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ABSTRACT
Several applications, like malicious URL detection and web spam

detection, require classification on very high-dimensional data. In

such cases anomalous data is hard to find but normal data is easily

available. As such it is increasingly common to use a one-class clas-
sifier (OCC). Unfortunately, most OCC algorithms cannot scale to

datasets with extremely high dimensions. In this paper, we present

Fast Random projection-based One-Class Classification (FROCC),

an extremely efficient, scalable and easily parallelizable method for

one-class classification with provable theoretical guarantees. Our

method is based on the simple idea of transforming the training data

by projecting it onto a set of random unit vectors that are chosen

uniformly and independently from the unit sphere, and bounding

the regions based on separation of the data. FROCC can be naturally

extended with kernels. We provide a new theoretical framework to

prove that that FROCC generalizes well in the sense that it is stable

and has low bias for some parameter settings. We then develop a

fast scalable approximation of FROCC using vectorization, exploit-

ing data sparsity and parallelism to develop a new implementation

called ParDFROCC. ParDFROCC achieves up to 2 percent points

better ROC than the next best baseline, with up to 12× speedup in

training and test times over a range of state-of-the-art benchmarks

for the OCC task.

CCS CONCEPTS
• Computing methodologies→ Supervised learning by classi-
fication; Anomaly detection; Ensemble methods; • Theory of com-
putation→ Sample complexity and generalization bounds; Kernel
methods.

KEYWORDS
one class classification; ensemble classifier; random projection;

kernel based method
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1 INTRODUCTION
The One-class Classification (OCC) task finds wide applicability

in real-world situations where it is difficult or expensive to obtain

labeled anomalous data or the anomalous data points change over

time, whereas obtaining accurate normal samples is relatively easy.

Examples of such situations are network intrusion detection [11]

and fraud detection [43]. Many of these situations involve extremely

high-dimensional raw data, e.g., unusual consumer behavior de-

tection where a very large number of commodities results in very

high dimensions. In cases like spam filtering [41] and malicious

website detection [25] characteristics like origin, route, text content

etc. raise the dimensionality of the data to very high levels. In each

of these scenarios a one class classifier is trained on the normal
data and, when a test point is provided, the model decides if the

point is normal or an outlier.
Primary approaches to OCC include one-class variants of sup-

port vector machines (SVM) [36], probabilistic density estimators

describing the support of normal class [5, 34], and recently, deep-

learning based methods such as Generative Adversarial Networks

(GAN) and Variational Auto-encoders (VAE) which try to learn the

distribution of normal data samples during training [4, 29, 30, 35].

One of the main challenges these extant state-of-the-art methods

encounter is the question of how to scale with dimension for ex-

tremely high-dimensional data. As dimensionality increases train-

ing time goes up for these methods, and, more importantly, their

test performance scales poorly with dimensionality, making them

unsuitable for applications such as the ones discussed above.

In this paper, we present an alternative approach based on the

idea of using a collection of random projections onto a number

of randomly chosen 1-dimensional subspaces (vectors). Random

projections down to a single dimension or to a small number of

dimensions have been used in the past to speed up approximate

nearest neighbor search [2, 15, 18] and other problems that rely
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on the distance-preserving property guaranteed by the Johnson-

Lindenstrauss Lemma but our problem space is different. We use

random projections in an entirely novel fashion based on the fol-

lowing key insight: for the one-class classification problem, the

preservation of distances is not important, we only require the class

boundary to be preserved. The preservation of distances is a stronger
property which implies that the class boundary is preserved, but

the converse need not hold. We don’t need to preserve distances.

All we need to do is “view” the training data from a “direction” that

shows that the outlier is separated from the data.

Formalizing this intuition, we develop an algorithm for one-class

classification called FROCC (Fast Random projection-based One-

Class Classification) that essentially applies a simplified envelope

method to random projections of training data to provide a very

strong classifier. FROCC also comes with a theoretically provable

generalization property: the method is stable and has low bias.

While the simplicity of FROCC allows it to be extremely fast,

extremely high dimensional datasets, that of the order of 10M fea-

tures, such as many natural language datasets, were still found

to be significantly slow to train. To allow FROCC to scale to ex-

treme dimensions, we developed ParDFROCC, an extremely fast,

highly scalable (both in dimensions and number of training data

points) parallelized approximation of FROCC. The approximation

is achieved by discretizing the real space into bins, which allows for

fast vectorized operations. ParDFROCC achieves nearly four-fold

speed up over FROCC, with nearly no loss in quality of classifi-

cation. Further, we beat state of the art deep learning and SVM

baselines in scalability, speed and classification accuracy on real-

world benchmarks.

1.1 Our contributions
In this paper, we propose a novel approach to one class classification:

(1) We define a powerful and efficient random-projection based one

class classifier named FROCC (Sec. 3). (2) We prove mathematically

that for certain settings FROCC is a stable classification algorithm

with low bias (Sec. 4). (3) We also propose fast approximations and

parallelization to scale FROCC to extremely high-dimensional large

datasets (Sec 5), namely: (a) Discretization and vectorization of

FROCC resulting in DFROCC (Sec 5.1), (b) Use of sparse projection

vectors, first introduced by Achlioptas [1], resulting in SparseD-

FROCC (Sec 5.2), and (c) A multi-core parallel implementation of

SparseDFROCC that results in ParDFROCC (Sec 5.3). (4)We conduct

an extensive empirical comparison with a range of state-of-the-art

baselines, including the recent deep learning based models, and

show that FROCC-family of methods offer significant advantages

in terms of both one-class classification accuracy as well as compu-

tational cost.

2 RELATEDWORK
One Class Classification. Khan and Madden [17] provide a de-

tailed taxonomy of OCC tasks and learning algorithms prior to the

advent of deep learning methods. These traditional methods are

classified into OCSVM based approaches such as Schölkopf et al.

[36] and Tax and Duin [40], and Non-OCSVM based approaches

such as Liu et al. [24]. Pang et al. [28] provide a survey of recent

advances in OCC using deep learning, with methods such as Ruff

et al. [35], Burgess et al. [4], and Perera and Patel [30]. Unlike deep

learning methods ParDFROCC does not rely on optimization for

learning a representation of the data. This lends ParDFROCC an

efficiency benefit over these methods.

Random Projection. Random projection is widely used for

high-dimensional data due to the Johnson-Lindenstrauss property,

i.e., random projections preserve distances. This makes it an attrac-

tive choice for nearest neighbor algorithms and locality sensitive

hashing [2, 14]. Random projection methods are also employed for

one class classification in Fowler and Du [10] and de Vries et al.

[6]. LODA [31] also utilizes random projections on top a histogram

based method such as Goldstein and Dengel [12] to provide an

efficient algorithm for OCC. Unlike [31] which still has to rely

on histogram calculation, ParDFROCC employs a simpler bound-

ary generation technique which is not only faster, but allows for

efficient parallel implementation.

Sparse Random Projection. The efficiency of random pro-

jections can be further enhanced by using Sparse Random Pro-

jections [1]. Unlike most methods that use random projection for

representation alone, ParDFROCC can exploit the sparsity of the

random projections to a greater degree owing to the fact that the

only processing involved in computing ParDFROCC are vector

multiplications and additions.

3 FAST RANDOM-PROJECTION BASED OCC
Definition 3.1 (FROCC (𝑆,𝑚, 𝜀, 𝐾)). Assume that we are given

a set of training points 𝑆 = {𝒙1, . . . , 𝒙𝑛} ⊆ R𝑑 . Then, given an

integer parameter𝑚 > 0, a real parameter 𝜀 ∈ (0, 1] and a kernel

function 𝐾 (·, ·), the 𝜀-separated Fast Random-projection based One-
Class Classifier FROCC (𝑆,𝑚, 𝜀, 𝐾), comprises, for each 𝑖 , 1 ≤ 𝑖 ≤ 𝑚,

(1) A classifying direction 𝒘𝑖 that is a unit vector chosen uni-

formly at random from 1𝑑 , the set of all unit vectors of R𝑑 ,
independent of all other classifying directions, and

(2) a set of intervals 𝑅𝑖 defined as follows: Let 𝑆 ′
𝑖
= {𝐾 (𝒘𝑖 , 𝒙 𝑗 ) :

1 ≤ 𝑗 ≤ 𝑛} and 𝑆𝑖 = {𝑦1, . . . , 𝑦𝑛} is a shifted and scaled

version of 𝑆 ′
𝑖
such that 𝑦𝑖 ∈ (0, 1), 1 ≤ 𝑖 ≤ 𝑛. Assume 𝑦1 ≤

· · · ≤ 𝑦𝑛 . Then each interval of 𝑅𝑖 has the property that it is

of the form [𝑦 𝑗 , 𝑦 𝑗+𝑘 ] for some 𝑗 ≥ 1, 𝑘 ≥ 0 such that

(a) for all 𝑡 such that 0 ≤ 𝑡 < 𝑘 , 𝑦 𝑗+𝑡+1 − 𝑦 𝑗+𝑡 < 𝜀,
(b) 𝑦 𝑗 − 𝑦 𝑗−1 > 𝜀 whenever 𝑗 − 1 > 0, and

(c) 𝑦 𝑗+𝑘+1 − 𝑦 𝑗+𝑘 > 𝜀 whenever 𝑗 + 𝑘 + 1 ≤ 𝑛.
Given a query point 𝒚 ∈ R𝑑 , FROCC (𝑆,𝑚, 𝜀, 𝐾) returns YES if

for every 𝑖 , 1 ≤ 𝑖 ≤ 𝑚, 𝐾 (𝒘𝑖 ,𝒚) lies within some interval of 𝑅𝑖 .

In simple terms the intervals of 𝑅𝑖 have the property that the

points of 𝑆𝑖 are densely scattered within each interval and there

are wide gaps between the intervals that are empty of points of

𝑆𝑖 . The density of the intervals is lower bounded by 1/𝜀 and the

width between successive intervals is lower bounded by 𝜀. Setting

𝜀 = 1 gives us the special case where the entire normalized interval

[0, 1] is an inlier interval. This corresponds to the entire interval

from max
𝑛
𝑖=1

𝑆𝑖 to min
𝑛
𝑖=1

𝑆𝑖 prior to normalization. In the simplest

setting the kernel function 𝐾 (·, ·) will be just the usual dot product
associated with R𝑑 .

We show a small example in Figure 1. The light green points are

training points. Two classifying directions𝒘1 and𝒘2 are displayed.

If we choose 𝜀 < 𝜀𝑑 , we have intervals [𝑎, 𝑏] and [𝑐, 𝑑] on𝒘1. We

demonstrate the decision process of FROCC using three test points

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

67



Algorithm 1: FROCC Training

Data: 𝑆 = {𝒙1, . . . , 𝒙𝑛 } ⊆ R𝑑 : training set
input :𝑚, 𝜀

output : [𝑅𝑖 ]𝑚𝑖=1 : list of𝑚 interval vectors

1 Initialize 𝑟𝑒𝑠𝑢𝑙𝑡 ← empty list
2 for 𝑖 ← 1 to𝑚 do
3 𝒘𝑖 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚 (1𝑑 ) // sample a d-dimensional unit vector

uniformly

4 Initialize 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 ← empty list
5 for 𝑗 ← 1 to 𝑛 do
6 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛 ← 𝑓 (𝑥 𝑗 , 𝑤𝑖 )
7 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛)
8 end
9 𝑅𝑖 ← 𝑏𝑢𝑖𝑙𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑉𝑒𝑐𝑡𝑜𝑟 (𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 )

10 result.append(𝑅𝑖 )

11 end

𝒚1,𝒚2,𝒚3. 𝒚1’s projection on𝒘2 falls within the interval [𝑒, 𝑓 ], but
its projection on 𝒘1 falls outside of the two intervals. Thus it is

correctly classified as an outlier. 𝒚2’s projection on𝒘1 falls within

the interval [𝑐, 𝑑] but the projection on𝒘2 lies outside the interval

[𝑒, 𝑓 ], correctly classifying it as an outlier. The projections of test

point 𝑦3 on both vectors lie within an interval, and so it is correctly

classified as an inlier.

Computing FROCC. Algorithm 1 outlines the training proce-

dure of FROCC. The function 𝑓 in Line 6 is any valid kernel, which

defaults to inner product ⟨·, ·⟩. Once we create a projectionList, we
generate an interval vector in Line 9, that separates the projections

such that the inter-interval distance is at most 𝜀 and the distance

between the intervals is at least 𝜀. Unlike many optimization based

learning methods, such as neural networks, our algorithm needs a

single pass through the data.

The standard method for choosing uniformly random vectors in

R𝑑 is to sample from a spherical 𝑑-dimensional Gaussian centered

at the origin and then normalizing it so that its length is 1. A quick

calculation suggests that independently picking 𝑑 random variables

with distribution 𝑁 (0, 1) is good enough for this purpose. The

spherical symmetry of the Gaussian distribution ensures that the

random vector is uniformly picked from all possible directions.

Time complexity. The time taken to compute the boundaries of

the 𝐹𝑅𝑂𝐶𝐶 is𝑂 (𝑚𝑛𝑑) for 𝜀 = 1 (assuming the kernel is dot product,

which takes 𝑂 (𝑑)). For 𝜀 < 1 an additional factor of 𝜃 (𝑚𝑛 log𝑛)
is required to create 𝜀-separated intervals along each classifying

direction.

Figure 1: Decision process example:𝒚1 and𝒚2 are identified as
outliers by vectors𝒘1 and𝒘2 respectively, while𝑦3 is correctly
identified as an inlier.

4 STABILITY OF FROCC
We now present our main theoretical result, Thm 4.6, which shows

that under some mild assumptions the bias of FROCC with 𝜀 = 1

goes to 0 at an exponential rate as the size of the training set

increases.

We follow the terminology defined in [3]. Let S denote the set of

all finite labelled point sets of R𝑑 where each point is labelled either

0 or 1. We assume we have a training set 𝑆 ∈ S chosen randomly as

follows: We are given an unknown distribution 𝐷 over R𝑑 × {0, 1}
and 𝑆 comprises 𝑘 samples with label 1 drawn i.i.d. from 𝐷 . For

a point 𝑧 = (𝑥,𝑦) ∈ R𝑑 × {0, 1} we use 𝑑𝑎𝑡𝑎(𝑧) to denote 𝑥 and

𝑙𝑎𝑏 (𝑧) to denote 𝑦. Let R be the set of all finite strings on some

finite alphabet, and let us call the elements of R decision strings.
Further, let F be the set of all classification functions from R𝑑 to

{0, 1}. Then we say a classification map Φ : S × R → F maps a

training set and a decision string to a classification algorithm.

With this setup we say that a randomized classification algorithm
𝐴 takes a training 𝑆 ∈ S as input, picks a random decision string

𝑟 ∈ R and returns the classification function Φ(𝑆, 𝑟 ) which we

denote 𝐴(𝑆, 𝑟 ). 𝐴(𝑆, 𝑟 ) is a randomly chosen element of F which

we call a classifier. Given an 𝑟 , 𝐴(𝑆, 𝑟 ) is fixed but we will use 𝐴𝑆 to

denote the randomized classifier which has been given its training

set 𝑆 but is yet to pick a random decision string. Now, given a

𝑧 ∈ R𝑑 , the loss function of a randomized classifier 𝐴𝑆 is given by

𝑉 (𝐴𝑆 , 𝑧) = E𝑟

{
1𝐴(𝑆,𝑟 ) (𝑑𝑎𝑡𝑎 (𝑧))≠𝑙𝑎𝑏 (𝑧)

}
,

where the expectation is over the randomness of the decision string

𝑟 . In otherwords the loss is equal to Pr𝑟 {𝐴(𝑆, 𝑟 ) (𝑑𝑎𝑡𝑎(𝑧)) ≠ 𝑙𝑎𝑏 (𝑧)}.
We define the risk of 𝐴𝑆 as

𝑅(𝐴𝑆 ) = E𝑆,𝑧 {𝑉 (𝐴𝑆 , 𝑧)} ,
where the expectation is over the random choice of 𝑆 and of the

point 𝑧. Note that 𝑉 (·, ·) already contains an expectation on the

randomness associated with the decision string which is inherent

in 𝐴𝑆 . The empirical risk of 𝐴𝑆 is defined as

𝑅𝑒 (𝐴𝑆 ) =
1

|𝑆 |
∑︁
𝑧∈𝑆

𝑉 (𝐴𝑆 , 𝑧) .

Also, for 1 ≤ 𝑖 ≤ |𝑆 | we say that 𝑆\𝑖 = 𝑆 \ {𝑧𝑖 } and 𝑆𝑖 = 𝑆\𝑖 ∪ {𝑧′𝑖 }
where 𝑧′

𝑖
is chosen from 𝐷 independently of all previous choices.

We now define a notion of stability that is a modification of the

definition of stability for classification algorithms given by [3].

Definition 4.1 (0-1 uniform classification stability). Suppose we
have a randomized classification algorithm 𝐴 and a loss function

𝑉 (·, ·) whose co-domain is [0, 1]. Then𝐴 is said to have 0-1 uniform
classification stability (𝛽, 𝜂) if for all 𝑆 ⊆ R𝑑 , for every 𝑖 such that

1 ≤ 𝑖 ≤ |𝑆 |, and for every 𝑧 ∈ R𝑑 × {0, 1}
|𝑉 (𝐴𝑆 , 𝑧) −𝑉 (𝐴𝑆\𝑖 , 𝑧) | ≤ 𝛽

with probability at least 1 − 𝜂.
If 𝛽 is 𝑂 (1/|𝑆 |) and 𝜂 is 𝑂 (𝑒−𝑐 |𝑆 |) for some constant 𝑐 > 0, we

say that 𝐴 is 0-1 uniform classification stable.

Next we prove that a 0-1 uniform classification stable algorithm

has low bias and converges exponentially fast in the size of 𝑆 to its

expected behavior. This is a general result that may be applicable

to a large class of randomized classification algorithms.
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Theorem 4.2. Suppose we have a randomized classification al-
gorithm 𝐴 which has 0-1 uniform classification stability (𝛽, 𝜂) with
0 < 𝛽, 𝜂 < 1, and suppose this algorithm is trained on a set 𝑆 drawn
i.i.d. from a hidden distribution in such a way that the random choices
made by 𝐴 are independent of 𝑆 , then, for any 𝛼 > 0,

Pr {|𝑅(𝐴, 𝑆) − 𝑅𝑒 (𝐴, 𝑆) | ≥ 𝛼} ≤ 2 exp

{
− 2𝛼2

|𝑆 |𝛽2

}
+ 2|𝑆 |𝜂. (1)

Moreover if 𝐴 is 0-1 uniform classification stable then the RHS of (1)

tends to 0 at a rate exponential in |𝑆 |.

Proof. As in [3] we will use McDiarmid’s inequality [26] to

bound the deviation of the empirical risk from the risk.

Lemma 4.3 (McDiarmid [26]). Given a set of𝑚 independent ran-
dom variables𝑌𝑖 , 1 ≤ 𝑖 ≤ 𝑚 and a function 𝑓 such that |𝑓 (𝑥1, . . . , 𝑥𝑚)−
𝑓 (𝑦1, . . . , 𝑦𝑚) | < 𝑐𝑖 whenever 𝑥 𝑗 = 𝑦 𝑗 , 1 ≤ 𝑗 ≤ 𝑚, 𝑗 ≠ 𝑖 , and 𝑥𝑖 ≠ 𝑦𝑖 ,

Pr {|E {𝑓 (𝑌1, . . . , 𝑌𝑚)} − 𝑓 (𝑌1, . . . , 𝑌𝑚) | ≥ 𝛼} ≤ 𝑒

(
− 2𝛼2∑𝑚

𝑖=1
𝑐2
𝑖

)
.

To use Lemma 4.3 we have to show that 𝑅𝑒 (𝐴, 𝑆) is a 2𝛽-Lipschitz
function. However, this property is only true with a certain proba-

bility in our case. In particular we will show that for all 𝑖 , 1 ≤ 𝑖 ≤ |𝑆 |,
|𝑅𝑒 (𝐴, 𝑆) − 𝑅𝑒 (𝐴, 𝑆𝑖 ) | ≤ 2𝛽 with probability at least 1 − 2|𝑆 |𝜂. To
see this note we note that for any 𝑖 and any 𝑧 𝑗 ∈ 𝑆 (including 𝑗 = 𝑖).

|𝑉 (𝐴𝑆 , 𝑧 𝑗 ) −𝑉 (𝐴𝑖𝑆 , 𝑧 𝑗 ) | =|𝑉 (𝐴𝑆 , 𝑧 𝑗 ) −𝑉 (𝐴𝑆\𝑖 , 𝑧 𝑗 )
+𝑉 (𝐴𝑆\𝑖 , 𝑧 𝑗 ) −𝑉 (𝐴

𝑖
𝑆 , 𝑧 𝑗 ) |.

Using the definition of (𝛽, 𝜂) 0-1 uniform classification stability and

the triangle inequality, we get that the RHS is bounded by 2𝛽 with

probability at least 1 − 2𝜂. If 𝐴 𝑗 is the event that the RHS above is

bounded by 2𝛽 then we want to bound the probability of the event

that this is true for all 𝑗 , 1 ≤ 𝑗 ≤ |𝑆 |, i.e., the event 𝐹 = ∩ |𝑆 |
𝑗=1
𝐴 𝑗 .

Since Pr

{
𝐴 𝑗

}
≤ 2𝜂, we can say that Pr {𝐹 } is at least 1 − 2|𝑆 |𝜂.

Now, let 𝐸 be the event that |𝑅(𝐴, 𝑆)−𝑅𝑒 (𝐴, 𝑆) | > 𝜀 and 𝐹 defined
above be the event that 𝑅𝑒 (𝐴, 𝑆), which is a function of the vector

of |𝑆 | elements chosen independently to form 𝑆 is 2𝛽-Lipschitz. We

know that

Pr {𝐸} ≤ Pr {𝐸 |𝐹 } Pr {𝐹 } + Pr
{
𝐹

}
. (2)

We have already argued that the second term on the RHS is upper

bounded by 2|𝑆 |𝜂 so we turn to the first term. To apply Lemma 4.3

to the first term we note that 𝐸 depends on the random selection of

𝑆 which are selected independently of each other and, by assump-

tion, independent of the random choices made by 𝐴. Therefore

the random collection {𝑉 (𝐴𝑆 , 𝑧) : 𝑧 ∈ 𝑆} is independent even
when conditioned on 𝐹 which is determined purely by the random

choices of 𝐴 and is true for every choice of set 𝑆 . Once this is noted

then we can use McDiarmid’s inequality to bound the first term of

Equation (2). We ignore Pr {𝐹 } by upper bounding it by 1. □

We now prove that FROCC with 𝜀 = 1 is 0-1 uniform classifi-

cation stable under a mild condition on the unknown distribution.

We call this condition spatial divisibility.

Definition 4.4 (Spatial divisibility). Suppose that 𝜇 : R𝑑 → [0, 1]
is a probability density function. For any set 𝑇 containing 𝑑 points

𝑥𝑖 , . . . , 𝑥𝑑 ∈ R𝑑 let 𝐻𝑇+ and 𝐻𝑇− be the two half-spaces defined

by the hyper-plane containing all the points of 𝑇 . We say that 𝜇

is spatially divisible if for any set 𝑑 + 1 randomly chosen points

𝑋 = {𝑋1, . . . , 𝑋𝑑 } and 𝑌 chosen independently according to density

𝜇 and any 𝐴, 𝐵 ⊂ R𝑑 such that 𝜇 (𝐴), 𝜇 (𝐵) > 0,

Pr {𝑌 ∈ 𝐻𝑋+ |𝑋𝑖 ∈ 𝐴,𝑌 ∈ 𝐵} > 0, and

Pr {𝑌 ∈ 𝐻𝑋− |𝑋𝑖 ∈ 𝐴,𝑌 ∈ 𝐵} > 0.

Note that the set 𝑋 defines a hyper-plane in 𝑑 dimensions with

probability 1 for any distribution defined on a non-empty volume

of R𝑑 . Most standard distributions have the spatial divisibility prop-

erty. For example, it is easy to see that a multi-variate Gaussian dis-

tribution has this property. If we pick a point uniformly at random

from within a convex 𝑑-polytope then too the spatial divisibility

property is satisfied. To see this we note that the only way it could

not be satisfied is if the points 𝑋𝑖 and 𝑌 are picked from the surface

of the 𝑑-polytope which is an event of probability 0.

We now show that Theorem 4.2 applies to FROCC with 𝜀 = 1 if

the unknown distribution 𝐷 is spatially divisible.

Proposition 4.5. If the unknown distribution 𝐷 is spatially divis-
ible then FROCC with 𝜀 = 1 is 0-1 uniform classification stable.

Proof. For any 𝑖 , 1 ≤ 𝑖 ≤ 𝑛, where 𝑛 = |𝑆 |, we note that when
𝜀 = 1 the entire interval spanned by the projections in any direction

is said to contain inliers, and so if 𝑥𝑖 lies strictly within the convex

hull of 𝑆 then the removal of 𝑖 from 𝑆 does not affect the classifier.

This is because the boundaries in any direction are determined by

the points that are part of the convex hull. Let us denote this set

conv(𝑆). Therefore, since 𝑉 (·, ·) takes value at most 1, we deduce

the following upper bound

|𝑉 (𝐴𝑆 , 𝑧) −𝑉 (𝐴𝑆\𝑖 , 𝑧) | ≤ Pr {𝑥𝑖 ∈ conv(𝑆)} .
To bound the probability that a point 𝑥𝑖 lies in the convex hull

of 𝑆 we use an argument that Efron [8] attributes to Rényi and

Sulanke [32, 33]. Given a region 𝐵 ⊂ R𝑑 let us denote by 𝐷 (𝐵) the
probability that a point drawn from the unknown distribution 𝐷

places a point in 𝐵. Now given any 𝑑 points, say 𝑥1, . . . , 𝑥𝑑 ∈ 𝑆 ,
we divide R𝑑 into two regions 𝐴𝑋+ that lies on one side of the

hyper-plane defined by 𝑥1, . . . , 𝑥𝑑 and 𝐴𝑋− that lies on the other

side. Then the probability that 𝑥1, . . . , 𝑥𝑑 all lie in conv(𝑆) is equal
to the probability that all the remaining points of 𝑆 are either in

𝐴𝑋+ or in 𝐴𝑋−, i.e.,

Pr {𝑥1, . . . , 𝑥𝑑 ∈ conv(𝑆)} = 𝐷 (𝐴𝑋+) (𝑛−𝑑) + 𝐷 (𝐴𝑋−) (𝑛−𝑑) .
From this, using the union bound we can say that

Pr {𝑥𝑖 ∈ conv(𝑆)} ≤
∑︁

𝑌 ∈P(𝑆\{𝑥𝑖 },𝑑)
𝐷 (𝐴𝑌+) (𝑛−𝑑) + 𝐷 (𝐴𝑌−) (𝑛−𝑑) ,

where P(𝐴,𝑑) is the set of all subsets of𝐴 of size 𝑑 . This can further

be bounded as

𝐿𝐻𝑆 ≤ 2

(
𝑛 − 1
𝑑

)
max

𝑌 ∈P(𝑆\{𝑥𝑖 },𝑑)
max{𝐷 (𝐴𝑌+) (𝑛−𝑑) , 𝐷 (𝐴𝑌−) (𝑛−𝑑) }.

Since we have assumed that 𝐷 (𝐴𝑌±) < 1 for all 𝑌 ⊂ 𝑆 such that

|𝑌 | = 𝑑 and 𝑥𝑖 ∉ 𝑌 , using the fact that

(𝑛
𝑘

)
≤ (𝑒𝑛/𝑘)𝑘 , we can say

that there is an 𝛼 such that 0 < 𝛼 < 1 and a constant 𝐶 > 0 such

that

|𝑉 (𝐴𝑆 , 𝑧) −𝑉 (𝐴𝑆\𝑖 , 𝑧) | ≤ 𝐶 · (𝑛 − 1)
𝑑𝛼𝑛
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almost surely. Since the RHS goes to 0 exponentially fast in 𝑛 with

probability 1, we can say that FROCC is 0-1 uniform classification

stable when 𝜀 = 1. □

From Theorem 4.2 and Proposition 4.5 we get

Theorem 4.6. For a training set 𝑆 chosen i.i.d. from a spatially
divisible unknown distribution, if 𝜀 is set to 1 then 𝑅𝑒 (𝐹𝑅𝑂𝐶𝐶, 𝑆)
converges in probability to 𝑅(𝐹𝑅𝑂𝐶𝐶, 𝑆) exponentially fast in |𝑆 |.

We feel that it should be possible to use the framework provided

by Theorem 4.2 to show that FROCC is stable even when 𝜀 lies in

(0, 1), however this problem remains open.

5 SCALING FROCC
In this section we show how to scale FROCC so that it can be trained

on large datasets containing features in the order of 10M in minutes.

We first describe a discretized version of the algorithm, DFROCC,

(Sec. 5.1), then show how we can speed up DFROCC by introducing

sparsity into our random vectors (Sec. 5.2), and finally describe

ParDFROCC which is a parallelized version of DFROCC (Sec. 5.3).

5.1 DFROCC: Discretizing FROCC
Our key insight is this: A collection of disjoint intervals can be repre-
sented by an array with 0s and 1s as entries. To do this we discretize

the real line into segments of a fixed length, placing a 1 for every

segment that lies within an interval and 0 for a segment that lies

outside all intervals. We call the discretized algorithm DFROCC.

Definition 5.1 (DFROCC (𝑆,𝑚, 𝜀,𝛾, 𝐾)). Assume that we are given

a set of training points 𝑆 = {𝒙1, . . . , 𝒙𝑛} ⊆ R𝑑 . Then, given an inte-

ger parameter𝑚 > 0, a real parameter 𝜀 > 0, an integer discretiza-
tion parameter 𝛾 > 1 and a kernel function 𝐾 (·, ·), the 𝜀-separated
Discrete Fast Random-projection based One-Class Classifier DFROCC
(𝑆,𝑚, 𝜀, 𝑏, 𝐾 ), comprises, for each 𝑖 , 1 ≤ 𝑖 ≤ 𝑚,

(1) A classifying direction𝒘𝑖 which is a vector chosen randomly

from a spherically symmetric distribution in R𝑑 independent

of all other classifying directions, and

(2) a boolean array 𝐵𝑖 (called interval vector) of size 𝑁 =
𝛾
𝜀

defined as follows: Let 𝑆𝑖 = {𝐾 (𝒘𝑖 , 𝒙 𝑗 ) : 1 ≤ 𝑗 ≤ 𝑛}, where
the projections are normalized to lie in [0, 1]. Name the

elements of 𝑆𝑖 as 𝑦1, . . . , 𝑦𝑛 . Then (a) The cell 𝐵𝑖 [𝑘] is set to
1, where 𝑘 = ⌊𝑁𝑦 𝑗 ⌋ for 1 ≤ 𝑗 ≤ 𝑛, is the normalized discrete
projection of 𝑦 𝑗 , and (b) if the 𝐵𝑖 [𝑘1] and 𝐵𝑖 [𝑘2] are marked

as 1 such that 𝑘1 < 𝑘2 and 𝑘2 − 𝑘1 ≤ 𝛾 , then for all
ˆ𝑘 such

that 𝑘1 ≤ ˆ𝑘 ≤ 𝑘2, 𝐵𝑖 [ ˆ𝑘] is marked as 1.

Given a query point𝒚 ∈ R𝑑 the classifier returns a YES answer if the

normalized discrete projection of 𝒚 in each classifying direction’s

interval vector is 1. Otherwise it returns NO.

Note that in the above definition𝛾 is our discretization parameter

that determines how many bins the projection range is divided into.

As 𝛾 →∞ the behavior of DFROCC approaches that of FROCC.

In Figure 2 the green points are training points and 𝒘1 and

𝒘2 are two classifying directions. The bins shaded in pink and

blue are considered inlier bins with respect to the directions 𝒘1

and𝒘2 respectively. Even though the region 𝛿1 does not have any

projections in it along 𝒘1, the bins have been marked as inliers

Figure 2: The vector𝒘1 classifies the test point 𝑦 incorrectly
since the bins in the region 𝛿1 is marked as positive. However,
𝒘2 correctly classifies 𝑦 as an outlier since the bins in 𝛿2 are
not marked as inliers

since the two clusters have bins 𝑘 and 𝑘 ′ such that
|𝑘−𝑘′ |
𝑁

< 𝜀.

Consequently, the test point 𝒒 is marked as an inlier by direction

𝒘1. However, since the region 𝛿2 has not been marked along𝒘2, the

test point 𝒒 is correctly classified as an outlier by the classifying

direction𝒘2.

5.2 Sparse DFROCC
DFROCC needs to project several 𝑑-dimensional data points onto

𝑑-dimensional random vectors. This is an operation that can po-

tentially take time Θ(𝑑2). To address this problem we introduce

sparsity in our random vectors by applying an ingenious solu-

tion first presented by Achlioptas [1] in the context of Johnson-

Lindenstrauss-style embeddings. We take a parameter 𝑠 ∈ (0, 1), the
sparsity of our random vectors, and choose our vectors according

to the following definition:𝒘 ( 𝑗)
𝑖

= +1 and −1 each with probability

𝑠
2
and 0 with probability 1 − 𝑠 , where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑑 . All

dimensions are chosen independent of each other.

Using Achlioptas’s distribution we get sparse classification direc-

tion vectors that take Θ(𝑠𝑑𝑚) memory. Calculating the projections

takes Θ(𝑠𝑑𝑚𝑛) time. We get a reduction of both the time and stor-

age complexity by a factor of 1 − 𝑠 . The tradeoff here is that when

the sparsity is too high we may not learn anything from the data.

So 𝑠 has to be chosen carefully.

It must be noted here that the improvements over Achlioptas’s

method, such as Li et al. [23] and Kane and Nelson [16], provide

better theoretical bounds on the sparsity of random vectors. We

experimented with them but rejected them because their additional

computational costs outweighed the benefits of extra sparsity.

5.3 ParDFROCC: Parallelizing DFROCC
In ParDFROCC each of the three phases of DFROCC has a parallel

step done independently for each batch and an aggregation step

which brings together the computations performed in parallel. Fig-

ure 3 presents a block diagram for ParDFROCC. We assume we

have partitioned the training set 𝑆 into ℓ batches 𝑆1, . . . , 𝑆ℓ .

5.3.1 Random vector generation Phase.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

70



Interval Aggregation
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Data
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Random vector generation phase

Projection phase

IntervaI generation phase

Figure 3: Architecture of ParDFROCC. Blue regions have the
parallel steps and purple region have aggregation steps.

Parallel step. For each 𝑏 ∈ {1, . . . , ℓ} we create𝑚 classification

direction vectors 𝒘𝑏
𝑖
, 𝑖 = 1, . . . ,𝑚, independently in parallel. This

involves determining which dimensions are non-zero for the train-

ing points in 𝑆𝑏 , i.e., the 𝑗𝑡ℎ entry of the classification vectors is

generated only if 𝒙 [ 𝑗] ≠ 0 for some 𝒙 ∈ 𝑆𝑏 . Since the non-zero
dimensions for one batch may be different from the non-zero di-

mensions of another we need to aggregate the vectors generated to

arrive at the final set of classification directions.

Aggregation step. We aggregate the vectors from each thread

to ensure all projections are non-zero on same set of classification

directions. We aggregate in a surprisingly simple way: We just set

𝒘𝑖 =
∑
𝑏 𝒘

𝑏
𝑖
for all 1 ≤ 𝑖 ≤ 𝑚. Does this work? There are two

considerations. Firstly, for correctness the resultant distribution

should be spherically symmetrical. Secondly, the sparsity of the

aggregated vectors should not decrease too much, i.e., when we

add some non-zero entries they should not sum to zero. We now

show that this solution works on both these fronts.

Proposition 5.2. Given an 𝑠 ∈ (0, 1) and a collection of ℓ indepen-
dent random variables 𝑋1, . . . , 𝑋ℓ that take value 0 with probability
1 − 𝑠 and values -1 or 1 with probability 𝑠/2, if 𝑋 =

∑ℓ
𝑖=1 𝑋𝑖 then if

𝑠ℓ < 4/𝑒 .
Pr {𝑋 < 0} = Pr {𝑋 > 0} ≥ 𝑠ℓ · 𝑒

4𝜋
.

Proof. Firstly, we note that 𝑋 is is exactly the position of a

lazy random walk on Z that begins at the origin whose one step

distribution stays at the same place with probability 1−𝑠 and moves

with equal probability in either direction otherwise. If this position

is non-zero then by symmetry it is equiprobable that it is positive

or negative.

Now we upper bound the probability that 𝑋 is 0. Consider two

cases. Case 1. Each 𝑋𝑖 is 0. This happens with probability (1 − 𝑠)ℓ .
Case 2. Not every 𝑋𝑖 is 0 but the sum is 0. We use the following

lemma:

Lemma 5.3. Given a collection𝑋1, . . . , 𝑋𝑡 of random variables that
take values uniformly in {−1, 1} independently,

P

(
𝑡∑︁
𝑖=1

𝑋𝑖 = 0

)
≤ 𝑒

𝜋
√
𝑡
,

if 𝑡 is even and 0 otherwise.

The proof follows from Eq. (2.19) of [22] and a short calculation.

Since in Case 2 the number of non-zero entries is at least 1, we

get an upper bound of
𝑒
𝜋 on the probability that 𝑋 is 0. Putting the

cases together we have that

Pr {𝑋 ≠ 0} ≥ 1 − (1 − 𝑠)ℓ − (1 − (1 − 𝑠)ℓ ) 𝑒
𝜋
.

Since 𝑠 < 1 and we have assumed 𝑠ℓ < 4/𝑒 we use the approxima-

tion (1 − 𝑠)ℓ ≤ 1 − 𝑠 +
(ℓ
2

)
𝑠2 and the approximation

(ℓ
2

)
≤ (𝑒ℓ/2)2

to get the result. □

Now consider any dimension. For simplicity, let us consider coor-

dinate 1 since the argument is similar for all coordinates. Let us

say that 𝑁 = {𝑏 : ∃𝒙 ∈ 𝑆𝑏 such that 𝒙 [1] ≠ 0} is the set of batches
for which the 1st coordinate has a non-zero entry for some data

point, and hence the 1st coordinate is non-zero in each 𝒘𝑏
𝑖
with

probability 𝑠 where 𝑠 is our sparsity parameter (Sec 5.2). Applying

Proposition 5.2 with ℓ = |𝑁 | we see that the sparsity is maintained

if ℓ > 2𝜋/𝑒 , i.e. if ℓ is 3 or more. So if three or more batches place a

non-zero in the same coordinate, we maintain our target sparsity.

The assumption that 𝑠ℓ < 4/𝑒 is very mild since typically we will

use 𝑠 of the order of 10−2 and ℓ will be in the range of 10-20, making

𝑠ℓ less than 1.

5.3.2 Projection phase.
Parallel step. In this step, we compute the projections𝐾 (𝒙𝑏 ,𝒘𝑏 )

for each batch 𝑏 in parallel.

Aggregation step. For each classifying direction we need to

compute the maximum and minimum value of the projections of

the data points in order to normalize the range for creating the

interval vector. This cannot be done in parallel, so we aggregate

the projections. We compute the minimum and maximum values

and scale the projection to lie in the range [0, 1].

5.3.3 Interval creation phase.
Parallel step In this step, we create the interval array 𝐵𝑏

𝑖
using

the scaled projections. This procedure is performed concurrently

on all the batches.

Aggregation step Next we efficiently aggregate the intervals

of individual batches. Here again, we find that: 𝐵𝑖 =
∨
𝑏 𝐵

𝑏
𝑖
. This

means that if any one of 𝐵𝑏
𝑖
considers an interval [𝑝, 𝑞] to be a

positive region, 𝐵𝑖 also marks the interval [𝑝, 𝑞] as positive. This is
done efficiently with a vectorized operation.

6 EXPERIMENTS AND RESULTS
We evaluated the performance of the FROCC family of methods on

a wide range of real world benchmark datasets and compared them

with existing state of the art baselines.We compare the performance

using area under the ROC curve — a recommended metric for OCC

evaluation [39], denoted as AUC ROC. We also compare the wall-

clock times of the training and testing stages for each method.

Further, we perform experiments to compare the scalability of the

methods, both in terms of number of dimensions and number of

training samples. In this section we first present the details of the

datasets and baselines used, and then present the results of the

empirical evaluation.
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Table 1: Dataset statistics. Group A: <100 features; Group B
100 to 1M features; Group C > 1M features. †: > 10, 000 training
samples.

ID Name Features Training

Validation

(Equal +/– Split)

Test

(Equal +/– Split)

A1 Diabetes [7] 8 268 460 508

A2
†

MAGIC Telescope [7] 10 12332 18980 20870

A3
†

MiniBooNE [7] 50 18250 24650 30650

A4 Cardiotocography [7] 35 147 294 294

B1
†

SATLog-Vehicle [37] 100 24623 30976 36864

B2
†

Kitsune Network Attack [27] 115 3018972 1806264 3006490

B3 MNIST [21] 784 3457 4880 5390

B4 CIFAR-10 [19] 3072 3000 3896 5896

B5 CIFAR-100 [19] 3072 300 594 594

B6 GTSRB [38] 3072 284 562 562

B7 Omniglot [20] 33075 250 400 400

C1
†

Malicious URLs detection [25] 3.2m 795490 454566 297744

C2
†

Webb Spam corpus [41] 16.6m 175000 100000 78410

6.1 Datasets
We evaluate FROCC and the baseline methods on a set of well-

known benchmark datasets whose number of features, training /

validation / test split statistics are summarized in Table 1. The set

of benchmarks we have chosen covers a large spectrum of data

characteristics such as the number of samples (from a few hundreds

to millions) as well as the number of features (from a handful to tens

of millions). Thus it broadly covers the range of scenarios where

the OCC task appears.

To adapt multi-class datasets for evaluation in an OCC setting,

we perform processing similar to Ruff et al. [35]: Given a dataset

with multiple labels, we assign one class the positive label and all

others the negative label. Specifically, we select the positive classes
for (i) MNIST: randomly from 0, 1 and 4, (ii) CIFAR 10: airplane,

automobile and deer and (iii) CIFAR 100: beaver, motorcycle and

fox. We then split the positive class instances into train and test sets.
Using labelled data allows us to evaluate the performance using

true labels. We do not use any labels for training. We double the test

set size by adding equal number of instances from the negatively
labeled instances. We train the OCC on the train set which consists

of only positive examples. Metrics are calculated on test set which
consists of equal number of positive and negative examples.

6.2 Baselines
We compare our methods with the following state of the art algo-

rithms for OCC:

• SVM, tree and randomprojection basedmethods: (1)OCSVM:
One class SVM (Schölkopf et al. [36] version). (2) Isolation
Forest: Isolation forest algorithm [24] (3)HBOS:Histogram-

based outlier score [12] (4) LODA: Lightweight Online De-
tector of Anomaly [31]

• Deep neural network based methods: (1) 𝛽-VAE: VAE based

supervised outlier detection (Burgess et al. [4]) (2) OCGAN:
One Class GAN [30] (3) DROCC: Deep Robust One Class

Classifier [13]

We implemented the FROCC-family of algorithms using Python

3.8 with the numpy library. We used scikit-learn implementa-

tions of OCSVM and Isolation Forest. The PyOD toolkit [42] was

used for HBOS, LODA, 𝛽-VAE and OCGAN. The deep neural net-

work based baselines use Tensorflow [9] for their backend. We

used the author’s implementation of DROCC, released as part of

EdgeML library at https://github.com/microsoft/EdgeML. All exper-

iments were conducted on a server with Intel Xeon Gold 6142, and

NVIDIA GeForce GTX 1080 Ti GPU, with 400GB of RAM. Only the

deep learning based methods –viz., OCGAN, 𝛽-VAE and DROCC –

require GPU both during training and testing. None of the other

methods, including all FROCC methods require GPU.

For each method, hyper-parameters were set using a grid-search

over the validation set. The source code of FROCC-family of meth-

ods, the hyper-parameters used, and the scripts used in this evalua-

tion are freely available on github
1
.

6.3 Results and Discussion
Table 2 shows the AUC ROC values of the best performing ParD-

FROCC along with the baselines for all datasets. As we show in

Sec. 6.4, ParDFROCC is not only fast to train and test, but also of-

fered consistently high AUC ROC in all our experiments. Specifically,

ParDFROCC had only ≈ 0.01 worse AUC ROC than the best perform-

ing FROCC variant across all datasets. Therefore, we present empiri-

cal results with ParDFROCC. For low dimensional datasets (marked

with ‡ in Table 2) best results are obtained when ParDFROCC uses

dense projection vectors (𝑠 = 1). Higher dimensional data requires

more projection vectors (high𝑚) that are sparse (𝑠 = 0.01). Details

of hyper-parameters used are available in the code repository.

FromTable 2we note that ParDFROCC outperforms the baselines

in nine of the thirteen datasets we experimented with. Further, we

note that for high dimensional datasets –i.e., datasets with ≥ 100
features, it outperforms the baselines in eight out of nine datasets
while ranking second in the remaining one. This demonstrates

the superiority of ParDFROCC for high dimensional data which

are known to be challenging for most OCC methods.

It is to be noted that the available implementations of some

baselines (marked in Table 2 using ★) do not have the ability to

handle sparse data directly. They have to convert the dataset into

a dense matrix representation, resulting in memory failure while

processing the entire data. In Section 6.4 we present the details of

where each of these methods runs out of memory. While it may

be possible that these implementations can be engineered to be

more memory efficient, we chose to operate with the available

implementations provided either by the authors or by (optimized)

libraries.

Turning our attention to computational performance of all the

methods –summarized in Table 3, we observe that the methods

using the sparse data directly, viz., Isolation Forest, OCSVM and

ParDFROCC, are considerably faster. Among these methods, we

see that ParDFROCC is superior in training and test times (as well

as AUC ROC as we discussed above) for most datasets, although for

B2 –a low dimensional data set– it is only third behind Isolation

Forest and OCSVM. It is worth noting that though Isolation Forest

trains comparably fast in larger dimensional data its query time

suffers due to the large number of trees that need to be queried.

6.4 Scalability
In this section, we underscore the scalability of ParDFROCC by

studying how increasing the number of features and samples affects

its training and test times in comparison with the baselines.

1
https://github.com/data-iitd/frocc
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Table 2: Area under the ROC curve. ID corresponds to the dataset ID in Table 1. Bold values represent the best scores and italics
represent the second best scores. ★ indicates best values for methods that ran out of memory.

ID OC-SVM IsoForest HBOS LODA 𝛽-VAE OCGAN DROCC ParDFROCC

A1 53.35 ± 0.95 63.48 ± 0.46 64.32 ± 0.35 62.43 ± 0.26 69.32 ±0.49 69.64± 0.31 72.32 ±0.25 73.18 ± 0.26
A2 68.12 ± 0.85 77.09 ± 0.84 62.39 ± 0.37 75.96 ± 0.44 66.43 ±0.16 65.63± 0.38 78.96 ±0.31 72.30 ± 0.33

A3 54.22 ± 0.45 81.21 ± 0.14 77.93 ± 0.21 56.27 ± 0.22 68.41 ±0.08 69.19± 0.34 79.65 ±0.55 69.32 ± 0.30

A4 57.93 ± 0.73 85.10 ± 0.33 59.64 ± 0.43 59.43 ± 0.60 84.25 ±0.13 85.14± 0.48 85.21 ±0.48 83.57 ± 0.44

B1 73.51 ± 0.41 83.19 ± 0.44 71.16 ± 0.44 76.42 ± 0.76 81.26± 0.31 81.26± 0.45 83.27± 0.21 85.14 ± 0.74
B2 86.01 ± 0.60 80.05 ± 0.43 79.73 ± 0.37 79.23 ± 0.34 75.21± 0.09 73.79± 0.19 75.17± 0.20 86.64 ± 0.51
B3 98.99 ± 0.11 98.86 ± 0.31 96.14 ± 0.18 99.38 ± 0.13 98.60± 0.42 97.29± 0.16 98.56± 0.56 99.61 ± 0.35
B4 52.21 ± 0.39 51.47 ± 0.59 59.32 ± 0.62 56.73 ± 0.47 59.23± 0.08 59.99± 0.37 60.20± 0.20 61.93 ± 0.64
B5 49.62 ± 0.12 54.13 ± 0.17 67.81 ± 0.39 55.73 ± 0.53 66.32± 0.00 67.66± 0.31 70.36± 0.30 71.04 ± 0.37
B6 63.55 ± 0.12 61.23 ± 0.35 61.88 ± 0.41 66.73 ± 0.44 62.54± 0.47 63.39± 0.35 67.55± 0.55 67.12 ± 0.60
B7 90.21 ± 0.63 70.83 ± 0.35 69.82 ± 0.21 62.38 ± 0.12 72.51± 0.36 71.66± 0.29 84.54± 0.49 92.46 ± 0.21

C1 78.12 ± 0.48 80.43 ± 0.32 61.03 ± 0.00
★

51.32 ± 0.54
★

66.24 ± 0.79
★

61.04 ± 0.83
★

72.49 ± 0.43
★ 88.02 ± 0.78

C2 75.42 ± 00.11 78.62 ± 00.61 69.83 ± 00.00
★

59.97 ± 00.22
★

72.54 ± 0.17
★

69.19 ± 00.44
★

75.35 ± 0.27
★ 79.01 ± 00.13

Table 3: Training and test times (m). Bold values represent
the best scores and italics represent the second best scores. ★

indicates best values for methods that ran out of memory.

Methods

C1 C2 B7 B2

Train Test Train Test Train Test Train Test

ParDFROCC 29.75 24.02 109.43 47.76 0.31 0.32 0.18 0.16

OCSVM 154.95 36.32 286.07 60.55 1.66 0.46 0.58 0.13
IsoForest 31.54 71.90 117.99 92.55 0.33 0.77 0.16 0.08
HBOS 181.64

★
45.21 248.05

★
73.98 1.95 0.47 0.67 0.17

LODA 212.56
★ 35.23 303.15

★ 50.12 2.24 0.37 0.67 0.16

𝛽-VAE 326.14
★

62.93 687.97
★

74.44 3.44 0.68 1.06 0.20

OCGAN 298.23
★

56.76 671.58
★

66.37 3.11 0.63 1.00 0.25
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Figure 4: Feature Scalability: comparison of training and test
times with increasing number of features for 100000 training
samples. Both axes are log-scaled.

Figure 4 shows how ParDFROCC and the baselines scale with

number of features, both on Malicious URL and Webb Spam dataset.

Notice that both axes are logarithmic, to accommodate the wide

range of scalability and the high number of dimensions. In these ex-

periments, ParDFROCC utilizes 8 CPU cores to parallelize training

and testing (Sec. 5.3).

From Figure 4(a), which shows the scaling of train time with

number of features on high-dimensional sparse Malicious URL data,

we notice while Isolation Forest outperforms ParDFROCC at lower

dimensions, ParDFROCC’s running time increases very slowly and

outperforms Isolation Forest at very high dimensions. OCSVM

scales at a slow rate with features for sparse data, but is consistently

outperformed by ParDFROCC. HBOS outperforms ParDFROCC at

very low dimensions but does not scale well. LODA is slightly

faster than OCSVM at lower dimensions, but rapidly deteriorates

in performance and is consistently beaten by ParDFROCC. The

deep learning algorithms, both OCGAN and 𝛽-VAE based, scale

very poorly with features, as larger features require larger GANs

and VAEs respectively. This trend is observed on the Webb Spam

dataset as well, as seen in Figure 4(c).

In most application settings, the scalability of test time is of

greater importance than train time. Figure 4(b) shows how the test

time for the methods scale with number of features. Increase in

features considerably increases the test time for Isolation Forest,

because of deeper trees. OCSVM displays the same trend as train

time. The test times of deep learning methods are much more

competitive compared to the train times, but is still outperformed

by ParDFROCC at high dimensions. Test times of HBOS and LODA

scales poorlywith increasing features. A similar observation follows

on the Webb Spam dataset also, shown in Figure 4(d).

6.5 Effect of Optimizations on FROCC
In this section, we explore the performance gains obtained by each

of our three optimizations over FROCC– that is, DFROCC, SparseD-

FROCC and ParDFROCC.

Figures 5 (a) and (b) summarize train and test time of all the

four variants in the FROCC-family of methods as we increase the

number of features on a subset of Malicious URL dataset. Clearly, by

using discrete intervals, the training times of DFROCC improve by

almost a factor of 2 at low dimensions and by an order of magnitude
at high dimensions over FROCC. SparseDFROCC, by using sparse

projections, is twice as fast as DFROCC at high dimensions while

retaining its efficiency at low dimensions. Finally, parallelization

in ParDFROCC further enhances the performance by using more

CPU cores to result in a 2.5× speedup over SparseDFROCC in high

dimensional. The test times follow a similar trend.

In summary, for training on high dimensional data, ParDFROCC

is 2.5× faster than SparseDFROCC, which in turn is 2× faster than

DFROCC, which is 10× faster than FROCC.
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Figure 5: Comparison of effects of optimizations on FROCC
7 CONCLUSION
In this paper, we presented a surprisingly simple and highly ef-

fective one-class classification strategy based on projecting data

onto randomly selected vectors from the unit sphere. By represent-

ing these projections as a collections of intervals we developed

FROCC. We prove that FROCC is stable and has low bias for the

special case 𝜀 = 1. We then modify FROCC into a discrete version

called DFROCC, a sparse version of DFROCC, and finally, a parallel

version of sparse DFROCC called ParDFROCC, that can scale to

extremely large datasets.

We demonstrated the challenge that the current state of the art

algorithms face when it comes to dealing with large number of

features and establish by extensive experiments that ParDFROCC

can handle these challenges.

In the future, we plan to extend the idea behind ParDFROCC to

application settings that deal with high dimensional data where a

small fraction of negative samples are available, i.e. highly imbal-

anced number of positive and negative samples, as well as dealing

with unlabeled data, i.e. PU learning. On the theoretical side, we

plan to address the question of proving stability for FROCC when

𝜀 ∈ (0, 1).
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