
COL866

Release: September 1, 2020: 12:00

Major Exam (for non-AGP-opting students)

Deadline: September 2, 2020: 12:00

Time: 24 hours. You may refer to all resources available to you, but discussion is strictly
prohibited. Submission format: PDF is preferred. Photographs and scans are also acceptable,
but it’s your responsibility to ensure that they are clear and readable.

1. Here is a simplified version of the problem which food delivery companies like Swiggy face. Let us call
it the k-Swiggy problem. Like in the k-server problem, k delivery persons occupy points in a metric
space. Each request consists of a (restaurant,customer) pair. To serve the request, Swiggy sends one
delivery person to the restaurant, who picks up the order and delivers it to the customer. Let us assume
that Swiggy gets the next request only after it has served the current request, so all the k persons are
available to serve any request.

Mathematically, each request i is a pair of points (si, ti) from the metric space. Such a request is
served by moving a server to si and then moving the same server from si to ti. The cost incurred
is, naturally, the total distance travelled by the k servers (inclusive of the distances from si to ti).
Let αk and βk denote the deterministic competitive ratios of the k-server and the k-Swiggy problem
respectively. (Recall that k ≤ αk ≤ 2k − 1.)

(a) [3 points] Prove that αk ≤ βk. (That is, show how you can use any online k-Swiggy algorithm
for the k-server problem.)

(b) [7 points] Prove that βk ≤ αk + 2. (That is, show how you can use any online k-server algorithm
to get a k-Swiggy algorithm while adding at most 2 to the competitive ratio.)

2. Recall the problem of pre-emptive online matching in the edge-arrival setting. Edges arrive one after
the other. We can accept an edge only as soon as it comes, and we can discard it in future. We
must always maintain a matching M in the graph. To prove competitiveness, we showed that we can
maintain values xv for each vertex v that constitute a feasible dual solution, such that for every new
edge arrival, the change in the algorithm’s matching’s weight is at least the competitive ratio times
the change in dual.

(a) [7 points] We call an instance b-special if the ratio of the weights of any two edges is an integer
power of b, for some parameter b > 2. Consider the following algorithm, which we will call
algorithm A. Start with M = ∅. For every new edge e with weight w, if w is greater than the
weight of every conflicting edge in M , then remove those conflicting edges from M and add e to
M . Else, discard e. Explain how you will maintain the dual variables to prove that on b-special
instances, this algorithm has competitive ratio at least

b− 2

2 · (b− 1)
.

(b) Let us now analyze a randomized algorithm for pre-emptive online matching. For a fixed b > 2,
define f(w, r) to be the largest number less than or equal to w that is of the form bz+r for some
integer z (equivalently, logb f(w, r) = blogb w − rc + r). The algorithm A′ is as follows. Choose
r uniformly at random from [0, 1]. For every edge of weight w, reassign its weight to be f(w, r)
and pass it to algorithm A. In the end, simply return the output of A. Observe that the instance
received by A is b-special, so the guarantee from the previous question applies.

i. [6 points] Prove that

Er∼U [0,1][f(w, r)] = w · b− 1

b ln b
,

where U [0, 1] denotes the uniform distribution on [0, 1]. (Hint: How is logb f(w, r) dis-
tributed?)

ii. [7 points] Now prove that algorithm A′ has competitive ratio at least

b− 2

2 · (b− 1)
× b− 1

b ln b
=

b− 2

2b ln b
.



You may assume that all the earlier claims are true, even if you couldn’t prove them. (It
is easy to see that the maximum value of the competitive ratio is attained when b satisfies
2 ln b = b− 2, and the maximum value is ≈ 0.1867, better than the deterministic competitive
ratio.)

3. The goal of this question is to analyze another algorithm for the prophet problem. Assume that none
of the independent non-negative random variables X1, . . . , Xn have point masses, that is, their CDFs
are all continuous. Their realizations are seen in the order X1, . . . , Xn. Let the threshold T be such
that

∑n
i=1 Pr[Xi ≥ T ] = 1. (Such a T exists because the CDFs are continuous.) Define the random

variables X1, . . . , Xn as Xi = Xi · I[Xi ≥ T ], (that is, Xi = Xi if Xi ≥ T and Xi = 0 otherwise).

(a) [4 points] Prove that E[maxiXi] ≤
∑n

i=1 E
[
Xi

]
.

(b) [6 points] Define pi = Pr[Xi ≥ T ]. Consider the following algorithm. For i = 1 to n, on receiving
Xi:

• If Xi ≥ T , then with probability 1/(2 −
∑

j<i pj) accept Xi and stop, and with probability
1− 1/(2−

∑
j<i pj) reject Xi and continue.

• Else (i.e. if Xi < T ), reject Xi and continue.

(Note that 1/(2 −
∑

j<i pj) is a valid probability because
∑

j<i pj ≤
∑n

j=1 pj = 1.) Determine
the probability that the algorithm doesn’t stop before it sees Xi. Hence, prove that the expected
reward of this algorithm is

(∑n
i=1 E

[
Xi

])
/2. (Therefore, this algorithm too is (1/2)-competitive.)


