Asymptotic Analysis

Data Structures and Algorithms

■ Algorithm: Outline, the essence of a computational procedure, step-by-step instructions

□ Program: an implementation of an algorithm in some programming language

■ Data structure: Organization of data needed to solve the problem

Algorithmic problem

Specification of output as a function of input

- Infinite number of input instances satisfying the specification.
 - For eg: A sorted, non-decreasing sequence of natural numbers of non-zero, finite length:
 - □ 1, 20, 908, 909, 100000, 100000000.
 - □ 3.

Algorithmic Solution

Input instance, adhering to the specification

Algorithm

Output related to the input as required

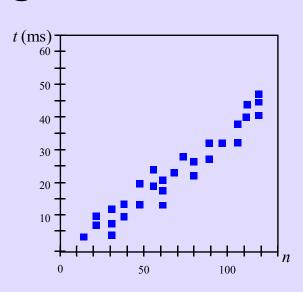
- □ Algorithm describes actions on the input instance
- many correct algorithms for the same algorithmic problem

What is a Good Algorithm?

- ☐ Efficient:
 - □ Running time
 - □ Space used
- □ Efficiency as a function of input size:
 - □ The number of bits in an input number
 - Number of data elements (numbers, points)

Measuring the Running Time

How should we measure the running time of an algorithm?



Experimental Study

- □ Write a program that implements the algorithm
- □ Run the program with data sets of varying size and composition.
- Use a system call to get an accurate measure of the actual running time.

Limitations of Experimental Studies

- □ It is necessary to implement and test the algorithm in order to determine its running time.
- □ Experiments done only on a limited set of inputs,
 - may not be indicative of the running time on other inputs not included in the experiment.

In order to compare two algorithms, the same hardware and software environments needed

Beyond Experimental Studies

We will develop a general methodology for analyzing running time of algorithms. This approach

- Uses a high-level description of the algorithm instead of testing one of its implementations.
- □ Takes into account all possible inputs.
- □ Allows one to evaluate the efficiency of any algorithm in a way that is independent of the hardware and software environment.

Example

□ **Algorithm** arrayMax(A, n):

Input: An array A storing n integers.

Output: The maximum element in A.

Pseudo-code (Functional / Recursive)

Pseudo-Code (imperative)

- A mixture of natural language and high-level programming concepts that describes the main ideas behind a generic implementation of a data structure or algorithm.
- □ Eg: algorithm arrayMax(A, n):

Input: An array A storing n integers.

Output: The maximum element in A.

currentMax \leftarrow A[0]

for $i \leftarrow 1$ to n-1 do

if currentMax < A[i] then currentMax ← A[i]</pre>

return currentMax

Pseudo-Code

It is more structured than usual prose but less formal than a programming language

- □ Expressions:
 - use standard mathematical symbols to describe numeric and boolean expressions
 - □ use ← for assignment ("=" in Java)
 - □ use = for equality relationship ("==" in Java)
- Method Declarations:
 - □ algorithm name(param1, param2)

Pseudo Code

- □ Programming Constructs:
 - □ decision structures: if ... then ... [else ...]
 - while-loops: while ... do
 - □ repeat-loops: **repeat ... until ...**
 - □ for-loop: **for ... do**
 - □ array indexing: A[i], A[i,j]
- Methods:
 - □ calls: object method(args)
 - returns: return value

Analysis of Algorithms

- □ Primitive Operation: Low-level operation independent of programming language.
 Can be identified in pseudo-code. For eg:
 - □ Data movement (assign)
 - □ Control (branch, subroutine call, return)
 - arithmetic an logical operations (e.g. addition, comparison)
- By inspecting the pseudo-code, we can count the number of primitive operations executed by an algorithm.

Example: Sorting

INPUT

sequence of numbers

OUTPUT

a permutation of the sequence of numbers

$$b_1,b_2,b_3,\ldots,b_n$$

$$2 \quad 4 \quad 5 \quad 7 \quad 10$$

Correctness (requirements for the output)

For any given input the algorithm halts with the output:

•
$$b_1 < b_2 < b_3 < \dots < b_n$$

•
$$b_1$$
, b_2 , b_3 ,, b_n is a permutation of a_1 , a_2 , a_3 ,...., a_n

Running time

Depends on

- number of elements (n)
- how (partially) sorted they are
- algorithm

Insertion Sort

Strategy

- Start "empty handed"
- Insert a card in the right position of the already sorted hand
- Continue until all cards are inserted/sorted

INPUT: A[0..n-1] – an array of integers OUTPUT: a permutation of A such that $A[0] \le A[1] \le ... \le A[n-1]$

Pseudo-code (Functional / Recursive)

```
algorithm insertionSort(A[0..n-1])
                                            if n=1
 A[0]
  insert(insertionSort(A[0..n-2]), A[n-1])
                                           O.W.
algorithm insert(A[0..n-1], key)
 append(A[0..n-1], key)
                                       if key > = A[n-1]
                                     if n=1&key<A[0]
 append(newarray(key), A[0])
 append(insert(A[0..n-2],key), A[n-1])
```

Insertion Sort

Strategy

- Start "empty handed"
- Insert a card in the right position of the already sorted hand
- Continue until all cards are inserted/sorted

 $A[0] \le A[1] \le ... \le A[n-1]$ for $j \leftarrow 1$ to n-1 do $k \in y \leftarrow A[j]$ //insert A[j] into the sorted sequence A[0..j-1] $i \leftarrow j-1$ while i >= 0 and $A[i] > k \in y$ do $A[i+1] \leftarrow A[i]$

 $A[i+1] \leftarrow key$

INPUT: A[0..n-1] – an array of integers

OUTPUT: a permutation of A such that

Analysis of Insertion Sort

```
Times
                                           cost
for j\leftarrow 1 to n-1 do
                                             C_1
                                                      n-1
                                             C_2
 key←A[j]
                                                      n-1
 //insert A[j] into the sorted
 sequence A[0..j-1]
                                                      \sum_{j=1}^{n-1} t_j
                                             C_3
 i←j-1
                                             C_4
 while i \ge 0 and A[i] \ge key
                                                     \sum_{j=1}^{n-1} (t_j - 1)
                                             C_5
    do A[i+1] \leftarrow A[i]
                                             C_6 \qquad \sum_{j=1}^{n-1} (t_j - 1)
          i--
                                                      n-1
                                             C_7
 A[i+1] \leftarrow key
```

Total time =
$$n(c_1+c_2+c_3+c_7) + \sum_{j=1}^{n-1} t_j (c_4+c_5+c_6) - (c_2+c_3+c_5+c_6+c_7)$$

Best/Worst/Average Case

Total time =
$$n(c_1+c_2+c_3+c_7) + \sum_{j=1}^{n-1} t_j (c_4+c_5+c_6) - (c_2+c_3+c_5+c_6+c_7)$$

■ Best case:

□ elements already sorted; t_j=1, running time = f(n), i.e., *linear* time.

■ Worst case:

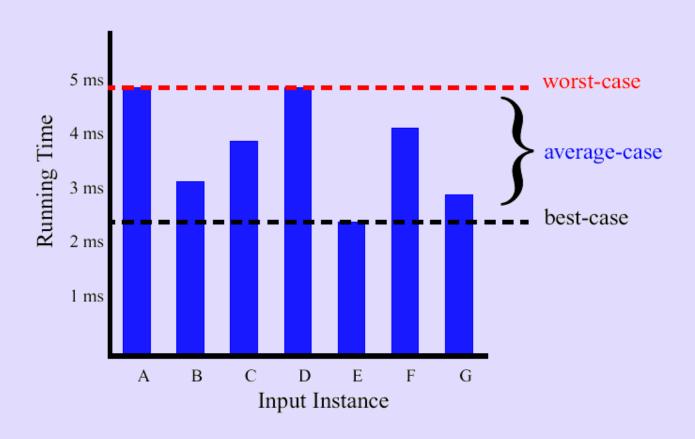
□ elements are sorted in inverse order; $t_j=j+1$, running time = $f(n^2)$, i.e., *quadratic* time

■ Average case:

 $\Box t_i = (j+1)/2$, running time = $f(n^2)$, i.e., *quadratic* time

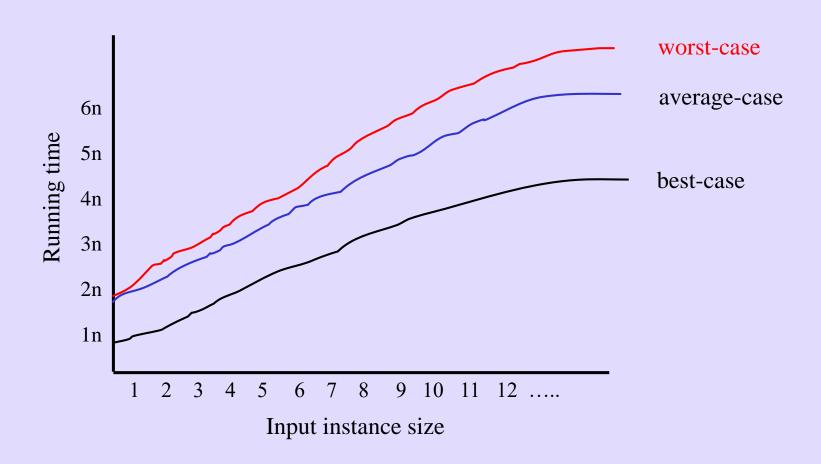
Best/Worst/Average Case (2)

□ For a specific size of input n, investigate running times for different input instances:



Best/Worst/Average Case (3)

For inputs of all sizes:



Best/Worst/Average Case (4)

- Worst case is usually used: It is an upperbound and in certain application domains (e.g., air traffic control, surgery) knowing the worstcase time complexity is of crucial importance
- □ For some algos worst case occurs fairly often
- □ Average case is often as bad as worst case

□ Finding average case can be very difficult

Asymptotic Analysis

- Goal: to simplify analysis of running time by getting rid of "details", which may be affected by specific implementation and hardware
 - □ like "rounding": 1,000,001 ≈ 1,000,000
 - $\square 3n^2 \approx n^2$

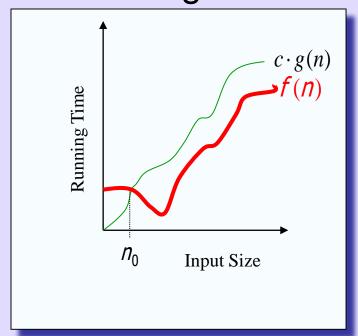
- Capturing the essence: how the running time of an algorithm increases with the size of the input in the limit.
 - Asymptotically more efficient algorithms are best for all but small inputs

- ☐ The "big-Oh" O-Notation
 - asymptotic upper bound
 - \Box f(n) is O(g(n)), if there exists constants c and n_0 , s.t. f(n) \leq c g(n) for all $n \geq n_0$

☐ f(n) and g(n) are functions over non-negative

integers

□ Used for worst-case analysis

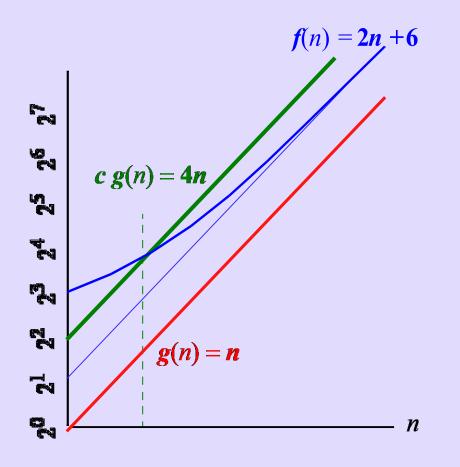


Example

For functions f(n) and g(n) there are positive constants c and n_0 such that: $f(n) \le c$ g(n) for $n \ge n_0$

conclusion:

2n+6 is O(n).



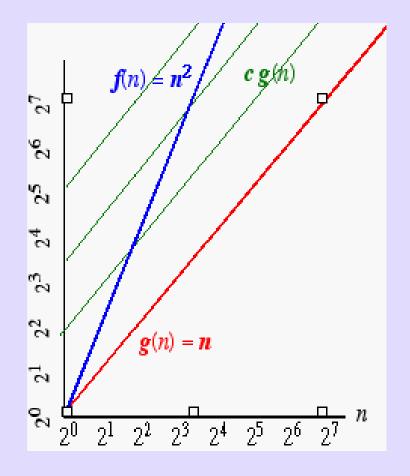
Another Example

On the other hand...

 n^2 is not O(n) because there is no c and n_0 such that:

$$n^2 \le cn$$
 for $n \ge n_0$

The graph to the right illustrates that no matter how large a c is chosen there is an n big enough that $n^2 > cn$



- Simple Rule: Drop lower order terms and constant factors.
 - \square 50 $n \log n$ is $O(n \log n)$
 - \square 7*n* 3 is O(*n*)
 - $\square 8n^2 \log n + 5n^2 + n \text{ is } O(n^2 \log n)$
- Note: Even though (50 n log n) is O(n^5), it is expected that such an approximation be of as small an order as possible

Asymptotic Analysis of Running Time

- Use O-notation to express number of primitive operations executed as function of input size.
- Comparing asymptotic running times
 - \square an algorithm that runs in O(n) time is better than one that runs in $O(n^2)$ time
 - □ similarly, O(log n) is better than O(n)
 - □ hierarchy of functions: $\log n < n < n^2 < n^3 < 2^n$
- □ Caution! Beware of very large constant factors.
 An algorithm running in time 1,000,000 n is still O(n) but might be less efficient than one running in time 2n², which is O(n²)

Example of Asymptotic Analysis

Algorithm prefixAverages1(X):

Input: An n-element array X of numbers.

Output: An n-element array A of numbers such that A[i] is the average of elements X[0], ..., X[i].

```
for i \leftarrow 0 to n-1 do
a \leftarrow 0
for j \leftarrow 0 to i do
a \leftarrow a + X[j] \leftarrow 1 \text{ step}
A[i] \leftarrow a/(i+1)
i i iterations with
i = 0,1,2...n-1
```

return array A

Analysis: running time is O(n²)

A Better Algorithm

Algorithm prefixAverages2(X):

Input: An *n*-element array X of numbers.

Output: An n-element array A of numbers such that A[i] is the average of elements X[0], ..., X[i].

$$s \leftarrow 0$$

for $i \leftarrow 0$ to n do

$$s \leftarrow s + X[i]$$

A[i] $\leftarrow s/(i+1)$

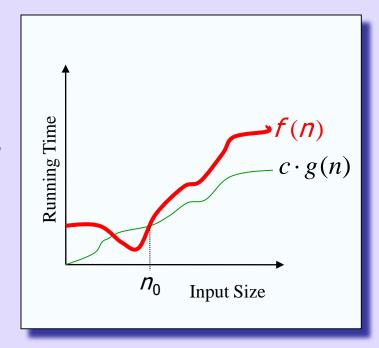
return array A

Analysis: Running time is O(n)

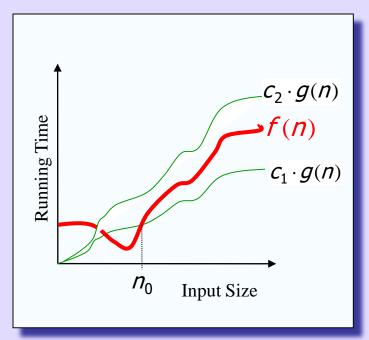
Asymptotic Notation (terminology)

- Special classes of algorithms:
 - □ Logarithmic: O(log n)
 - □ Linear: O(n)
 - □ Quadratic: O(n²)
 - □ Polynomial: O(n^k), k ≥ 1
 - \square Exponential: O(aⁿ), a > 1
- "Relatives" of the Big-Oh
 - $\square \Omega$ (f(n)): Big Omega -asymptotic *lower* bound
 - $\square \Theta$ (f(n)): Big Theta -asymptotic *tight* bound

- The "big-Omega" Ω–
 Notation
 - asymptotic lower bound
 - □ f(n) is $\Omega(g(n))$ if there exists constants c and n_0 , s.t. c g(n) ≤ <math>f(n) for $n ≥ n_0$
- Used to describe bestcase running times or lower bounds for algorithmic problems
 - \square E.g., lower-bound for searching in an unsorted array is $\Omega(n)$.



- □ The "big-Theta" Θ– Notation
 - asymptotically tight bound
 - □ f(n) is $\Theta(g(n))$ if there exists constants c_1 , c_2 , and n_0 , s.t. c_1 $g(n) \le f(n) \le c_2$ g(n) for $n \ge n_0$
- □ f(n) is $\Theta(g(n))$ if and only if f(n) is O(g(n)) and f(n) is $\Omega(g(n))$
- \square O(f(n)) is often misused instead of $\Theta(f(n))$



Two more asymptotic notations

- □ "Little-Oh" notation f(n) is o(g(n)) non-tight analogue of Big-Oh
 - □ For every c>0, there should exist n_0 , s.t. $f(n) \le c g(n)$ for $n \ge n_0$
 - □ Used for **comparisons** of running times. If f(n) is o(g(n)), it is said that g(n) dominates f(n).
- □ "Little-omega" notation f(n) is $\omega(g(n))$ non-tight analogue of Big-Omega

- □ Analogy with real numbers
 - $\Box f(n)$ is $O(g(n)) \cong f \leq g$
 - $\Box f(n) \text{ is } \Omega(g(n)) \cong f \geq g$
 - $\Box f(n) \text{ is } \Theta(g(n)) \cong f = g$
 - $\Box f(n)$ is $o(g(n)) \cong f < g$
 - $\Box f(n)$ is $\omega(g(n)) \cong f > g$
- □ Abuse of notation: f(n) = O(g(n)) actually means $f(n) \in O(g(n))$

Comparison of Running Times

Running Time	Maximum problem size (n)		
	1 second	1 minute	1 hour
400 <i>n</i>	2500	150000	9000000
20 <i>n</i> log <i>n</i>	4096	166666	7826087
2 <i>n</i> ²	707	5477	42426
n ⁴	31	88	244
2 ⁿ	19	25	31