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Abstract

We introduce hierarchical neighbor graphs, a new topology control mechanism for wireless sensor networks. This mechanism
is a randomized one that takes a single parameter,0 < p < 1, and uses it to build a structure that has the flavor of hierarchical
clustering and is fully distributed in the sense that it requires only local knowledge at each node to be formed and repaired,
and moreover requires minimal computation in this process.Hierarchical neighbor graphs naturally account for differences in
the battery power of nodes and are able to use energy efficiently by reorganizing dynamically–without any global coordination
or communication–when the battery power of heavily utilized nodes decreases. In this paper we study the lifetime and delay of
hierarchical neighbor graphs, giving analytical characterizations of both. We perform simulations to demonstrate the sensitivity of
the lifetime and delay to the number of nodes in the network and the parameterp, also studying the tradeoff between these two
quantities and the effects of application-specific data aggregation policies. Through extensive simulations we compare hierarchical
neighbor graphs against other leading proposals for data collection in wireless sensor networks and demonstrate that in general
our structure provides better lifetime values than most other structures, and, importantly, is able to deal with heterogeneous
distributions of initial battery power much better than previous proposals.

I. I NTRODUCTION

For sensors placed in a remote unattended environment the ability to form a multi hop network that relays sensed data back
to a base station that may lie outside the sensed region is crucial. This problem is known as the topology control problem
for wireless sensor networks (WSNs) and has been extensively studied in the literature [9]. In this paper we present a novel
architecture for the topology control problem, thehierarchical neighbor graph (HNG). The key idea of our construction is that
each node is assigned a level that is determined partly by thebattery power of the node and partly by a geometric random
variable with parameterp. Each node chooses as its parent the node nearest to it whose level is strictly greater than its own
and connects to this parent, also connecting to all other nodes of its own level that are closer than its parent. Our structure is
distinguished from the several other structures proposed for topology control by the property that it is fully distributed: both
topology construction and maintenance can be achieved using local actions at individual nodes without the need for any global
information.

The HNG has all the benefits of a bounded degree hierarchical structure. Additionally the structure also seamlessly handles
changes in battery power and heterogeneity in the initial battery power of the nodes in the network, thereby making it a more
pragmatic solution than other proposals. In this paper we study the properties of hierarchical neighbor graphs in lightof the
constraints and requirements of the problem setting and demonstrate analytically and through simulation that our architecture
compares favorably with the leading solutions to this problem proposed in the literature.

The basic issue of topology control for wireless networks, not necessarily in the context of WSNs, is that of choosing the
right topology for wireless nodes that transmit under the constraint of interference. Keeping thedegree of the network low is
critical in this case, while ensuringconnectivity i.e. that every node has a path to the base station. For a detailed treatment of
this more general problem see [15]. In the WSN situation where all communication is between the nodes and a single base
station the primary measure of the quality of such a network is the throughput between the nodes and the base station. But
that is not the only criterion. Specific to wirelesssensor networks is also the problem of energy conservation. Sensornodes
are small devices with limited battery power. In remote environments we cannot assume that the batteries can be recharged
easily or replaced. So, research in this area operates underthe assumption that each node of the network lives till it hasthe
battery power to perform its function and hencenetwork lifetime is a critical parameter of any proposal. Additionally any
asymmetry in the energy expended in the process of data collation means that the roles of nodes have to change as their
battery power changes. Hence thecost of restructuring has to be accounted for as it eventually affects network lifetime. The
primary advantage of HNG is that restructuring is based on locally available information at every node and is oblivious to
what happens in other parts of the network. Hence, fewer messages have to be sent and our restructuring cost is low.

Application-specific issues also arise. In applications like target tracking or radiation level monitoring, thedelay between
sensing the data and its arrival at the base station has to be as low as possible. In other applications, the data sensed is often
redundant and highly correlated and the energy required fortransmitting data is often much more than the energy required



to aggregate the data. Data fusion at some nodes can reduce the number of messages transmitted through the network and
hence improve its energy efficiency (see e.g. the survey by Rajagopalan and Varshney [14]). We demonstrate that hierarchical
neighbor graphs are well suited to taking advantage of data aggregation to improve efficiency. We study cases where all the
data has to be fused into a single value (e.g. finding the maximum of a set of sensed values which could be the quantity of
interest in radiation level monitoring in a nuclear plant [14]) and also cases where there is a bounded amount of compression
that can be achieved without losing information (e.g. temperature monitoring where only neighboring sensors may have values
close to each other.)

Main contributions.: (i) We describe hierarchical neighbor graphs, a new structure for data collection in wireless sensor
networks, detailing the algorithms for topology construction and maintenance (Section II). (ii) We describe the operation of
a network built on hierarchical neighbor graphs and provideanalytical characterizations of the network lifetime and delay
(Section III. (iii) Through extensive simulation studies we investigate the sensitivity of our structure to various parameters and
also compare the lifetime and delay of our mechanism to that of leading proposals for this problem (Section IV).

A. Related Work

Several architectures for collecting data in sensor networks have been proposed in the literature. We do not attempt a
comprehensive survey of the literature here, referring thereader to [9] and [1] instead. In this section we mention someof the
prominent proposals reported in the literature and discusstheir properties in relation to HNGs.

Hierarchical neighbor graphs can be classified along with a set of proposals that are cluster-based in structure. These include
LEACH [6], TEEN [12], APTEEN [13], HEED [21], [19]. One majoradvantage the HNG has over these schemes is that
cluster heads choose themselves randomly and no network-wide coordination is required. Schemes based on chains are also
reported in the literature e.g. PEGASIS [11]. Chain based protocols are more energy efficient than cluster based protocols but,
as expected experience very large delay, making them unsuitable for time-critical applications. The delay is linear inthe size
of the network. In HNG, by contrast, because of the hierarchical nature the delay is logarithmic in the size of the network.

Another class of architectures are based on methods of building spanning structures like connected dominating sets or
spanning trees out of the sensor network. Among these are [8], PEDAP [18] and trees built on voronoi tessellation of points
of independent homogeneous poisson point processes [2]. The advantage of HNGs over these methods is that they require
complicated algorithms to be run, often in a centralized fashion. Maintaining and repairing such structures is a non-trivial task,
unlike HNGs which can be maintained very easily. This is an advantage HNGs have over other classes of architectures as
well. In LEACH, for example, nodes must know the number of nodes in the network and the cluster heads of the network
and an estimate of energy remaining in the network at the end of each round. Both PEGASIS and H-PEGASIS require chain
building using greedy approach for which they assume that nodes have global knowledge of the network.

Like our hierarchical neighbor graphs that build a connected structure by sampling repeatedly many of the schemes reported
in the literature also have hierarchical versions e.g. H-PEGASIS [10], the concentric clustering scheme for PEGASIS [16] and
COSEN [17]. As expected these do better than PEGASIS in termsof delay since their hierarchical nature helps in simultaneous
multiple chain buildings and hence reduced delays. The tradeoff is that constructing hierarchical versions of these schemes has
great computational overhead while HNGs are organically hierarchical by their very nature.

Finally we note that HNGs belong to a class of topologies thatare based on selecting connections from among the neighbors
of a node. The model of choosing a fixed number of neighbors hasbeen used to construct connected topologies [5]. The
fundamental problem with this approach is that the number ofneighbors required to achieve a connected network, and so the
degree of the network, scales up as the logarithm of the size of the network when the nodes are placed randomly [20], [4]
unlike HNGs in which the expected degree remains constant even as the size of the network scales up. Additionally HNGs
have better delay because of their hierarchical nature.

II. H IERARCHICAL NEIGHBOR GRAPHS

In this section we define hierarchical neighbor graphs and explain how to construct them and how to adapt to decrease in
battery power and death of individual sensor nodes. We postpone to Section III a discussion of how the network operates.

A. The structure

Consider a set of pointsV ⊂ R
2. We are given a functionw : V → R+ such that each nodeu ∈ V has a battery power

w(u)/c associated with it, wherec is a constant determined by the minimum battery power a node needs to operate. Taking a
parameterp such that0 < p < 1, we form thep-hierarchical neighbor graph onV with weight functionw, denotedHNw

p (V )
as follows:

1) We create a sequence{Sn : n ≥ 0} of subsets ofV such thatS0 = V . Si is populated in two ways, one deterministic
and one randomized.

• Deterministically, allu ∈ Si−1 with blog 1
p

w(u)c ≥ i are put intoSi.
• The remaining points ofSi−1 are placed inSi with probabilityp independently of the choice of all other points.



2) After obtaining the sequence of sets, we say that thelevel levp(u) = i such thatu ∈ Si andu 6∈ Si+1.
3) Each pointu ∈ V grows a circle around it which stops growing the first time a point of v with levp(v) > levp(u) is

encountered.u makes connections to all nodesw with levp(w) = levp(u) that lie within this circle and to the node(s)
of Slevp(u)+1 that lie on the circumference of the circle.

As a convention we assume that ifn is the largest integer such thatSn is non-empty then the nodes ofSn are fully connected
among themselves. Further we assume that all the nodes inSn are connected to the base station.

Before moving on to discuss the issues involved in constructing this topology we make two observations. Firstly, note that if
V is a finite set of nodes then it is obvious thatHNw

p (V ) is connected. Secondly, we note that the way the structure isdefined,
it may be that nodes make connections with other nodes which are arbitrarily far away which is unrealistic given that wireless
sensors have a limited transmission radius. However, it is easy to prove that if the nodes ofV are uniformly distributed in a
bounded region then the probability of having long connections decreases with the density of the nodes in the region. Hence
by raising the density of the nodes to a suitably high value wecan ensure with high probability that no node needs to connect
beyond its transmission radius. We omit a formal proof in this extended abstract, referring the reader to [3] where we also
define a radius-bounded version of HNGs.

B. Topology construction

Prior to deployment each node’s level is determined as described above based on the initial battery power and random
promotions. The random promotion can be hardwired into the sensor node. The deterministic promotion is determined by the
battery power. When the nodes are deployed in the field, the process of network formation commences. It proceeds in three
phases:Phase 1: Advertise and listen. (i) Each node sends out a message containing it’s ID and level. (ii) Every node also
receives advertisement messages from other nodes. (iii) The node disregards all messages from nodes with lower levels than its
own, notes the messages from the nodes of its own level and level greater than its own. (iv) At the end of the phase it identifies
as its parent the node with level greater than its own whose signal is the strongest. It also identifies the nodes of its own level
whose signal is stronger than its parent.Phase 2: Request connection. Each node sends messages requesting connection to the
nodes it has identified in the previous phase. A node may receive messages from nodes of lower level which have identified
it as parent.Phase 3: Make connection. The nodes requested acknowledge the request and a connection is made.

Clearly the number of messages sent out in theAdvertise and Listen phase is one per node i.e.|V |. Since every connection
requested is made, the number of messages is twice the degreeof the network. If we assume thatw(v) = 1 for everyv ∈ V ,
we can show the following theorem whose proof is given in the full version of this paper [3]:

Theorem 2.1: Given a point setV and a weight function1 such that∀v ∈ V : 1(v) = 1, the expected degree of any point
v ∈ V in HN1

p(V ) constructed with parameterp, 0 < p < 1 is at most1
p

+ 6
p(1−p) . Moreover, ifV is a Poisson point process

with densityλ > 0 then the expected degree is at most7
p
.

Hence the expected number of messages per node sent in Phases2 and 3 is independent of the size ofV and of the density
λ i.e. the total number of messages sent in constructingHN1

p(V ) is O(|V |).

C. Topology maintenance

Nodes at higher levels in the hierarchy get depleted of theirenergy quicker. This leads to heterogeneity in the network
even if all sensor nodes had the same residual energy to beginwith. We periodically restructure the network to distribute the
energy load according to the residual energy of each node. Inorder for the network to correspond to the definition of an HNG,
restructuring should be triggered every time the residual energy of a node goes down by a factor ofp because this causes
the level of the node to decrease by 1. In practice we need to schedule repair windows where a node interrupts its regular
operation to check its energy level and repair itself. The details of how these repair windows are scheduled are postponed to
Section III. Here we discuss how to repair nodes once the repair window has been entered and the node finds that it needs
repair.

The repair process proceeds, like the construction processin three phases:Phase 1: Demotion advertise and listen. At the
beginning of roundi of the operation of the network if the energy of a node has decreased to the point thatblog 1

p
w(u)c has

decreased from what it was at the beginning of roundi, the node initiates a repair procedure by advertising its new lower
level to all the nodes which requested it to be their parent. In this phase a node may receive a message from its parent with
the parents new level. If that level falls to or below the nodes own level, the node goes into parent rediscovery mode. If the
node’s parent’s new level is strictly lower than the node’s level, the node initiates a disconnection procedure.Phase 2: Parent
rediscovery. The node whose parent has fallen sends out a message seeking anew parent. This message contains its level. A
node that receives a parent rediscovery message with a levellower than its own responds by sending out its own level and id.
Phase 3: Parent request. The node seeking a parent sends a parent request message to the node of level strictly greater than
its own that has the strongest signal.Phase 4: Make connection. The parent-to-be receives the parent request and a connection
is established.



We note that when the node loses power it does not need to find a new parent for itself. It may need a new parent only if
its own parent’s level decreases. To prevent nodes from having to repair multiple times a round, we assume that nodes have
a predefined order, based on their id, according to which theyinitiate repair at the beginning of the phase. As in the case of
construction, the number of messages can be estimated by thesum of the degrees of the nodes that had the demoted node as
their parent node before repair. As before, this can be bounded in expectation byO(1/p2) which is be independent of the size
of the point set. Also, it is possible that the battery power falls to the point where the sensor node becomes non-functional, in
this case the node simply exits the network.

III. N ETWORK OPERATION, LIFETIME AND DELAY

In Section III-A we describe in detail the operation of a WSN organized as a hierarchical neighbor graph. In order to
contextualize and analyze the operation of the network we characterize two important parameters of the network in Section III-B:
the energy spent per unit transmission at each level of the network, and the expected number of children of a node. In
Section III-C we analytically characterize the lifetime ofthe network in terms of the parameterp, demonstrating that the
lifetime increases with decreasingp while the delay increases. Hence there is a tradeoff betweenthese two criteria which we
will explore further through simulations in Section IV.

A. Network operation

We assume synchronous operation of the network, assuming that in each time slot each node senses the environment and
generates a packet of lengthk bits. We assume that each packet generated by a sensing action comes with a time stamp or
sequence number. In order to relay this data to the BS, the nodes ofHNw

p (V ) relay the node to their parents along with the time
stamp. When the data reaches the nodes of levelhtwp (V ) = maxv∈V levp(v), they relay the data directly to the BS. At each
level in the hierarchy nodes receive data from their children and aggregate according to the application before relaying it to
their own parent (or the BS). In order to avoid interference we use TDMA and CDMA. All nodes use CDMA to communicate
with their parents, the code being communicated to them at the time of making connection (Phase 3 of topology construction.)
This ensures that the communication from a child to one parent doesn’t interfere with the communication from another node
to its parent. The children of a given parent use TDMA amongstthemselves. The operation of the network proceeds in phases.

Transmission window

TDMA slots for children Transmit slot

listen and forward rounds
Repair window

Fig. 1. One round in the operation of a node ofSi.

Each phase consists of atransmission window and arepair window (see Figure 1). The transmission window consists oflisten
and forward rounds, the number of which varies from node to node. Thelisten and forward round differs depending on the
nature of data aggregation allowed by the application:

• Unlimited aggregation. A node collects all the packets corresponding to a single timestamp from its children, aggregates
them into a single packet and forwards its up to its parent along with the timestamp.

• Limited aggregation. If the application allows a compression factor ofc < 1, each node collectsb1/cc packets corre-
sponding to a single timestamp from its children, aggregates it and forwards its up to its parent along with the timestamp.

Note that since children use TDMA to communicate with their parent in both cases a node may have to wait for its children
to send sufficient data before it can create a packet send it upto its parent. At the end of everylisten and forward round the
node checks its battery level. If the level has fallen by a factor of p since the last repair window the node initiates a new repair
window in which repair is performed as described in Section II-C.

B. Two network parameters

a) Energy dissipated in transmission: The energy cost per unit data transmitted over a distanced by a node is given by
Eelec + εfsd

2 whereEelec is the radio electronics energy that depends on the coding and spreading of the signal, andεfs is
the amplifier constant that depends on the acceptable bit-error rate. Since in a WSN organized as an HNG all transmissions
take place from a node to its parent, the quantity of interestis the expectation of the square of the distanced(u, parentp(u)).
For a homogeneous network, i.e. every node inv ∈ V hasw(u) = 1 we claim the following:



Claim 3.1: Given a Poisson point processV with parameterλ > 0 andHN1

p(V ) with 0 < p < 1, for anyu ∈ V ,

E[(d(u, parentp(u))2 | levp(u)] = i =
1

λπpi+1
.

Proof: We know thatd(u, parentp(u)) = l if there exists no node ofSj , j ≥ i + 1 inside the circle of radiusl with center
at u and a point ofSj , j ≥ i + 1 on the circumference. Hence, the expected distance to parent for a nodeu of level i is given
by

E[(d(u, parent(u))2 | levp(u) = i] =

∫

∞

0

l2e−λpi+1πl2λpi+12πldl =
1

λπpi+1
.

Hence the expected energy dissipated per unit of data sent bya node ofSi to its parent isEelec +
εfs

λπpi+1 . We observe that in
the case of general values of the weight function there will be a larger number of nodes at each level and so the expectation
of the square of the distance will, in general, be upper bounded by this quantity.

We now have a handle on how long a node can operate before its battery power falls by a factor ofp, necessitating its
demotion by 1 level. A simple calculation reveals that a nodeu with weight w(u) and levp(u) = i can transmit

`i =
λπw(u)(1 − p)pi+1

λπpi+1Eelec + εfs

(1)

units of data in expectation before its weight falls tow(u) · p. The quantitỳ i will be crucial in determining the transmission
schedules of the nodes of the network to be discussed in Section III-A.

b) Number of children of a node: Each nodeu ∈ Si in HNw
p (V ) has a number of children fromSi−1. This number is a

random variable depending on the placement of the nodes and the random processes by which the setsSi are formed. Since
the network operation involves nodes collecting data from their children, we will characterize the number of nodes thatcount
a single node as their parent. In [3], as part of the proof of Theorem 2.1 we prove that the expected number of children of a
nodeu with levp(u) = i is at most6i(1 − p)/p.

C. Lifetime versus Delay

In this section we present analyses of the lifetime of the network and the delay it experiences, and demonstrate that, as
expected, there is a tradeoff between these two criteria. This tradeoff can be measured using the parameterp.

c) Lifetime analysis: For wireless sensor networks deployed in remote locations recharging of sensor batteries is often
impossible. A critical parameter in the analysis of topology control mechanisms used to collect data from is such settings is
the network lifetime i.e. the time before the node’s batterypower falls to a level at which the node is no longer functional. In
this paper we measure the lifetime not in actual units of timebut in terms of rounds of data sent. We assume that in every
round one packet of data is generated by each sensor and countthe number of such rounds which are communicated all the
way to the base before the first node’s battery power falls below a given threshold. In this section we provide an analytical
view of the network lifetime, postponing a simulation studyto Section IV.

In order to analyze the lifetime, we proceed as follows. We consider a nodeu with levp(u) = i and battery powerw(u),
such thatblog 1

p
w(u)/cc ≥ 1 i.e. a node that is operational because it still hasc/p units of battery power left. We then compute

the number oflisten and forward rounds it performs before going in for repair i.e. the numberof listen and forward rounds it
takes to lose a factorp of its battery life. Since the calculations of Section III-Bshow that the transmission cost is exponential
in 1/p with the level in the exponent while the cost of receiving is polynomial in 1/p and the level of a node (proportional to
the number of children), we focus here on the energy spent in transmission and neglect the energy spent in receiving packets.
We only present the cases where unlimited aggregation is allowed. The limited aggregation case can be approached similarly
but we omit it due to space considerations.

Let us consider a nodeu with initial battery powerw(u). This node lives throught(u) = log 1
p
bw(u)

c
c cycles before it goes

defunct. Since we are in the unlimited aggregation case,u has to send only one packet per round. Hence, whenu has levelj,
by ( 1), it can transmit data for̀j rounds. Hence, conditioning on the initial level ofu being i, we get that the lifetime ofu,
denotedlifetimew

p (u), i.e. total number of rounds of thatu can send before dying is
∑i

j=i−t(u) `j . To simplify calculations,
we bound the denominator of`j above byλπpEelec + εfs and below byεfs and sum to get

λπw(u)pi−t(u)

λπpi−t(u)Eelec + εfs

·

(

1 −
cp

w(u)

)

≤ E(lifetimew
p (u) | levp(u) = i) ≤

λπw(u)pi−t(u)

λπpiEelec + εfs

·

(

1 −
c

w(u)

)

. (2)

Note thati − t(u) > 0 for all nodes since each node get an initial level oft(u) before the probabilistic part of the promotion
takes place. Hence, we see that the time the node dies is a generally increasing function ofp, but, if the lower bound is tighter
than the upper bound, may decrease after a certain value ofp. And, in fact, it is this observation that is borne out by our
simulations in Section IV.



d) Delay: The delay incurred in data gathering using hierarchical neighbor graphs is a function of the parameterp and the
number of nodes in the network|V |. As transmission accounts for most of the delay we assume a unit delay cost for a single
transmission. According to the protocol detailed in Section III-A, a TDMA schedule is created by a node and communicated
to the children. In order to transmit, a node has to wait for its allocated time slot. This causes a delay equal to the numberof
children. Using DSSS, nodes which have a different parent are allowed to transmit in parallel, thereby reducing the delay. In
order to calculate the expected delay cost we use the upper bound on the expected number of children from Theorem 2.1 i.e.
6i(1 − p)/p.

When a packet is transmitted, a delay is incurred at each level of the hierarchy. AssumingN nodes in the network and
observing that the probability that the network has more than 2 log 1

p
N levels is very low (O(1/N)), we sum over the levels

to get an expected delay cost of at most

2 log 1
p

(N)
∑

i=1

6i ·
1 − p

p
+ 1 =

1 − p

p
· α log2

1
p
(N), (3)

for an appropriately chosen constantα.
The tradeoff : Note also that the delay cost for hierarchical neighbor graphs increases with the parameterp. Hence, since

we want to minimize delay and maximize lifetime and they bothincrease with the parameterp, there is a tradeoff and so the
parameterp has to be fixed at an optimal point. We attempt to determine this optimal point through simulations in the next
section.

IV. SIMULATION STUDY

In this section we perform extensive simulation studies of hierarchical neighbor graphs. Network lifetime is the main metric
we use to evaluate our proposal and we begin by investigatingthe sensitivity of this metric to various parameters, especially
the parameterp, and study the tradeoff between lifetime and delay. We demonstrate that it is possible to identify an optimal
value ofp where minimizes the ratio of delay and lifetime. We also compare HNGs against LEACH, the energy aware version
of LEACH, PEGASIS and H-PEGASIS. We show through simulationthat the lifetime of HNG is better than these proposals
and has the special property that it can handle heterogeneity in initial battery power much better than these other mechanisms.
We also show that HNGs fare well when compared against these proposals on the product of delay and energy spent per unit
data transmitted during the network’s life, a metric that also seeks to optimize both lifetime and delay simultaneously[10].

A. Simulation setup and parameters

We initialized a network with a setV with |V | = N = 100 sensor nodes spread uniformly over a square region of side
100 units. The minimum energy required for a node to be operational was taken to be0.1J . The BS was located outside the
square region at(50, 300) and packet size was taken to be2000 bits. These settings are taken from [7] to facilitate comparison
with LEACH and the other architectures we consider. For radio transmission we assumed that to transmitl bits of data over a
distanced, the energy dissipated isETx(l, d) = lEelec + lεfsd

2 where the radio electronics energyEelec = 50 nJ/bit, depends
on the coding and spreading of the signal and the amplifier constantεfs = 100 pJ/bit/m2 depends on the acceptable bit-error
rate. We assumed the energy consumed in receiving anl-bit message isERx(l) = lEelec. Additionally the energy consumed
for data aggregation was taken to beEDA = 5 nJ/bit/signal.

Our model for delay is simple. We assuming a unit delay for each transmission. Under this assumption, as shown in
Section III-C the delay of the network depends only onp and the number of nodesN . We consider also two different data
aggregation models corresponding to different application. (a) Limited Aggregation: Only data signals from nodes located close
to each other are highly correlated and can be aggregated into a single signal. Since nodes which share a common parent in
HNw

p (V ) are located close to each other, we assume their data signalsare correlated and can be fused into a single signal.
(b) Unlimited Aggregation: All data signals, irrespective of location can be fused to get a single signal. This model is valid
for applications in which we are interested in quantities like the average, min or max of a set of values. In this case, all data
signals at a relaying node are fused into a single signal. Throughout this section the unlimited aggregation model is used unless
stated otherwise. Also, unless otherwise stated we assume that the initial battery power of all nodes is the same.

B. Sensitivity analysis for HNGs

Quantities like the density of the nodes, the initial battery power of the nodes and the values of the radio parameters are
parameters of the system that are given to us. We first investigate the sensitivity of HNGs to these parameters and then move
on to finding optimal settings ofp which is in our control.



Network lifetime versus density: In order to examine change in network lifetime with network density we vary the number
of nodes between50 and250 in steps of20 for a fixed area. The constantp is fixed at0.5 and the initial battery for each node
equal to1J . Figure 2(a) shows that the network lifetime increases almost linearly with the network density. This is because
the energy consumed in transmission decreases linearly with node density whereas the number of connections remains the
same. In order to validate the bounds given in (2) we also simulated the network’s performance under the assumption that the
amplifier constantεfs was 0 and, as expected, we observed a more or less constant behavior (see Figure 2(b)).
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Fig. 2. Network lifetime vs. network density.
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Fig. 3.

Network lifetime versus aggregation: Since different applications allow different level of dataaggregation we tested the
performance of HNGs by varying the compression ratios from10 : 1 to 100 : 1. Figure 3(a) shows the lifetime forHNw

0.5(V ).
We see that the network lifetime increases steadily with thecompression ratio, validating the intuition that greater compression
allows for more efficient transmission, an intuition that should hold for any architecture..

Life of a node versus initial battery: From the lifetime inequalities given in (2) it is clear that the initial battery power is
a crucial factor in determining how long an individual node can function. In order to study this we simulated a heterogeneous
network in which each node was randomly assigned an initial energy from5 levels between between0J and 2J to see the
dependence of the life of a node on its initial residual energy. In Figure 3(b) we see that the plot is concave i.e. higher battery
powered nodes do not live much longer than lower battery powered nodes. This validates our claim that in HNGs nodes with
higher battery power are made to do more work per round than nodes with lower battery power and hence the network uses
its energy efficiently.

Network lifetime versus p: The variation of network lifetime–the number of rounds before the first node dies–withp was
studied by simulatingHNw

p (V ) for the set described above and varyingp in steps of0.1 between0.1 and0.9 (Figure 4(a)).
We observed that the lifetime increases initially and then decreases, with a maxima at around 0.7 which makes us believe that
the lower bound described in (2) is perhaps tighter than the upper bound. This point of maxima is, of course, a function of
the radio parameters. We simulatedHNW

p (V ) over the same range of values ofp with three different values of the amplifier
constantεfs, keeping the radio electronics energyEelec fixed at50nJ/bit. We observed that the shape of the curve remains
the same except the point of maxima shifts slightly and the maximum value is different. Those plots are omitted here due to
space constraints.
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Fig. 4. Lifetime and delay vs.p.

Delay/lifetime versus p: In order to demonstrate that delay and lifetime can be simultaneously optimize for hierarchical
neighbor graphs we computed the delay ofHNw

p (V ) by running an algorithm that computed the maximum number of time
slots it takes for a packet to get to the base station (see Figure 4(b)). The shape of the curve obtained validates the bound
reported in (3), and we observe that there is a minima which happens to be around0.7 here. We plotted delay/lifetime as well
and found that it too has a definite minima, also seen around 0.7 (see Figure 4(c)). Note that there is nothing special about
the value 0.7. The optimal point for delay/lifetime shifts around based on the relative value of the radio parameters. The key
observation is that for all our simulations there was an optimal point for the delay/lifetime function.

C. Comparison with competing proposals

As mentioned earlier there are several proposals for topology control mechanisms for collecting data in wireless sensor
networks. Here we compare through simulation the performance of hierarchical neighbor graphs with the performance of two
leading proposals, LEACH [6] and PEGASIS [11], and some of their variants.

Comparing lifetimes: We simulated HNGs, LEACH and PEGASIS and observed the numberof nodes alive over time.
Our simulation results for a network where all nodes start with the same energy value ofVALUE NEEDED. are presented
in Figure 5. HNGs were simulated with two values of the constant p = 0.5, 0.7, the latter value being the optimal value ofp
obtained for the given choice of radio parameters that we discussed in Section IV-B. We simulated two versions of LEACH,
one being the baseline proposal that selects cluster heads uniformly and the other version, denoted LEACH2 here, being the
energy aware version that considers residual energy in choosing cluster heads. We observed thatHNw

0.7 outperformed LEACH
by 200% in terms of network lifetime, i.e. it has a network lifetime three times that of LEACH. For PEGASIS we observed
that although its last node dies later thatHNw

0.7(V ), it’s first node dies significantly earlier. In fact by the time the first node
dies forHNw

0.7 more than10% of PEGASIS’s nodes are dead.
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Fig. 5. Number of nodes alive over time for different architectures.

Lifetime and delay: Following the analysis of [10] we compare the performance ofHNGs to that of LEACH and PEGASIS
when delay and lifetime are considered simultaneously. This is done in [10] by using a metric they callenergy ∗ delay where
energy is the average energy spent per round until the first node dies. We summarize the results in Table I including data
from [10] for LEACH, PEGASIS and its hierarchical forms. It is clear that HNGs performs well in comparison with the
other protocols.HN0.7(V ) is outperformed marginally by binary PEGASIS according to this metric because its delay is higher
although it is more energy efficient.

Heterogeneous battery power: Hierarchical neighbor graphs are particularly well suitedto situations where different nodes
of the network begin with different battery power and consequently perform even better than other architectures than they do



Protocol energy delay energy ∗ delay
HNw

0.7(V ) 0.048283 11 0.5311
LEACH 0.204786 27 5.5292
PEGASIS 0.036107 100 3.6107
Binary PEGASIS 0.055898 8 0.4516
3 level PEGASIS 0.058287 15 0.8743

TABLE I
Energy PER ROUND ANDDelay FOR VARIOUS PROTOCOLS.

in the uniform initial battery power case. We simulates HNGs, LEACH, and PEGASIS for two heterogeneous networks having
low and high variation in initial energy. In the first scenario a node is randomly assigned energy1J or 2J with equal probability
(Heterogeneous Network 1). In the second scenario a node is randomly assigned an initial energy between0.1J and2J from
10 levels (Heterogeneous Network 2). Figure 6 shows that the margin by which HNGs outperform other protocols increases
with the heterogeneity in the network. ForHeterogeneous Network 1 the improvement over LEACH2 was up to250% from
just under200% for a homogeneous network. Note that this energy aware version of LEACH requires an estimate of the
residual energy in the entire network and hence requires greater set-up energy cost which is not accounted for. In Figure6(b)
we notice that when approximately90% of the nodes are alive inHNw

0.5, more than half of the nodes have died in all other
protocols.
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