
COL866 Homework Answers

Homework 1

1. [6 points] Consider the following weighted version of non-preemptive bipartite matching in the vertex
arrival setting. Each offline vertex i has a non-negative weight wi, and these weights are provided in the
beginning with the offline vertices. The weight of a matching is the sum of the weights of the matched
offline vertices, and we want to compete with the weight of the maximum weight matching. The rest
of the problem definition is the same: in each round, a new online vertex appears along with the edges
incident on it, and we must match it irrevocably to some available neighbor or leave it unmatched.
Consider the following algorithm.

• For each offline vertex i, sample Xi ∼ U [0, 1] independently. (U [0, 1] denotes the uniform distribu-
tion on [0, 1].)

• For each online vertex j, if j has at least one unmatched neighbor, match j to that unmatched
neighbor i which maximizes wi · (1− eXi−1).

Prove that this algorithm is (1−1/e)-competitive. (Observe that when the weights wi are all equal, this
algorithm is same as the Karp-Vazirani-Vazirani algorithm. The analysis will almost follow the same
footsteps, but be careful and spot all the differences. If the proof of some claim in your analysis is exactly
the same as in the Karp-Vazirani-Vazirani analysis, you may say so and skip the proof.)

Answer: Define

revi =

{
wie

Xi−1, if item i sold,
0 otherwise,

(1)

utilj =

{
wi · (1− eXi−1), if buyer j buys item i,
0 if buyer j doesn’t buy any item.

(2)

As in the unweighted case, ALG =
∑

item i revi +
∑

buyer j utilj . Now in this weighted case, we claim

∀ edge (i, j): E[revi] + E[utilj ] ≥ (1− 1/e) · wi,

after which the proof follows as in the unweighted case. Like in the unweighted case, we prove this claim
conditional on every possible price of items other than i, and the expectation is taken over the price of
i only. Define the market G′ exactly as in the unweighted case, and define rev′i and util′j for G′ in a
manner analogous to equations (1) and (2) respectively. Define the sets Al, A

′
l as in the unweighted case.

Then the claim that A′l ⊆ Al and |Al| ≤ |A′l|+ 1 continues to hold. This implies that utilj ≥ util′j with

probability 1, and therefore, EXi
[utilj |P−i = p−i] ≥ util′j(p−i). Henceforth, for succinctness, we define

u = util′j(p−i).

Next, analogous to the unweighted case, one can prove that item i is sold (in G) if wi(1 − eXi−1) > u.
Here you are bound to make the following mistake if you are not careful.

The condition wi(1− eXi−1) > u is equivalent to

Xi < 1 + ln

(
1− u

wi

)
.

Thus,

EXi
[revi|P−i = p−i] ≥

∫ 1+ln
(
1− u

wi

)
0

wie
x−1dx = wie

x−1
∣∣∣1+ln

(
1− u

wi

)
0

= wi − u−
wi
e

,

and therefore,

EXi
[utilj |P−i = p−i] + EXi

[revi|P−i = p−i] ≥ wi −
wi
e

,

as required.



This is a mistake because wi could be greater than u, in which case, ln(1 − u/wi) is meaningless. The
fix is to consider two cases: u < wi · (1− 1/e) and u ≥ wi · (1− 1/e). In the former case, the argument
in the box holds. In the latter case, EXi

[utilj |P−i = p−i] ≥ util′j(p−i) = u itself is at least wi · (1− 1/e),
so EXi

[utilj |P−i = p−i] + EXi
[revi|P−i = p−i] ≥ wi · (1− 1/e) holds trivially, since revi is non-negative.

2. [4 points] In the third recorded lecture around the 48:00 timestamp (on the third page of the scanned
notes), I wrote the following claim:

E[|M |] ≤ n
(

1− 1

e

)
+ o(n),

and left the details for you to figure out. Complete that proof. (Again, you don’t have to reprove the
claims already proven in the recorded lecture.)

Answer: Let n′ be the minimum number such that

n′∑
j=1

1

n− j + 1
≥ 1.

We use the following bounds.

i∑
j=1

Pr[(ri, vj) ∈M ] ≤

{ ∑i
j=1

1
n−j+1 for i < n′,∑n′

j=1
1

n−j+1 for i ≥ n′,

that is,
i∑

j=1

Pr[(ri, vj) ∈M ] ≤
min(i,n′)∑
j=1

1

n− j + 1
.

Thus,

E[|M |] ≤
n∑
i=1

min(i,n′)∑
j=1

1

n− j + 1
=

n′∑
j=1

n∑
i=j

1

n− j + 1
=

n′∑
j=1

1

n− j + 1

n∑
i=j

1 =

n′∑
j=1

1 = n′.

Now let us bound n′ from above. We have,

1 ≥
n′−1∑
j=1

1

n− j + 1
≥
∫ n+1

n−n′+2

1

x
· dx = ln

(
n+ 1

n− n′ + 2

)
,

which imples,

E[|M |] ≤ n′ ≤ (n+ 1) ·
(

1− 1

e

)
+ 1 = n ·

(
1− 1

e

)
+

(
2− 1

e

)
,

as required.



Homework 2

In the real-time secretary problem, numbers from an adversarially chosen set {x1, . . . , xn} appear at their
respective arrival times T1, . . . , Tn that are distributed independently and uniformly in [0, 1]. As usual,
whenever a number appears, an algorithm is allowed to either pick it and discard the remaining input, or
discard it and continue. Like in the secretary problem, our goal is to design an algorithm that maximizes
the probability of “success”; we say that the algorithm succeeds if it picks maxi xi. Crucially, in this case,
n is not known to the algorithm in advance (otherwise it could simply behave like the secretary algorithm,
because the numbers appear in a uniformly random order).

1. [6 points] Consider the following algorithm for real-time secretary, which involves a parameter τ ∈ [0, 1].

• Discard all numbers arriving before time τ . Let θ be the maximum of all numbers that arrive before
time τ . (θ = −∞ if no number appears before time τ .)

• Thereafter, accept the earliest arriving number which exceeds θ.

Derive a lower bound on the success probability of this algorithm as a function of τ . Hence show that
there exists a τ for which the success probability is at least 1/e.

Answer: Let the random variable T ∗ denote the arrival time of maxi xi, and let the random variable S
denote the set {i : Ti < T ∗}. Then we have for t < τ ,

Pr[success|T ∗ = t] = 0.

For t ≥ τ , we have,
Pr[success|T ∗ = t, S = ∅] = 1.

For any subset S of indices not containing arg maxi xi, let k = arg maxi∈S xi. Then we have,

Pr[success|T ∗ = t, S = S] = Pr[Tk < τ |T ∗ = t, S = S] = Pr[Tk < τ |Tk < t] = τ/t.

Therefore, for any S,
Pr[success|T ∗ = t, S = S] ≥ τ/t,

which implies that for t ≥ τ ,
Pr[success|T ∗ = t] ≥ τ/t.

Hence,

Pr[success] =

∫ 1

0

Pr[success|T ∗ = t]dt ≥
∫ 1

τ

τ

t
· dt = −τ ln τ .

The lower bound on the success probability is maximized at τ = 1/e, and the maximum value is 1/e.

2. [4 points] Prove that no algorithm for the real-time secretary problem can have success probability
(1/e) + ε for any constant ε > 0.

Answer: We prove that if there is an algorithm A for real-time secretary with success probability
at least α, then there is an algorithm A′ for secretary with success probability at least α. Since the
secretary problem doesn’t have an algorithm with success probability 1/e+ ε (proved in class), neither
does real-time secretary.

Algorithm A′ knows n. It samples n values from U [0, 1] and sorts them to get t1 < t2 < · · · < tn. For
i = 1 to n, it applies timestamp ti to the i’th number in its input and passes it to A. If A accepts and
stops, so does A′.
Since A′ gets the xi’s in a uniformly random order, arrival times T1, . . . , Tn are obtained by sorting n
independent draws from U [0, 1] and randomly permuting them again. Thus, T1, . . . , Tn are n independent
draws from U [0, 1], and hence, the input to A satisfies the definition of real-time prophet. Therefore, A
succeeds with probability at least α. Algorithm A′ succeeds if and only if algorithm A succeeds, so A′
succeeds with probability at least α.



Homework 3

In this homework we will analyze a fixed-threshold algorithm for the prophet-secretary problem, for the case
when the CDFs F1, . . . , Fn of the independent random variables X1, . . . , Xn are all continuous, that is, none
of the probability distributions have point masses. Observe that this implies that there exists a τ such that
Pr[maxiXi ≤ τ ] =

∏n
i=1 Fi(τ) = 1/e. We will analyze the algorithm that uses this τ as the fixed threshold,

that is, it accepts the earliest value that exceeds τ . Like in the recorded lectures, we write the algorithm’s
reward as a sum of revenue and utility.

1. [1 point] Determine the expected revenue of the algorithm.

Answer: The revenue is τ if the algorithm accepts some value, and 0 otherwise. The algorithm accepts
some value if and only if at least one Xi is at least τ , that is, maxiXi ≥ τ . Thus, E[rev] = τ ·Pr[maxiXi ≥
τ ] = τ · (1− 1/e).

2. To analyze the expected utility, it is convenient to imagine that each random variable Xi appears at a
uniformly random arrival time ti in [0, 1], and these n arrival times are independent (like in the real-
time prophet-secretary problem defined in the recorded lectures). Let the random variable T denote the
stopping time of the algorithm. Like in the prophet secretary analysis, we define θ(t) = Pr[T ≥ t], the
probability that the algorithm doesn’t stop before time t.

(a) [4 points] Show that θ(t) =
∏n
i=1(1− t+ t · Fi(τ)). Hence, prove that θ(t) ≥ e−t. (Hint: AM-GM

inequality.)

Answer: The algorithm stops before time t if and only if there exists some i such that Xi ≥ τ and
it arrives before time t. In other words,

θ(t) = Pr[T ≥ t] = Pr[∀i : ¬(ti ≤ t ∧Xi ≥ τ)]

=

n∏
i=1

(1− Pr[ti ≤ t ∧Xi ≥ τ ])

=

n∏
i=1

(1− Pr[ti ≤ t] · Pr[Xi ≥ τ ])

=

n∏
i=1

(1− t · (1− Fi(τ)))

=

n∏
i=1

(1− t+ t · Fi(τ)),

where we used the fact that the values Xi and the arrival times ti are all independent. Next, we
have

1− t+ t · Fi(τ) = (1− t) · 1 + t · Fi(τ) ≥ 11−t · Fi(τ)t = Fi(τ)t,

by AM-GM inequality, and hence,

θ(t) ≥
n∏
i=1

Fi(τ)t =

(
n∏
i=1

Fi(τ)

)t
= e−t,

by the definition of τ .

(b) [4 points] Observe that for all i, we have θ(t) ≤ Pr[T ≥ t | ti ≥ t] = Pr[T ≥ t | ti = t]. (You
don’t have to write the proof of this; it is the same as in the recorded lecture.) Using this fact
and the bound on θ(t) you just proved, show that the expected utility is bounded from below by
(1− 1/e) · E[(maxiXi − τ)+]. (As usual, a+ denotes max(a, 0).)

Answer: The utility is given by

util =
∑
i

(Xi − τ)+ · I[ALG picks Xi] =
∑
i

(Xi − τ)+ · I[T ≥ ti],



since if Xi < τ then (Xi − τ)+ · I[ALG picks Xi] = (Xi − τ)+ · I[T ≥ ti] = 0, whereas if Xi ≥ τ ,
then the algorithm picks Xi if and only if T ≥ ti. Define utili = (Xi − τ)+ · I[T ≥ ti], so that
util =

∑n
i=1 utili. Then we have,

E[utili] = E[(Xi − τ)+ · I[T ≥ ti]]
= E[(Xi − τ)+] · Pr[T ≥ ti]

= E[(Xi − τ)+] ·
∫ 1

0

Pr[T ≥ t | ti = t]dt

≥ E[(Xi − τ)+] ·
∫ 1

0

θ(t)dt

≥ E[(Xi − τ)+] ·
∫ 1

0

e−tdt

≥ E[(Xi − τ)+] ·
(

1− 1

e

)
,

where the second equality holds because the event T ≥ ti is completely determined by the arrival
times and the values of Xj for j 6= i, and all these are independent of Xi. Summing over all i, we
get,

E[util] =

n∑
i=1

E[utili]

≥
(

1− 1

e

)
·
n∑
i=1

E[(Xi − τ)+]

=

(
1− 1

e

)
· E

[
n∑
i=1

(Xi − τ)+

]

≥
(

1− 1

e

)
· E
[
(max

i
Xi − τ)+

]
,

where the second inequality was proved in recorded lecture 7 (see the claim on the second page of
notes).

3. [1 point] Using the bounds on the expected revenue and the expected utility, derive a competitiveness
guarantee of the algorithm.

Answer: Adding the bounds on expected revenue and expected utility, we get,

E[ALG] = E[rev] + E[util] ≥ (1− 1/e) · (τ + E[(max
i
Xi − τ)+]) = (1− 1/e) · E[τ + (max

i
Xi − τ)+],

which implies E[ALG] ≥ (1− 1/e) · E[maxiXi], that is, the algorithm is (1− 1/e)-competitive.

Note: the idea can be extended to handle the case when Fi’s have point masses. Figure out the details if
you are interested.


