝑘. Hence,

𝑥(𝑥 + 1) = 2𝑘 (2𝑘 + 1) = 2 (2𝑘2 + 𝑘).

Thus, 𝑥(𝑥 + 1) is even.

Since an integer is either odd or even, this concludes the proof. □

Often (incorrectly) omitted

Loop Invariant

At the start of iteration i, large is the biggest even value in A[1..i-1]

(or -∞ if there are no even numbers in A[1..i-1]).

Maintenance

We assume the loop invariant (LI) holds at the start of iteration i.

Then large is the biggest even value in A[1..i-1].

…..

So we have proven the LI is also true at the start of iteration i+1.

Practice 1

Algorithm LargeEven(A)

large = -∞

for i = 1 to n

if A[i] > large and A[i] is even

then large = A[i]

Assumption

At the start of iteration i, large is the biggest even value in A[1..i-1]

(or -∞ if there are no even numbers in A[1..i-1])..

Claim

At the start of iteration i+1, large is the biggest even value in A[1..i]

(or -∞ if there are no even numbers in A[1..i])...

Practice 1

Algorithm LargeEven(A)

large = -∞

for i = 1 to n

if A[i] > large and A[i] is even

then large = A[i]

Assump: At the start of iteration i, large is the biggest even value in A[1..i-1].

Claim: At the start of iteration i+1, large is the biggest even value in A[1..i].

Proof:

At the start of iteration i+1, large is the biggest even number in A[1..i].

There are three cases.

Case 1) A[i] > large and A[i] is odd

As A[i] is odd is can not change the value of the biggest even

number. Large was the biggest even number in A[1..i-1], so large

is also the biggest even number in A[1..i-1] ∪ A[i] = A[1..i].

Case 2) A[i] ≤ large

The biggest even number in A[1..i-1] is large. As A[i] ≤ large, the

biggest even number in A[1..i-1] ∪ A[i] = A[1..i] is still large.

Practice 1

Assump: At the start of iteration i, large is the biggest even value in A[1..i-1].

Claim: At the start of iteration i+1, large is the biggest even value in A[1..i].

Proof:

At the start of iteration i+1, large is the biggest even number in A[1..i].

There are three cases.

Case 3) A[i] > large and A[i] is even

large is the biggest even number in A[1..i-1], and A[i] is even

bigger than large. Then A[i] is bigger than any number in A[1..i-1].

So A[i] is the biggest number in A[1..i].

large is changed to A[i], so large now holds the biggest number in

A[1..i].

As it must either hold that A[i] > large or A[i] ≤ large

and also either that A[i] is even or odd,

these cases cover all possibilities.

Practice 1

Practice 2

Theorem

Among any 6 people there are 3 mutual friends or 3 mutual

strangers.

Overview

Basic Proving Techniques

1. Forward-backward method

2. Mathematical induction

3. Case analysis

4. Proof by contradiction

Proof by Contradiction

It’s elementary…

Contradiction

Proof by Contradiction

 Assume the negation and show that “it is impossible”

 To prove Q:

 Assume ¬Q and derive contradiction (false) by forward reasoning

 To prove ¬Q:

 Assume Q and derive contradiction…

 Very powerful technique!

“When you have eliminated the

impossible, whatever remains, however

improbable, must be the truth”

Usage

When to use?

 Useful when the negation of the statement is easier to work with

 Useful when the negation as a premise gives more information

 E.g. when the negation has a “there exists”-quantifier

 Always try this method if you’re stuck!

Basic Example

Theorem

I never leave my house without my Ferrari

Proof

For sake of contradiction,

assume I did leave my house without my Ferrari.

But then I would not look cool (by Lemma X).

I am very cool (by Axiom Y).

Contradiction, thus the assumption must be false.

Hence, I never leave my house without my Ferrari.

Rational Numbers

Definition

A number x is rational if there exists integers a and b such that

x = a / b

Examples

 6, ⅓, and -⅝ are rational

 π and e are irrational (not rational)

Example

Theorem

2 is irrational

Proof

We should prove there exist no integers 𝑎, 𝑏 such that 2 = 𝑎/𝑏.

What can we do with that? Not sure…

How about a proof by contradiction?

That means we assume that such a and b do exist.

What is wrong with that?

Example

Theorem

2 is irrational

Proof

For the sake of contradiction, assume there exist integers 𝑎 and 𝑏 such

that 2 = 𝑎/𝑏. Without loss of generality we assume 𝑏 > 0 (why?).

Square both sides and rewrite to obtain 2𝑏2 = 𝑎2.

This means that 𝑎2 is even and thus 𝑎 is even.

Hence there exists a 𝑘 such that 𝑎 = 2𝑘.

But then 2𝑏2 = 𝑎2 = (2𝑘)2 or 𝑏2 = 2𝑘2, and thus 𝑏 is also even.

So both 𝑎 and 𝑏 are even.

If 𝑏 = 2𝑚, then 𝑎/𝑏 = 2𝑘/2𝑚 = 𝑘/𝑚 = 2.

And 𝑘 and 𝑚 are smaller integers. The same argument for 𝑘 and 𝑚
gives even smaller integers. This cannot go on forever!

Example

Theorem

2 is irrational

Proof

For the sake of contradiction, let 𝑎 and 𝑏 be the smallest positive

integers such that 2 = 𝑎/𝑏. Square both sides and rewrite to

obtain 2𝑏2 = 𝑎2. This means that 𝑎2 is even and thus 𝑎 is even.

Hence there exists a 𝑘 such that 𝑎 = 2𝑘.

But then 2𝑏2 = 𝑎2 = 4𝑘2 or 𝑏2 = 2𝑘2, thus there exists an integer

𝑚 such that 𝑏 = 2𝑚. We get that a/b = 2𝑘/2𝑚 = 𝑘/𝑚 = 2.

But 𝑘 and 𝑚 are smaller than 𝑎 and 𝑏, which contradicts the

assumption that 𝑎 and 𝑏 are smallest positive integers such that

2 = 𝑎/𝑏. Thus, we find a contradiction and our assumption must

be false. Thus, there exists no a and b such that 2 = 𝑎/𝑏 and it

must be that 2 is irrational. □

Practice

Theorem: 𝑛2 log 𝑛 ≠ 𝑂(𝑛2)

Proof

For the sake of contradiction, assume that there exist positive

constants 𝑐 and 𝑛0 such that 𝑛2 log 𝑛 ≤ 𝑐 𝑛2 for all 𝑛 ≥ 𝑛0.

By dividing both sides by 𝑛2, we obtain that log 𝑛 ≤ 𝑐 for all 𝑛 ≥ 𝑛0.

This is false for 𝑛 = max(2𝑐+1, 𝑛0), since then

log 𝑛 ≥ log 2𝑐+1 = 𝑐 + 1 > 𝑐.

This contradicts that log 𝑛 ≤ 𝑐 for all 𝑛 ≥ 𝑛0.

Thus, 𝑛2 log 𝑛 ≠ 𝑂(𝑛2). □

Usually it is sufficient to say that the function 𝑓(𝑛)(in this case:

log 𝑛) is unbounded. This automatically implies that, for any
constant 𝑐, there exists an 𝑛 large enough such that 𝑓(𝑛) > 𝑐.

Practice

Theorem

𝑛2 log 𝑛 ≠ 𝑂(𝑛2)

Proof

For the sake of contradiction, assume that there exist positive

constants 𝑐 and 𝑛0 such that 𝑛2 log 𝑛 ≤ 𝑐 𝑛2 for all 𝑛 ≥ 𝑛0.

By dividing both sides by 𝑛2, we obtain that log 𝑛 ≤ 𝑐 for all 𝑛 ≥ 𝑛0.

As lim
𝑛→∞

log 𝑛 = ∞, there can not exist a constant 𝑐 that is always

larger. Thus, the assumption must be false.□

Common Errors

As can be seen in Figure 4 this is true…

Find the correct proofs!

Correct or not? - Test

Theorem

In every set of 𝑛 ≥ 1 horses, all horses have the same color

Proof

We use induction on 𝑛.

Base case (𝑛 = 1):

There is only one horse, so it must be true. The IH holds.

IH: In every set of 𝑛 ≥ 1 horses, all horses have the same color.

Step (𝑛 ≥ 1):

Suppose that in every set of 𝑛 horses, all horses have the same color

(IH).

We need to show that any set of 𝑛 + 1 horses share the same color.

By the IH, the first 𝑛 horses have the same color. Similarly, by the IH,

the last 𝑛 horses have the same color. Thus all horses have the same

color. □

Base Case not reached (NOT correct)

Theorem

In every set of 𝑛 ≥ 1 horses, all horses have the same color

Proof

We use induction on 𝑛.

Base case (𝑛 = 1):

There is only one horse, so it must be true. The IH holds.

IH: In every set of 𝑛 ≥ 1 horses, all horses have the same color.

Step (𝑛 ≥ 1):

Suppose that in every set of 𝑛 horses, all horses have the same color

(IH).

We need to show that any set of 𝑛 + 1 horses share the same color.

By the IH, the first 𝑛 horses have the same color. Similarly, by the IH,

the last 𝑛 horses have the same color. Thus all horses have the same

color. □

Correct or not?

Theorem

In a sorted list duplicates are always next to each other.

Proof

If we look at a sorted list, for example [1,3,3,4,7] both values of 3 are

next to each other in the list. Clearly, this list is sorted and both values

are next to each other.

Thus, duplicates must be next to each other in a sorted list.

Proof by Example (NOT correct)

Theorem

In a sorted list duplicates are always next to each other.

Proof

If we look at a sorted list, for example [1,3,3,4,7] both values of 3 are

next to each other in the list. Clearly, this list is sorted and both values

are next to each other.

Thus, duplicates must be next to each other in a sorted list.

Correct or not?

Theorem

For any integer 𝑥, 𝑥(𝑥 + 1) is even

Proof

We consider two cases:

Case (1): 𝑥 is odd

Then there exists an integer 𝑘 such that 𝑥 = 2𝑘 + 1. Hence,

𝑥(𝑥 + 1) = (2𝑘 + 1) (2𝑘 + 2) = 2 (2𝑘 + 1) (𝑘 + 1).

Thus, 𝑥(𝑥 + 1) is even.

Case (2): 𝑥 is even

Then there exists an integer 𝑘 such that 𝑥 = 2𝑘. Hence,

𝑥(𝑥 + 1) = 2𝑘 (2𝑘 + 1) = 2 (2𝑘2 + 𝑘).

Thus, 𝑥(𝑥 + 1) is even.

Finishing proofs (NOT correct)

Theorem

For any integer 𝑥, 𝑥(𝑥 + 1) is even

Proof

We consider two cases:

Case (1): 𝑥 is odd

Then there exists an integer 𝑘 such that 𝑥 = 2𝑘 + 1. Hence,

𝑥(𝑥 + 1) = (2𝑘 + 1) (2𝑘 + 2) = 2 (2𝑘 + 1) (𝑘 + 1).

Thus, 𝑥(𝑥 + 1) is even.

Case (2): 𝑥 is even

Then there exists an integer 𝑘 such that 𝑥 = 2𝑘. Hence,

𝑥(𝑥 + 1) = 2𝑘 (2𝑘 + 1) = 2 (2𝑘2 + 𝑘).

Thus, 𝑥(𝑥 + 1) is even.

Proof Techniques Summary

Basic Proving Techniques

1. Forward-backward method

2. Mathematical induction

3. Case analysis

4. Proof by contradiction

