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Abstract—Independent mobility of visually impaired people
is key to making an inclusive society for them. Unstructured
infrastructure in developing countries pose significant challenges
in developing aids to address the mobility problem of visually
impaired. Most of the assistive devices available internationally
assume a structured and controlled environment severely restrict-
ing the applicability of such devices. In this paper, we assess
the ability of state-of-the-art assistive devices for addressing the
independent outdoor mobility needs of the visually impaired in
an unstructured environment. We have created realistic datasets
for various scenarios and evaluate deep neural networks for
object detection on these datasets. We also present a portable
prototype for the task. Further, we have also developed a cloud
based solution to address the mobility requirements. We compare
the local device based and cloud based solutions in terms of
accuracy, latency, and energy. We present and discuss results
from these two implementations that can provide insights for an
effective solution. The results and insights open up novel research
problems for embedded systems.

I. INTRODUCTION

World Health Organization (WHO) report [1] states that
a majority of visually impaired people reside in develop-
ing countries and survive in low income settings. Impaired
vision (or complete blindness) creates additional hindrances
for such people in performing their daily chores and limit
their development and inclusion in the society. Being able
to independently walk from one place to another (e.g., from
residence to place of work or school) is essential for social and
economic development of such differently abled population.

Unstructured infrastructure in developing countries pose
significant challenges towards independent mobility of visually
impaired. Various limitations of the solutions for developed
country settings are already studied [2], [3]. Elmannai and
Elleithy [4] present a survey of devices addressing mobility
challenges. A large number of such devices are targeted at
indoor mobility or require changes in infrastructure (e.g.,
bluetooth beacons). Our previous work [3] proposed MAVI
(Mobility Assistant for Visually Impaired) to solve unique
challenges for mobility in unstructured settings of developing
countries. However, it did not consider feasibility of state-of-
the-art solutions (e.g., neural network) for the object detection.

With the proliferation of network connectivity, using cloud
services for various computer vision tasks have become fea-
sible and attractive. In this work, we build a prototype of
MAVI based on the cloud services and compare it to a local
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device based implementation. We present the effect of varying
network bandwidth on different parameters of interest. Other
works on cloud based assistive devices [5] do not address the
challenges specific to the developing countries context. We
identify and implement three primary functionalities in this
prototype: Animal Detection (safety), Face Recognition (social
inclusion) and Signboard Detection (navigation assistance).

Data is an indispensable requirement of modern statistical
artificial intelligence, and novel deep learning models are as
good as the data they have been trained on. We note that the
public benchmark datasets available for object detection task
do contain the classes of our interest (e.g., cow and dog). But,
they are highly curated and often do not depict the real settings
of an unstructured surroundings. Therefore, we have created
and publicly release a new dataset [6] to address the specific
needs of such a vision based mobility assistance system.

Though this paper focuses on analysis of different tech-
niques, systems like MAVI must satisfy complex requirements
with associated trade-offs on metrics such as accuracy, energy,
etc. and adapt to variations in external factors (context) like
walking speed, ambient lighting, etc. Hence, MAVI falls under
a broader class of systems which we call Context-aware
Adaptive Embedded Systems (CAES).

In summary, we claim the following contributions of this
paper compared to our previous work [3] which provides
further insights on ability of porting state-of-the-art computer
vision techniques to embedded devices.

1) Release a dataset for animal detection and signboard de-
tection to capture realistic scenarios and evaluate state-of-
the-art machine learning/vision techniques on the same.

2) Implement various deep neural network (DNN) based tasks
on embedded devices, using CPU only, and with accelera-
tion. We analyze their comparative performance.

3) Implement a cloud services based prototype and analyze
the performance over different network capabilities.

The rest of the paper is organized as follows. Section II gives
a short overview of the MAVI. Section III provides details
of dataset while Section IV explains implementation details.
Section V gives a summary of the working prototype. Section
VI presents various results which are analyzed in Section VII.
Section VIII presents the summary and future directions.

II. MAVI OVERVIEW AND LIMITATIONS OF PRIOR WORK

In this section, we present a quick review of the specification
of the MAVI device, detailed in our previous work [3].
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Fig. 1. Block diagram of MAVI. Blocks in green are the focus of this paper.
A. Overview of MAVI device

Pothole
Detection

Face
Detection &
Recognition

Central
Control

Fig. 1 shows a block diagram of MAVI which attempts to
solve unique challenges in independent mobility of visually
impaired pedestrians in unstructured environments. It imple-
ments four major computer vision tasks namely signboard
detection (SBD) and optical character recognition (OCR), an-
imal detection (AD), face detection (FD) and face recognition
(FR), and pothole detection (PD). The device interfaces to the
user through a mobile app communicating over a Bluetooth
connection. An optional network interface can connect to the
internet for cloud services to either retrieve a stored database
for a specific task or to offload computations.

B. Limitations of prior work

Section I already highlighted the key limitations of existing
works. To the best of our knowledge, this is the first work
which includes state-of-the-art methods for AD, FR and SBD
with OCR on an embedded low-power portable platform.

The SBD module in our previous prototype [3] did not sug-
gest any OCR implementation. The mobility aid for visually
impaired by Poggi et al. [7] to detect obstacles using DNN
does not consider stray animals as a valid detection class.
Moreover, they do not address social inclusion as FR is not
supported in their device. The prototype by Mocanu et al. [8]
does not perform FR, AD, or SBD, limiting its applicability.
Low latency AD is critical to the safety of the user, but is not
implemented in any of the mobility aids.

With the improvement in network connectivity and cloud
infrastructure, cloud based solutions are increasingly being
deployed for computer vision tasks. Cloud based assistive
device for visually impaired by Lapyko et al. [5] is limited in
the features considered and does not compare its performance
against a local implementation.

Further, there are no public datasets available for capturing
the situations addressed by a system like MAVI. This limits
any quantitative analysis of such systems. We believe that such
a dataset will attract interest from computer vision researchers
to improve the accuracy and runtime for such applications.

This paper details our approach to solving these limitations
of existing mobility aids. We start with the dataset developed
for MAVI, which we are releasing publicly with this work.

(b) Cows images from Imagenet

Fig. 3. Sample images from our cow dataset compared to Imagenet
III. DATASETS FOR MAVI

Datasets are crucial to the successful implementation of the
object detection techniques specially with the state-of-the-art
approaches being data driven. Dog and cow images present
in COCO [9] dataset, Imagenet [10], etc. do not make a
good representation of the unstructured environments as shown
in the Figures 2 and 3. Our evaluation of the performance
of pre-trained object detection networks on our datasets, as
discussed in Section VI-A2, also shows the scope of improve-
ment, especially when used with small sized networks. Our
dataset contains a huge variety of dogs and cows in sitting,
standing, oblique and back views. For the signboard dataset,
images from different angles and lighting conditions for the
same signboard have been collected. Detailed statistics and
characteristics of these datasets are shown in Table I. The
dataset has been publicly released for further developments
by the community [6].

IV. IMPLEMENTATION DETAILS

We discuss both the offline (local implementation) and
online (cloud based) versions of MAVI system in this section.
It is important to note that a completely online system is not
feasible due to limited internet connectivity in most rural areas



TABLE I
QUANTITY AND VARIETY IN MAVI DATASETS

Object Name | Number of Images Annotations

. Bounding Box, Text, Type,
Signboard 1493 Direction, Conditions
Dog 1498 Bounding Box, Pose
Cow 1604 Boundl.ng Box, Color, Pose,
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Fig. 4. Block diagram for local implementation of MAVI.

and intermittent connectivity, even in urban areas. Our online
implementation uses off-the-shelf solutions from Google’s
Cloud APIs to implement different tasks in MAVL.

A. Local implementation

This section describes implementation of different tasks for
an offline MAVI system as shown in Fig. 4. It uses a wireless
transmitting camera (Pivothead [11]), two Raspberry Pi 3B
[12] (R-Pi) and a power bank. The end result is spoken out
via a mobile phone app. The camera API currently supports
only RTSP (Real Time Streaming Protocol) encoding which
needs decoding using an ffmpeg thread. Exploration of other
cameras with lower processing cost is in process.

1) Face detection and recognition: In the last few years,
there has been tremendous progress in the accuracy of face
detection and recognition tasks using deep learning techniques.
We have used OpenFace [13] framework for enabling face
recognition in our prototype. The framework has a unique
pipeline for processing faces and the cross-platform support
for its dependencies has enabled us to use the same on R-
Pi. We trained our network on 10 subjects with 15 images
of each subject captured at various distances from the camera
and poses. The training dataset size is in accordance with the
OpenFace [13] framework. Due to optimized inference times
on CPU provided by the library, we were able to run inference
in ~7s. A detailed analysis of time and energy are discussed
in Section VI

2) Animal detection: For the purpose of animal detection
(cows and dogs), various pre-trained networks (listed in Table
IIT) were analyzed. After an analysis of accuracy on our
collected dataset, we selected SSD Mobilenet [14] model
to perform rest of the experiments. In addition, we also
accelerated the inference using a Movidius Neural Compute
Stick (NCS) [15] (an accelerator for neural networks) for a
more responsive animal detection module.

3) Signboard detection and OCR: There were two main
challenges in signboard detection: text recognition (OCR) and
detecting arrow symbols (for the navigation direction). We
used a commonly used software named Tesseract [16] for
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Fig. 5. Flowchart for signboard detection

TABLE II
FEATURES SUPPORTED BY DIFFERENT CLOUD SERVICE PROVIDERS
Service provider FD FR AD OCR
Google Yes No Yes Yes(EN,HI)
Microsoft Yes No Yes Yes(EN)
Amazon Yes Yes Yes Yes(EN)
IBM Yes No Yes Yes(EN)
SkyBiometry Yes Yes No No

1: EN refers to English OCR and HI refers to Hindi OCR

OCR but inserted a number of custom pre-processing and
post-processing steps to improve the accuracy. We used a
polygon fitting algorithm to fit the detected signboard which
enables us to remove any warping in the signboard text
using a perspective transform. The next step, binarization, was
implemented based on the work of Kasar et al. [17]. The
binarized image is finally upscaled and given to the Tesseract
OCR engine where the text prediction is done. The flowchart
for the same is presented in Fig. 5. The output of the prediction
engine is then post-processed by correlating with the words in
the local dictionary. The local dictionary was built using all the
words from the signboards in the dataset. The testing was done
for bilingual signboards — English and Hindi. The signboard
detection module is not yet integrated into the complete system
owing to its slower speed, but works standalone on a R-Pi.

B. Cloud services based implementation

Cloud technology has shown considerable promise for of-
floading large computations from embedded devices, motivat-
ing us to explore it for MAVI. Our scope for exploring cloud
based solution was limited to using the available solutions
from cloud service providers. The main focus was on the
analysis under different network conditions and ultimately
looking for benefits and viability in comparison to local device
based implementation. Firstly, we performed a comparison of
computer vision features supported by leading cloud service
providers, as shown in Table II. We find that many of the
MAVI features like pothole detection and signboard detection
are not supported by any of these service providers. Google
Cloud was chosen as it was the best fit among the choices.

Google Cloud provides support for FD, text recognition
(OCR) (can read characters, but not arrows), and AD (it
can label the presence of animals, but cannot identify their
position). Our implementation uses R-Pi as the platform which
connects to the internet through WiFi or mobile data tethered
using USB or WiFi hotspot. A python script invokes the
Google Cloud vision API to send the image to cloud and
receive the response containing the detection results. This
response is parsed and communicated to the user through a
mobile application, connected over Bluetooth. We use images
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from our dataset (refer Section III) stored on SD card of the R-
Pi to perform measurements of accuracy, latency and energy.
However, we use live feed from a USB camera connected to
the R-Pi for the prototype system. A block diagram of this
system is shown in Fig. 6.

V. CURRENT PROTOTYPE

We describe the local and cloud based prototypes of MAVI
in this section.

A. Prototype for the local implementation

The head-mounted spectacles (Pivothead) stream the im-
agery via WiFi. The two R-Pis connected via LAN and
powered by the power bank can be carried in a bag. The
output is sent to the phone where it is spoken out through
the phone speaker or bluetooth headphones. This enables a
hands-free solution to the user providing voice alerts as and
when needed. The integrated system is shown in Fig. 7.

Control system and animal detection implementation: The
control system is a multi-threaded process which incorporates
the following functionality:

« Frame Capture: This thread captures the RTSP stream
transmitted from Pivothead camera, decodes it using
ffmpeg decoder, and then stores the stream as an image.

o Frame Transmitter: This thread transmits the captured
image to the other R-Pi over a TCP socket and receives
the FD and FR results from the same.

« Animal Detection: The AD thread initializes the NCS
and sends every image to it. The received result is then
parsed to extract the results of cow and dog detection.

« Mobile Phone Transaction: This thread sends the up-
dated variables to the mobile application every 0.2 sec.

TABLE III
ANIMAL DETECTION RESULTS ON PRE-TRAINED MODELS

Dog Dataset | Cow Dataset
Model Name mAP@0.SIOU | mAP@0.5I0U
ssd_mobilenet_v1 0.47 0.65
ssd_inception_v2 0.56 0.72
rfcn_resnet 0.50 0.68
faster_rcnn_resnet 0.57 0.71
faster_rcnn_inception 0.67 0.78

Face recognition: The face recognition system, on a sep-
arate R-Pi, receives the image over LAN and sends the
detection/recognition results back to the control system.

B. Prototype for cloud based implementation

The cloud implementation uses Google Cloud APIs to im-
plement the task at hand. The detection results obtained from
these APIs are communicated through the mobile application.
This system does not use the Pivothead camera since WiFi
interface of R-Pi is used to access Internet. We explored
connecting Pivothead, R-Pi, and Internet on the same WiFi
hotspot; which increased the image upload time, and thus the
latency of tasks drastically. Hence, we used a USB camera.

VI. RESULTS

We present the accuracy, runtime, and energy measured for
different tasks for the local and cloud based implementation
of MAVIL.

A. Local implementation

1) Face detection and recognition: For a visually impaired
person, we estimated the number of people to be kept in
the database for recognition ability to be ~50. Therefore, we
evaluated the FR accuracy on a subset of standard LFW dataset
containing 57 subjects with 25-50 images each. The accuracy
was obtained as 97.59%. This proves OpenFace [13] as a
viable candidate for our application in terms of accuracy. On
R-Pi, we are able to run FD in 2.59s per image (VGA), with an
additional overhead of 4.29s for FR per face. It uses ~160MB
of additional memory. This implementation is just the starting
point and needs further improvement using quantization and
DNN compression techniques to attain a faster processing.

2) Animal detection: We provide standard mAP [18] scores
(a commonly used measure of accuracy) for different models
on our datasets in Table III. However, as qualitatively observed
in practice and also shown by Sobti et al. [19], a more
responsive (and moderately accurate) detector provides better
results on real-time feeds. Therefore, we use SSD Mobilenet
and also accelerate it using Movidius NCS. The speed up is
~ 4x. After fine-tuning ssd_mobilenet_v1 model for detection
of cows and dogs, we were able to achieve a mAP of 0.73 in
both categories, with 0.75 mAP for cows and 0.71 mAP for
dogs. These numbers are on the test set for cows/dogs which
were not present in the validation set (generated by a 20%
split). The standalone runtime for AD is 1.2s on CPU and
0.3s when accelerated using NCS. The energy consumption is
2.1 mWh and 0.2 mWh for CPU and NCS respectively. Using
NCS reduces the energy consumption by a factor of 10 and



TABLE IV
OCR ACCURACY RESULTS (IN %): COMPLETE, WITHOUT DICTIONARY
(W/0 D), AND WITHOUT PERSPECTIVE (W/O P) TRANSFORM. SOME
IMAGES HAD SPECIFIC EFFECTS LIKE SKEW, GLARE, SHADOW AND BLUR
WHICH ARE SEPARATELY PRESENTED TO HIGHLIGHT THE COMPLEXITY.

I Complete w/o D w/o P
Type mages Eng. Hin. Eng. Hin. Eng. Hin.
Overall 1493 70.18 5244 | 47.85 30.19 | 60.04 4381
Skew 165 69.28 53.14 | 48.15 2992 | 5732 40.85
Glare 41 3442 2256 | 2548 13.84 | 2931 18.31
Shadow | 162 7122 53.83 | 4894 31.54 | 65.61 4742
Blur 27 2396 1335 | 20.61 11.30 | 17.30 08.01

the algorithm can also run faster, thereby providing a better
accuracy as per Sobti et al. [19]. However, this poses a tradeoff
in terms of an additional component (cost, form factor, etc.)
which needs to be analyzed to make decisions.

3) Signboard detection and OCR: Table IV shows the
effect of different pre/post-processing steps which are ap-
plied for signboard detection and OCR subsystem. Perspective
transform alone improves the accuracy by over 10%, while
inclusion of a dictionary improves the accuracy by over 20%.
This shows the necessity of these transformations. The table
also show the reduced accuracy in certain image conditions,
indicating the need of algorithmic interventions required to
improve the performance further. Our implementation takes
an average of 12.54s on the R-Pi with an energy consumption
of 44 mWh per image. The implementation needs to be
accelerated to reduce the runtime.

B. Cloud based implementation

We present the results obtained from the cloud based imple-
mentation of MAVI. We plot the latency for uploading image
to cloud and the total end-to-end time for processing each
image for different network connections in Fig. 8. The latency
follows the order 3G >4G >WiFi, owing to their increasing
order in terms of supported bandwidth. Moreover, we also
observe higher variance for lower bandwidth network. Fig. 9
shows the variations in the cloud runtime for different tasks.
One could see that for the OCR task, using dual language
OCR mode (English + Hindi) takes significantly more time
than using English-only mode and has a larger variance too.

The energy consumption to process images using cloud
services was also measured for a batch of images sent to
cloud together and corresponding detection results received.
We obtain an energy consumption of 0.974 mWh per image
and an average current consumption of 361 mA when internet
is tethered using WiFi hotspot. We obtain an energy reading
of 2.809 mWh and average current consumption of §24.5 mA
when internet is tethered using USB. The reason for increase in
current for USB is that the phone draws about 5S00mA current
for charging itself, when connected over USB. We could not
turn off the charging and thus conclude WiFi tethering to be
a better choice than USB to reduce energy consumption.

The accuracy results for MAVI for different tasks running
on cloud is captured in Table V. For tasks like AD and FD,
the obtained accuracy is lower on cloud compared to the ones
implemented by us on the local device. This indicates that
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MAVT specifications pose a challenging detection problem
even for the state-of-the-art cloud systems.

VII. COMPARISON OF LOCAL AND CLOUD BASED
IMPLEMENTATION

In this section, the results obtained from local and cloud
based implementations of MAVI tasks are compared. Subse-
quently, the limitations of each implementation is presented,
making a case for a hybrid solution to address the target
application.

Differences in implementation: It is important to note that
the algorithms used for the two implementations are very
different from each other and are often unknown for the cloud.
AD is implemented locally as an object detection task which
returns the bounding box (position of animal) as well. How-
ever, the cloud solution merely returns the presence/absence of
animals. Similarly, FR is not supported on the cloud. For SBD,
cloud supports OCR which can detect text but not arrows (for
directions). Despite these differences, it is useful to compare
them to get a sense of what can be achieved through state-of-
the-art cloud services vs. custom implementations.

A. Latency

The latency obtained using cloud services depends upon
the available network bandwidth and ranges from 1s at high



TABLE V
ACCURACY (%) FOR DIFFERENT ALGORITHMS ON CLOUD

AD (cow)
69.18

AD(dog) D
5102 5527

OCR(Eng.)
90.26

OCR(Hin.)
60.58

bandwidth to 3s for low bandwidths (the bandwidth would
be further lower for 2G and hence higher latency). However,
the average latency for AD being run locally is 1.2s on CPU
and 0.3s when accelerated using NCS. FD takes ~ 2.6s on
average to run locally and FR takes additional 4.3s. On cloud,
FD takes 1s to 2s while FR is not supported.

B. Accuracy

We expected cloud based implementation to provide a
superior accuracy due to the usage of larger resources and
state-of-the-art algorithms. However, the results obtained for
accuracy indicate a mixed behavior between local and cloud
implementation. For AD, we observe a low accuracy on cloud
as well as the local device based implementation. One key
reason for this is the presence of the dataset targeting realistic
scenarios, which pose significant challenges to the existing
algorithms. This also depicts that the problem being solved
by this work is indeed challenging and needs a collaborative
effort from researchers in computer vision and embedded
domain. When re-trained and tuned, the local implementation
for AD shows improved accuracy. This is not possible for
cloud solution. FD on local system achieves much higher
accuracy than the cloud solution which misses out small sized
faces in the image.

C. Energy

Energy consumption is a critical parameter for MAVTI as it is
a portable and battery powered device. The cloud based solu-
tion is highly energy efficient as compared to local processing.
However, we do not account for the significant energy which
gets consumed to maintain the cloud infrastructure.

Overall, we see that cloud based solution can provide a
better runtime and energy consumption than local imple-
mentation when the network signal and bandwidth is good.
However, there are limitations on the features supported by
cloud and also variability due to bandwidth. Moreover, the
cost of using the cloud services and the network is currently
ignored, which may play an important role in decision making.
The results indicate that an optimal implementation should use
a hybrid solution where available services are used from cloud
and other algorithms are implemented locally. Moreover, for
tasks which could run on either cloud or local, it should be
possible to switch between them depending upon the available
bandwidth. Such a switching based on network bandwidth
is an example of adaptive aspect for a CAES like MAVI.
We expect a hybrid solution to bring-up some interesting
challenges in implementation and new insights to emerge from
this exercise that we leave as a future work at this moment.

VIII. CONCLUSION AND FUTURE WORK

We presented a local device based and a cloud implementa-
tion of MAVI system to aid mobility of visually impaired. The

presented implementation uses state-of-the-art techniques and
quantifies the tradeoff w.r.t. a cloud based solution in terms
of accuracy, latency, and energy usage. The analysis motivates
the case for a hybrid solution of online/offline processing and
requires development/usage of smart scheduling algorithms for
a responsive system. It demonstrates the use of deep neural
networks (DNNs) and DNN accelerator hardware in a portable
mobility assistance prototype.

As part of the future work, an integrated cloud and local
solution would be able to harness the benefits of both. The face
recognition (FR) could also be accelerated on NCS and further
improvements in runtime could be obtained using quantization
of DNN, with a reasonable tradeoff in accuracy. We are also
exploring improvement in accuracy of various tasks with the
help of additional sensors.
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