CS105L: Discrete Structures I semester, 2005-06

Homeworks # 10 & 11

Due before 11 AM on Tuesday, November 29, 2005

Instructor: Amitabha Bagchi

November 20, 2005

This problem sheet is two homeworks combined. The total credit for this will be worth 10% of the grade.

- 1. A throws six dice and wins if he gets at least one occurence of the digit 5. B throws twelve dice and wins if he scores at least two occurences of the digit 4. Which of them has the greater probability of winning?
- 2. There are n urns of which the rth urn contains r-1 red balls and n-r blue balls. You pick an urn at random and pick two balls at random from it. What is the probability that:
 - (a) The second ball is blue.
 - (b) The second ball is blue given that the first ball is blue.
- 3. A man has 5 coins. Two of them have heads on both sides, one has tails on both sides and two have heads on one side and tails on the other side.
 - (a) He shuts his eyes, picks a coin at random and tosses it. What's the probability that the lower face is heads?
 - (b) He opens his eyes and sees that the coin is showing heads. What's the probability that the lower face is heads?
 - (c) He shuts his eyes again and tosses the coin again. What is the probability that the lower face is heads?
 - (d) He opens his eyes again and sees that the coin is showing heads. What's the probability that the lower face is heads?
 - (e) He discards this coin, picks another at random and tosses it. What is the probability that it shows heads?
- 4. Given *n* bins, what is the expected number of balls we have to throw to ensure that each bin gets one ball?

Hint. Define a random variable X_i as the number of balls needed to be thrown, after i - 1 bins already contain balls, before a ball lands in a new bin. You will need to use linearity of expectation.

- 5. Given a biased coin which turns up heads with probability p < 1/2 and tails with probability q = 1 p, devise an experiment which will yield two unbiased outcomes (i.e. two outcomes, each occuring with probability 1/2.)
- 6. We select three numbers x, y, z independently and uniformly from the interval (0, 1). What is the probability that $xy > z^2$?