# CSL863: Randomized Algorithms <br> II semester, 2007-08 

Homework \# 3
Due before class on Friday, 11th April 2008
Instructor: Sandeep Sen
April 10, 2008

1. Show that for any collection of hash function $H$. there exists $x, y$ such that

$$
\sum_{h \in H} \delta_{h}(x, y) \geq|H|\left(\frac{1}{m}-\frac{1}{n}\right)
$$

where $n$ and mare the sizes of universe and table respectively.
2. Let $U$ be a universe of all possible keys of size $N$. Then prove that the size of a set of perfect hash functions that map $n$ keys into a table of $(m \geq n)$ is at least

$$
\frac{C(N, n)}{(N / n)^{n} \cdot C(m, n)}
$$

Here $\mathrm{C}(\mathrm{a}, \mathrm{b})$ denotes number of choices of b subsets from a set of a objects .
3. If a,b are chosen uniformly at random then show that the hash function $h(x)=(a x+b) \bmod p$ maps $x \neq 0$ uniformly at random to one of the p values, i.e. probability $(h(x)=i)=1 / p$ for $0 \leq i \leq p-1, \mathrm{p}$ is prime. Further show that for a pair of elements $\mathrm{x}, \mathrm{y}$, probability $(h(x)=i, h(y)=j))=\operatorname{probability}(h(x)=i) \cdot \operatorname{probability}(h(y)=j)$.
4. Let $|T|=p$ where $p$ is a prime. Define a hash function from $U=p^{k}$ to $T$ as follows. For a key $x=<s_{1}, s_{2} \ldots s_{k}>0 \leq s_{i} \leq p-1$, and $a=<a_{1}, a_{2} \ldots, a_{k}>a_{i}<p$, the hash function $h_{a}(x)=\sum_{i} a_{i} \cdot s_{i} \bmod p$.
Prove that $h_{a}$ defines a strongly universal hash family.
5. Suppose $T$ is an ordered table of $n$ keys $x_{i}, 1 \leq i \leq n$ drawn uniformly from ( 0,1 ). Instead of doing the conventional binary search, we use the following approach.

Given key $y$, we make the first probe at the position $s_{1}=\lceil y \cdot n\rceil$. If $y=x_{s_{1}}$, we are through. Else if $y>x_{s_{1}}$, we recursively search for $y$ among the keys $\left(x_{s_{1}} \ldots x_{n}\right)$ else recursively search for $y$ among the keys $\left(x_{1} \ldots x_{s_{1}}\right.$.

At any stage when we search for $y$ in a range $\left(x_{l} \ldots x_{r}\right.$, we probe the position $l+\left\lceil\frac{\left(y-x_{l}\right)(r-l)}{x_{r}-x_{l}}\right\rceil$. We are interested in determining the expected number of probes required by the above searching algorithm.

In order to somewhat simplify the analysis, we modify the algorithm as follows. In round $i$, we partition the input into $n^{1 / 2^{i}}$ sized blocks and try to locate the block that contains $y$ and recursively search within that block. In the $i$-th round, if the block containing $y$ is $\left(x_{l} \ldots x_{r}\right)$, then we probe the position $s_{i}=l+\left\lceil\frac{\left(y-x_{l}\right)(r-l)}{x_{r}-x_{l}}\right\rceil$. We then try to locate the $n^{1 / 2^{i}}$-sized block by sequentially probing every $n^{1 / 2^{i}}$-th element starting from $s_{i}$.
Analyze the expected number of probes required. (Analyze the expected number of probes in each round using Chebychev's inequality).
6. Given a set of points on the real-line with coordinates $x_{1}, x_{2} \ldots x_{n}$, we want to determine if there is a subset $x_{i}, x_{i+1} \ldots x_{i+m-1}$ with separation distances $d_{i} i \leq m$. Design a $O(n)$ algorithm for this problem.
7. Given a set $S$ of $n$ points in a plane - design a linear time algorithm to find the smallest enclosing circle of $S$.
8. Show how to implement the contraction algorithm (the original $n$ contractions) in
(i) $O\left(n^{2}\right)$ time. You may want to use a adjacency matrix representation. To choose a random edge first choose a random vertex with probability proportional to its degree and then choose one of the neighbours at random. Prove that this works as required.
(ii) $O(m \log n)$ time.

Extend the solution of the first part to weighted graphs.

