
Major Exam Solutions

1. Here is a simplified version of the problem which food delivery companies like Swiggy face. Let us call
it the k-Swiggy problem. Like in the k-server problem, k delivery persons occupy points in a metric
space. Each request consists of a (restaurant,customer) pair. To serve the request, Swiggy sends one
delivery person to the restaurant, who picks up the order and delivers it to the customer. Let us assume
that Swiggy gets the next request only after it has served the current request, so all the k persons are
available to serve any request.

Mathematically, each request i is a pair of points (si, ti) from the metric space. Such a request is
served by moving a server to si and then moving the same server from si to ti. The cost incurred
is, naturally, the total distance travelled by the k servers (inclusive of the distances from si to ti).
Let αk and βk denote the deterministic competitive ratios of the k-server and the k-Swiggy problem
respectively. (Recall that k ≤ αk ≤ 2k − 1.)

(a) [3 points] Prove that αk ≤ βk. (That is, show how you can use any online k-Swiggy algorithm
for the k-server problem.)

Answer: Given an instance I of k-server whose i’th request is ri, let the instance I ′ of k-Swiggy be
such that its i’th request is (ri, ri). Then OPT(I) = OPT(I ′). Given a βk competitive algorithm
B for k-Swiggy, consider the algorithm A for k server which, given ri, passes request (ri, ri) to B
and mimics B’s server movement. Then we have A(I) = B(I ′). Thus, A is βk-competitive, and
hence αk ≤ βk.

(b) [7 points] Prove that βk ≤ αk + 2. (That is, show how you can use any online k-server algorithm
to get a k-Swiggy algorithm while adding at most 2 to the competitive ratio.)

Answer: Given an instance I ′ of k-Swiggy whose i’th request is (si, ti), let the instance I of
k-server be such that its i’th request is si. The optimal server movement for I ′ is also a feasible
server movement for I, and therefore, OPT(I) ≤ OPT(I ′).

Given an αk-competitive algorithm A for k-server, define the algorithm B for k-Swiggy to be the
following. On request (si, ti), pass si to A. Use the same server to serve (si, ti) as A uses to serve
si, and bring back that server from ti to si. By induction it is easy to prove that A and B have
servers at the same set of locations after serving any sequence of requests, and so the behavior
of B on the next request is well defined. The competitiveness guarantee of B can be derived as
follows.

B(I ′) = A(I) + 2
∑
i

d(si, ti) ≤ αk ·OPT(I) + 2 ·OPT(I ′) ≤ (αk + 2) ·OPT(I ′),

where d is the distance function of the metric space. Here we used the fact that for each i, some
server moves from si to ti in the optimal solution to I ′, and hence, OPT(I ′) ≥

∑
i d(si, ti). Thus,

B is (αk + 2)-competitive, and hence, βk ≤ αk + 2.

2. Recall the problem of pre-emptive online matching in the edge-arrival setting. Edges arrive one after
the other. We can accept an edge only as soon as it comes, and we can discard it in future. We
must always maintain a matching M in the graph. To prove competitiveness, we showed that we can
maintain values xv for each vertex v that constitute a feasible dual solution, such that for every new
edge arrival, the change in the algorithm’s matching’s weight is at least the competitive ratio times
the change in dual.

(a) [7 points] We call an instance b-special if the ratio of the weights of any two edges is an integer
power of b, for some parameter b > 2. Consider the following algorithm, which we will call
algorithm A. Start with M = ∅. For every new edge e with weight w, if w is greater than the
weight of every conflicting edge in M , then remove those conflicting edges from M and add e to
M . Else, discard e. Explain how you will maintain the dual variables to prove that on b-special
instances, this algorithm has competitive ratio at least

b− 2

2 · (b− 1)
.



Answer: Let we denote the weight of edge e. We initialize xu := 0 for all vertices u. Whenever
we add edge e = (u, v) to M , we set xu := max(xu, we) and xv := max(xv, we). Thus, the dual
variables can only increase over time, and hence, once a dual constraint is satisfied, it remains
satisfied in future. Therefore, it is sufficient to prove that xu +xv ≥ we holds just after processing
every edge e = (u, v).

The dual variable updates ensure that for any vertex u, xu is at least the weight of the edge
matching u in M , if any. Suppose edge e arrives and is discarded. Then there must be a
conflicting edge e′ in M of weight we′ ≥ we. Suppose e and e′ share vertex u. Then xu ≥ we′ ,
and therefore, xu + xv ≥ we. On the other hand, suppose e gets accepted in M . Then our dual
variable updation rule ensures xu + xv ≥ we. Thus, the dual remains feasible always.

We are left to prove ∆primal ≥ (b − 2)/(2b − 2) × ∆dual, which implies ((b − 2)/(2b − 2))-
competitiveness. Suppose edge e arrives and is discarded. Then ∆primal = ∆dual = 0. On the
other hand, suppose e gets accepted and edges e1 and e2 get discarded as a result. This implies
we > we1 and we > we2 . Since the instance is b-special, we have we ≥ bwe1 and we ≥ bwe2 . Now
∆primal = we − we1 − we2 and ∆dual = ∆xu + ∆xv ≤ (we − we1) + (we − we2). Thus,

∆primal

∆dual
≥ we − we1 − we2

(we − we1) + (we − we2)
=

1

2

(
1− we1 + we2

(we − we1) + (we − we2)

)
,

and therefore,

∆primal

∆dual
≥ 1

2

(
1− we1 + we2

(bwe1 − we1) + (bwe2 − we2)

)
=

1

2

(
1− 1

b− 1

)
=

b− 2

2(b− 1)
,

as required. (If e has less than two conflicting edges then we take either we1 or we2 or both to be
0, appropriately.)

(b) Let us now analyze a randomized algorithm for pre-emptive online matching. For a fixed b > 2,
define f(w, r) to be the largest number less than or equal to w that is of the form bz+r for some
integer z (equivalently, logb f(w, r) = blogb w − rc + r). The algorithm A′ is as follows. Choose
r uniformly at random from [0, 1]. For every edge of weight w, reassign its weight to be f(w, r)
and pass it to algorithm A. In the end, simply return the output of A. Observe that the instance
received by A is b-special, so the guarantee from the previous question applies.

i. [6 points] Prove that

Er∼U [0,1][f(w, r)] = w · b− 1

b ln b
,

where U [0, 1] denotes the uniform distribution on [0, 1]. (Hint: How is logb f(w, r) dis-
tributed?)
Answer: We have logb w−logb f(w, r) = logb w−r+blogb w−rc. Here logb w−r is distributed
uniformly on (logb w−1, logb w], and hence its fractional part is distributed uniformly on [0, 1).
Thus, logb f(w, r) is distributed uniformly on (logb w − 1, logb w]. Therefore,

Er∼U [0,1][f(w, r)] = EX∼U(logb w−1,logb w][b
X ] =

∫ logb w

logb w−1
bxdx =

w − w/b
ln b

= w · b− 1

b ln b
.

ii. [7 points] Now prove that algorithm A′ has competitive ratio at least

b− 2

2 · (b− 1)
× b− 1

b ln b
=

b− 2

2b ln b
.

You may assume that all the earlier claims are true, even if you couldn’t prove them. (It
is easy to see that the maximum value of the competitive ratio is attained when b satisfies
2 ln b = b− 2, and the maximum value is ≈ 0.1867, better than the deterministic competitive
ratio.)



Answer: Fix an instance. Let M∗ be the maximum weight matching in it. For every
r ∈ [0, 1], define M∗(r) and M(r) as follows. M∗(r) is the maximum weight matching in the
same underlying graph but with every edge e assigned weight f(we, r) instead of its original
weight we, and M(r) is the matching returned by A on this reweighted instance. Due to the
competitiveness guarantee of A, for every r, we have,∑

e∈M(r)

f(we, r) ≥
b− 2

2(b− 1)
×

∑
e∈M∗(r)

f(we, r) ≥
b− 2

2(b− 1)
×
∑

e∈M∗
f(we, r),

where the second inequality follows from the optimality of M∗(r). Taking expectation over r
uniformly distributed on [0, 1], we get,

Er∼U [0,1]

 ∑
e∈M(r)

f(we, r)

 ≥ b− 2

2(b− 1)
×
∑

e∈M∗
Er∼U [0,1][f(we, r)] =

b− 2

2(b− 1)
· b− 1

b ln b
×
∑

e∈M∗
we,

where the equality follows from the previously proven claim applied to every e ∈ M∗. Since
f(w, r) ≤ w for every w and r, we have,

Er∼U [0,1]

 ∑
e∈M(r)

we

 ≥ Er∼U [0,1]

 ∑
e∈M(r)

f(we, r)

 ≥ b− 2

2b ln b
×
∑

e∈M∗
we.

Since A′ returns M(r) for r ∼ U [0, 1], the required competitiveness guarantee of A′ follows.

3. The goal of this question is to analyze another algorithm for the prophet problem. Assume that none
of the independent non-negative random variables X1, . . . , Xn have point masses, that is, their CDFs
are all continuous. Their realizations are seen in the order X1, . . . , Xn. Let the threshold T be such
that

∑n
i=1 Pr[Xi ≥ T ] = 1. (Such a T exists because the CDFs are continuous.) Define the random

variables X1, . . . , Xn as Xi = Xi · I[Xi ≥ T ], (that is, Xi = Xi if Xi ≥ T and Xi = 0 otherwise).

(a) [4 points] Prove that E[maxiXi] ≤
∑n

i=1 E
[
Xi

]
.

Answer: We prove that for all x > 0, Pr[maxiXi ≥ x] ≤
∑n

i=1 Pr[Xi ≥ x]. Integrating both
sides from x = 0 to ∞ proves the claim. For x ∈ (0, T ), we have, Pr[Xi ≥ x] = Pr[Xi ≥ T ], and
therefore,

n∑
i=1

Pr[Xi ≥ x] =

n∑
i=1

Pr[Xi ≥ T ] = 1 ≥ Pr[max
i
Xi ≥ x],

where the second equality follows by the definition of T . Now for x ≥ T , we have, Pr[Xi ≥ x] =
Pr[Xi ≥ x], and therefore,

n∑
i=1

Pr[Xi ≥ x] =

n∑
i=1

Pr[Xi ≥ x] ≥ Pr[max
i
Xi ≥ x],

where the inequality follows from the union bound.

(b) [6 points] Define pi = Pr[Xi ≥ T ]. Consider the following algorithm. For i = 1 to n, on receiving
Xi:

• If Xi ≥ T , then with probability 1/(2 −
∑

j<i pj) accept Xi and stop, and with probability
1− 1/(2−

∑
j<i pj) reject Xi and continue.

• Else (i.e. if Xi < T ), reject Xi and continue.

(Note that 1/(2 −
∑

j<i pj) is a valid probability because
∑

j<i pj ≤
∑n

j=1 pj = 1.) Determine
the probability that the algorithm doesn’t stop before it sees Xi. Hence, prove that the expected
reward of this algorithm is

(∑n
i=1 E

[
Xi

])
/2. (Therefore, this algorithm too is (1/2)-competitive.)



Answer: We claim that for all i, the probability that the algorithm doesn’t stop before it sees
Xi is (2 −

∑
j<i pj)/2. We prove is by induction on i. The claim is obvious for i = 1. Assume

that the claim is true for i − 1, that is, the probability that the algorithm doesn’t stop before it
sees Xi−1 is (2 −

∑
j<i pj)/2. Now for the algorithm to not stop before it sees Xi, it shouldn’t

stop before it sees Xi−1, and conditioned on this, it shouldn’t accept Xi−1 either. Therefore, the
probability that the algorithm doesn’t stop before it sees Xi is

2−
∑

j<i−1 pj

2
·

(
1− pi−1 ·

1

2−
∑

j<i−1 pj

)
=

2−
∑

j<i−1 pj

2
×

2−
∑

j<i pj

2−
∑

j<i−1 pj
=

2−
∑

j<i pj

2
,

as required.

Define the random variables ALGi as follows. ALGi = Xi if the algorithm accepts Xi, and
ALGi = 0 otherwise, so that ALG =

∑n
i=1 ALGi. Thus, ALGi = Xi if the algorithm doesn’t

stop before it sees Xi and the i’th coin toss is favorable; otherwise ALGi = Xi = 0. The random
variable Xi, the event that the algorithm gets to see Xi, and the i’th coin toss are all independent.
Therefore,

E[ALGi] =
2−

∑
j<i pj

2
× 1

2−
∑

j<i pj
× E[Xi] =

E[Xi]

2
,

and hence, we have, E[ALG] =
∑n

i=1 E[ALGi] =
(∑n

i=1 E
[
Xi

])
/2, as required.


