CS105L: Discrete Structures I semester, 2005-06

Tutorial Sheet 4: Pigeonhole Principle

Instructor: Amitabha Bagchi
August 23, 2005

1. Consider any five points in the interior of an equilateral triangle of side 1. Show that there are two points which are at most $1 / 2$ units apart.
2. Consider any five points in the interior of a square of side 1 . Show that there are two points which are at most $1 / \sqrt{2}$ units apart. Is this this the best possible bound i.e. is there a placement of five points such that the maximum interpoint distance is exactly $1 / \sqrt{2}$.
3. Show that among any 9 points inside a triangle of area 1 there are three points which form a triangle of area at most $1 / 4$.
4. Show that given any 9 points inside a triangle of area 1 there is a triangle of area $1 / 12$ which does no contain any of those 9 points. Can you do better than $1 / 12$?
5. Let A be any set of 20 numbers chosen from the arithmetic progression $1,4,7, \ldots, 100$. Prove that there must be two distinct integers in A which sum to 104 .
6. Suppose $f(x)$ is a polynomial with integral coefficients and $F(x)=2$ for three different integers, a, b and c. Prove that for no integer x can $f(x)$ be equal to 3 .
Hint. Prove first that $f(p)-f(q)$ is divisible by $p-q$ for p, q integers. Then use this fact to prove the result.
