CS105L: Discrete Structures I semester, 2005-06

Tutorial Sheet 7: Graph Theory: Paths and Cycles
Instructor: Amitabha Bagchi

September 19, 2005

1. (Diestel: Proposition 1.3.1) Every graph G contains a path of length $\delta(G)$ and a cycle of length at least $\delta(G)+1$, provided $\delta(G)$, the minimum degree of the graph, is at least 2 .
2. (Diestel: Proposition 1.3.2) Every graph G containing a cycle satisfies $g(G) \leq 2 \cdot \operatorname{diam}(G)+1$, where $g(G)$ is the girth of the graph i.e. the length of the smallest cycle in the graph, and $\operatorname{diam}(G)$ is the diameter of the graph.
3. (Diestel: Chap 1, Prob 3) Let G be a graph containing a cycle C, and assume that G contains a path of length at least k between some two vertices of C. Show that G contains a cycle of length at least \sqrt{k}. Is this the best possible?
