
Introduction to CS

• Not a study of computers but computation

• But we do study computers as well

• Computability
• How to formally specify and abstract problems

• And design and evaluate solutions

• Algorithms and data management

• Efficient computation

What is an Algorithm

• Self-contained set of actionable steps that lead to a
solution

• with order among (some) steps clearly spelled out

• Incomplete without

• an understanding of steps

• an understanding of input requirements

• an understanding of output requirements

R1←@R2

Von-Neumann Model

Registers

 PC

Memory

0x1010101010

0x0000000101

Instructions

0x0101111100

0x0101000100
0x0101010101

Execution unit 0x0000000101

0x0111011110

+ *

Registers

 PC

0x0101111100

0x0101000100
0x0101010101

Execution unit

0x0111011110

+ *
R1←R1+R2

Memory Shared
Memory

<A1, A2, J>

Von-Neumann Model

Registers

 PC

0x0101111100

0x0101000100
0x0101010101

Execution unit

0x0111011110

+ *

Registers

 PC

0x0101111100

0x0101000100
0x0101010101

Execution unit

0x0111011110

+ *

Shared
Memory

Instructions

Instructions

R1←@R2
Instruction:

What is Programming?

• Express the problem formally

• Then say “Solve(Problem)”

• Formal vs Natural language
• High level language

• Preferably Turing complete

• Declarative style

• Imperative Style

• Object-oriented

• Syntax & Semantics

Language Styles

x, where x*x = n

Declarative

x = 0
while(x < n):
 if(x*x == n):
 return x
 x = x+1

Imperative

x = n.sqrt()

Object method sqrt:
y = 0
while(y < me):
 if(y*y == me):
 return y
 x = x+1

Object-oriented

(functional)

Program as
A Graph of Simpler Tasks

SUM: [1, 3, 6, 11, 21, 0]

1 3

+ 6

+ 11

+

0

21

+

+

1 3

+

6

+

11

+

+

021

+

Flow Chart

T < 20T =
Temperature

L = Load

L < 20%

Turn AC off

Start

Turn AC on

Y

N

Y

End

N

Programming is Problem-Solving

• Understand the problem: output for each input

• Formalize problem specification

• Formulate the over-all structure of the algorithm

• Coarse steps first

• Refine each step into simpler steps

• Until you know how to implement those steps

• Implement, Test & Maintain

IsThere(v, list)?

IsThere(v, list-left-half) IsThere(v, list-right-half)

Ans1 OR Ans2

return
 isThere(v, list.leftHalf)
 OR
 isThere(v, list.rightHalf)

IsThere(v, list)?

IsThere(v,
 list-1st-half)

IsThere(v,
 list-2nd-Half)

Ans1 OR Ans2

IsThere(v,
 list-1st-Half)

IsThere(v,
 list-2nd-Half)

Ans1 OR Ans2

Ans1 Ans2 Ans1 Ans2

Ans1 Ans2
Ans1 OR Ans2

IsThere(v, list)?

IsEqual(v,
 list-1st-element)

IsEqual(v,
 list-2nd element)

IsEqual(v,
 list-ith-element)

IsEqual(v,
 list-last-element)

OR
for all i ∈ [0..n)
 if(list[i] == v)
 return TRUE

return FALSE

How does a Program Look?

• A set of instructions in a “programming language”
• May maintains state

• Notion of Variables

• Or, name and binding

• Collections

• May take action based on (some part of) current state
• May repeatedly take action
• May interact with other programs, people, or devices

Programming Steps

• Understand specification

• Formulate as formally as you can

• Devise the test plan
• Algorithmic design

• Analyse the performance

• Refine the test plan
• Implement incrementally

• Test each time

• Error debugging + performance debugging

Repeat as
necessary

Programming Errors

• Syntax/ Semantic errors
• Crash

• Exception, Illegal access, Resource unavailability, System
fault

• Hang
• Wrong answer

• Occasionally wrong

Termination

• Any program without loops or recursion terminates
• For loop

• Find an integer function of some program variables

• Integer value is non-negative at the start of the loop

• Integer value is zero at the end of the loop

• Value of guaranteed to decrease progressively

• For a recursive function:

• every recursive call will eventually reach a basis case

Eve
ry

ex
ec

utio
n

Test Termination

def factorial(n):
 fact = 1
 for i in xrange(1, n+1):
 fact = fact * i
 return fact

def isThere(v, list):
 for l in list:
 if(l == v):
 return TRUE
return FALSE

v = length of list - position of l in list - 1

v = n - i if n > 0
0 otherwise

Programming Errors

• Syntax/ Semantic errors
• Crash

• Exception, Illegal access, Resource unavailability, System
fault

• Hang
• Wrong answer

• Occasionally wrong

Program Correctness

• Starts with a correct specification of the requirements
• Correctness can only be with respect to the specification

• Correct design

• Algorithmically correct

• Correct implementation

• Re-use of already correct code helps

Safe Coding Style

• Indicative names

• Comment

• Always check for error value returned by functions

• Handle exception

• Validate user input
• Assert known state

Prove Correctness

def factorial(n):
 fact = 1
 for i in xrange(1, n+1):
 fact = fact * i
 return fact

def isThere(v, list):
 for l in list:
 if(l == v):
 return TRUE
return FALSE

Check all termination conditions

Induction on n

fact = (i-1)!

fact = i!

Python: Understand Error Report

• SyntaxError
• IndentationError
• TypeError
• NameError
• IndexError
• UnboundLocalError
• AssertionError

