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In the previous lecture we saw that given n balls and n bins, if we throw each ball into a bin

uniformly at random, the maximum number of balls in any bin is O( log n
log log n

).

Today we will see that by placing the balls just a little more carefully we can get an exponentially
better bound. Our placement strategy will be as follows:

• For each ball choose 2 bins uniformly at random from among the bins.

• Place the ball in the less full bin.

• If both bins are equally full, place the ball in any one of them arbitrarily.

For this strategy, which we will call Best of Two, we will show that the number of balls in the
maximum bin is O(log log n) which is exponentially smaller than the bound we showed for the simple
strategy of throwing balls in bins uniformly.

Specifically the theorem we will show is:

Theorem 3.2.1. If we throw n
512 balls into n bins using the Best of Two strategy the maximum

number of balls in any bin is O(log log n).

Proof. Let us look upon the process of filling the bins as a “witness” graph G. The vertex set V of
the graph is the set of all bins. The edge set E is determined by putting edges between two bins chosen
a ball i.e. E = {ei = (u, v)| ball i chooses bins u and v}.

G is a random graph formed by Best of Two. In order to show the theorem we will first show that
there is no large connected component in G.

Claim 3.2.2. The size of G’s largest connected component is O(log n) with probability at least 1− 1
2n .

Proof of Claim 3.2.2. We first determine the probability that a given set of k + 1 nodes form a
connected component. We know that for n nodes to be connected they must have at least n− 1 edges
between them (because every minimally connected graph on n nodes is a tree and a tree has exactly
n − 1 edges.) Since having k edges is a necessary requirement for k + 1 nodes to be connected we can
conclude that:

Pr[A given set of k + 1 nodes is connected] ≤ Pr[at least k edges fall within these k + 1 nodes]
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Satisfy yourself that:

Pr[∃ a set of k + 1 connected nodes] ≤
(

n
512

k

)

·
(

(

8k

n

)2
)k

Therefore we have, using Inclusion-Exclusion that:

Pr[∃ a set of k + 1 connected nodes] ≤
(

n

k + 1

)

·
(

n
512

k

)

·
(

8k

n

)2k

We use two inequalities to simplify this expression:
(

n

k + 1

)

≤ n ·
(

n

k

)

and
(

n

k

)

≤
(

en

k

)k

Hence we have:

Pr[∃ a set of k + 1 connected nodes] ≤ n ·
(

en

k

)k

·
(

en

512k

)k

·
(

8k

n

)2k

≤ n ·
(

e2

8

)k

≤ 1

2n

(

by choosing k =
log

√
2n

log 8
e2

)

ut
Further we will show that the average degree of this large component is a constant with high

probability.

Claim 3.2.3. There is a constant c such that the average degree of any subgraph of size at least c is
at most 5 with probability at least 1 − 1

2n .

Proof of Claim 3.2.3. First we observe that:

Pr[A given set of k nodes has at least
5k

2
edges] ≤

(

n
512
5k
2

)

·
(

(

8k

n

)2
)5k/2

Hence, by Inclusion Exclusion we get:

Pr[∃ a set of k nodes with more than
5k

2
edges] ≤

(

n

k

)

·
(

n
512
5k
2

)

·
(

(

8k

n

)2
)5k/2

≤
(

en

k

)k

·
(

en

256 · 5k

)5k/2

·
(

8k

n

)2(5k/2)

≤
(

8e7/2

205/2

)k

·
(

8k

n

)3k/2
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For values of k greater than ku =
log

√
2n

log 205/2

8e7/2

the first of these two terms is bounded by 1 − 2
n . For

values lower than that we consider the second term. Differentiating it with respect to k we find that

there is a constant c1 such that
(

8k
n

)3k/2
is a decreasing function between c1 and ku. Similarly it is

easy to see that there is a constant c2 such that
(

8c2
n

)3c2/2
≤ 2

n . We set the constant c to be the max

of the two values. ut
We now define a process of edge removals in G.

• While possible remove all vertices of degree at most 10.

This removal process proceeds in rounds. At each round we remove all the vertices whose current
degree is 10. Claim 3.2.2 and Claim 3.2.3 then help us prove that the number of rounds of removal
before we get to constant sized components is bounded.

Claim 3.2.4. The removal process terminates in O(log log n) steps leaving components of constant
size.

Proof of Claim 3.2.4. Since the average degree of a component with l > c vertices is 5 where c is
the constant from Claim 3.2.3, there have to be at least l/2 vertices with degree at most 10. Remove
these in the first round and look at the remaning graph. While its size is greater than c we know that
its average degree is 5 so we can make the same argument to halve its size. This continues till the
components are smaller than c. Hence we require log( l

c) steps before the removal process terminates
leaving components of size at most c. From Claim 3.2.2 we know that l is O(log n). This completes
the proof. ut

Before we relate G to the number of balls in a bin we define the height hi of a ball i with respect to
a set of balls S which have made bin choices. Ball i chooses two bins. Now when all the Best of Two
decisions have been made for the balls in S except i the minimum of the numbers of balls in the two
bins chosen by i is defined to be the height of i, denoted hi.

Claim 3.2.5. Assuming the removal process ends in a graph with at most c vertices, if edge ei is
removed in round t, the maximum height hi of ball i is hi ≤ 10t + c.

Proof of Claim 3.2.4. When the removal process ends we have all the vertices left having degree at
most c and hence the height of a ball in any of the bins left can be at most c. Consider a bin j whose
vertex vj gets removed from the graph in round t. At any round t′ < t it had degree strictly greater
than 10. The edges removed from vj in round t′ were to vertices with degree at most 10. Hence the
height of any ball in vj from among the balls whose edges were removed in round t′ can be at most 10.

In this manner we see that each round that vj lives through contributes at most 10 balls to vj and
resolving the left over component adds another c balls. ut

Putting together Claim 3.2.4 and Claim 3.2.5 we get the proof of Theorem 3.2.1. ut

Notes

The proof in this lecture is a version of the proof in Satish Rao’s lecture notes [4]. That proof in turn is

a simplified and insightful exposition of the “Witness Tree” method pioneered in the work of Karp, Luby and

Meyer auf der Heide [2]. Mitzenmacher, Richa and Sitaraman [3] give an excellent survey of the various proof
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techniques used for best of two choice method and an update on the state of research in this area. Particulary

interesting is Vöcking’s paper on how an assymetric tie breaking rule can help improve the maximum height

bound [5]. Czumaj, Riley and Scheideler [1] provide a more recent update on the state of research in this area

and some interesting results for m balls and n bins.
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