

ASSIGNMENT 4: HASHING for STRINGS

Goal: The goal of this assignment is to get some practice with collision resolution and hash functions. On the side

you will also learn basic string manipulations. It’s a fun assignment where the task is to find valid anagrams of a given

input.

Problem Statement: You are given a vocabulary V of (lowercase) English words. It uses letters of English alphabet

[a-z], digits [0-9], and the apostrophe symbol [']. No other characters are used in the vocabulary V. Your goal is to

print out all valid anagrams of an input string. The input string will be a sequence of at most 12 characters.

Anagram: Two strings are anagrams of each other if by rearranging letters of one string you can obtain the other. For

example, “a bit” is an anagram of “bait”, and “super” is an anagram of “purse”. Note that we can add spaces at will,

i.e., we won’t count spaces when matching characters for checking anagrams.

In this assignment, you will load V from the text file and then be ready to compute anagrams. You will be provided an

input file also in the text format. In both vocabulary and input files there will be one string written per line. Your goal

will be compute all valid anagrams (i.e., each word within your anagram must be present in V) of all input strings. After

computing all valid anagrams of one string you must output a ‘-1’ to indicate that you are done computing anagrams

of this string. For the purpose of this assignment, you only have to compute anagrams with a maximum of 2 spaces in

them (i.e., three words at most). However, each permutation of these words will also be a valid anagram.

This is the first assignment in the course where you will be evaluated not only on the correctness of your code, but

also on the runtime efficiency of the code. You can compute the time taken for your code to run using the built-in

getTimeMillis() command.

Vocabulary File: The vocabulary file (vocabulary.txt) will be provided in the resources of the assignment. The first

line of the Vocabulary will indicate the number of words in the Vocabulary (V), followed by one word per line (all

lowercase and no spaces). A sample vocabulary.txt is given below:

6

a

it

bit

bat

tab

i

Input File: The input file (input.txt) will be an input to the code at runtime. The first line will have the number (K)

of input strings. This will be followed by K lines, with one string per line. It will have only lowercase letters, digits, and

apostrophe. It will not have a space. A sample input.txt is given as under

2

bait

bb

Output File: You will produce all valid anagrams of each input string and output -1 after finishing with one input

and moving onto the next. The output for a particular string should be in lexicographic order. For example, for the

input file above you will output:

a bit

bat i

bit a

i bat

i tab

tab i

-1

-1

Note that for the second input word there were no valid anagrams found. Also note that the number of ‘-1’s in the

output should be exactly same as the number of input words in input.txt. Your output must be produced on stdout

(without any other extra information).

Hashing: The main purpose of the assignment is to have you store vocabulary appropriately and have you check for

anagrams efficiently. There may be many ways to store the vocabulary, but in this assignment you must hash each

valid word. You will have to implement your own hash function and your own collision resolution. You may use

chaining, or open addressing with any probe sequence. The goal is that your anagram computation should be as

efficient as possible. You may use any function within Java built-in String class, except hashCode() or any other inbuilt

hash functions.

Tip: To compute better time efficiency not only will you have to implement a good hashing mechanism, you will also

have to create an optimized approach to search through the space of anagrams. This may take some trial and error,

so start early!

For Humor: You must find some friend of yours (either in the class or otherwise) and output a funny anagram of

their name. Share this anagram with TA at the time of demo. There are no points for a more humorous anagram,

although there are points for completing this part of the task.

Code: Your code must compile and run on GCL machines. Your code will be run using the following command:

Javac Anagram.java

java Anagram vocabulary.txt input.txt

This implies that we can change the vocabulary.txt at the time of final evaluation. However, its size will be in the

range of the size of the vocabulary.txt we are providing with the assignment. Also, there will be no words in the

vocabulary that have sizes 1 or 2. That is, all valid words will be at least three characters long.

What is being provided?

The folder contains the following files :

vocabulary.txt

input.txt (sample test case)

What to submit?

1. Submit your code in a .zip file named in the format <EntryNo>.zip. Make sure that when we run “unzip

yourfile.zip” in addition to your code “writeup.txt” should be produced in the working directory.

You will be penalized for any submissions that do not conform to this requirement.

2. The writeup.txt should have a line that lists names of all students you discussed/collaborated with (see

guidelines on collaboration vs. cheating on the course home page). If you never discussed the assignment

with anyone say None.

After this line, you are welcome to write something about your code, though this is not necessary.

Evaluation Criteria

The assignment is worth 4.5 points. Your code will be autograded at the demo time against a series of tests. 1.5 points

will be provided for correct output and 1.5 points will be awarded for efficient code (based on how well it performs

based on the rest of the students in the class). 1.5 points will be awarded for adequately answering demo questions,

sharing your friend’s anagram and explaining your code and choices, and any interesting approaches you tried.

HackerRank for Sample Test Cases

Some students complained that they do not get much feedback when they are implementing their code. To help you,

we have set up a challenge on HackerRank at the following URL:

https://www.hackerrank.com/contests/col106-a4/

1. Follow this link, click on the “Sign Up” option on the contest page and follow the instructions on screen to set up

your HackerRank account.

2. Once your HackerRank account is setup, you will be redirected to the contest page. Click on the “Find the Anagram”

Challenge.

3. You will be presented with the instructions for the challenge. For HackerRank, the input has to be taken from

standard input. Follow the instructions of the challenge to take the input. Output will be to stdout.

4. Paste your code in the editor at the bottom of the page, choose the appropriate version of Java, and click on Run

Code to test your code against sample test cases.

5. You can also click on Submit Code to check your code against hidden test cases to get an idea whether your code is

able to handle a variety of edge cases.

https://www.hackerrank.com/contests/col106-a4/

What is allowed? What is not?

1. This is an individual assignment.

2. Your code must be your own. You are not to take guidance from any general purpose code or problem specific

code meant to solve these or related problems.

3. You are not allowed to use built-in (or anyone else’s) implementations of hash functions or hashing scheme.

A key aspect of the course is to have you learn how to implement hashing.

4. You are allowed to use built-in Java String functions. You are also allowed to use built-in sorting functions.

5. You should develop your algorithm using your own efforts. You should not Google search for direct solutions

to this assignment. However, you are welcome to Google search for generic Java-related syntax.

6. You must not discuss this assignment with anyone outside the class. Make sure you mention the names in

your write-up in case you discuss with anyone from within the class. Please read academic integrity

guidelines on the course home page and follow them carefully.

7. Your submitted code will be automatically evaluated against another set of benchmark problems. You get

significant penalty if your output is not automatically parsable and does not follow input-guidelines.

8. We will run plagiarism detection software. Anyone found guilty will be awarded a suitable penalty as per IIT

rules.

