COL 351

TUTORIAL SHEET 7

- 1. Suppose you own two stores, A and B. On each day you can be either at A or B. If you are currently at store A (or B) then moving to store B the next day (or A) will cost C amount of money. For each day i, i = 1, ..., n, we are also given the profits $P^{A}(i)$ and $P^{B}(i)$ that you will make if you are store A or B on day i respectively. Give a schedule which tells where you should be on each day so that the overall money earned (profit minus the cost of moving between the stores) is maximized.
- 2. Given a tree T where vertices have weights, an independent set is a subset of vertices such that there is no edge joining any two vertices in this set. Give an efficient algorithm to find an independent set of maximum total weight.
- 3. Given a tree T = (V, E), where each vertex $v \in V$ has a weight w_v . Give a polynomial time algorithm to find the smallest weight subset of vertices whose removal results in a tree with exactly K leaves.
- 4. You are given N boxes, where box i has height h_i , width w_i and length l_i . Give an algorithm for finding a stacking of a subset of boxes of maximum total height : box i can be stacked on top of box j if $w_i < w_j$ and $l_i < l_j$.
- 5. A bitonic sequence of numbers $x_1, x_2, x_3 \dots x_k$ is such that there exists an $i, 1 \leq i \leq k$ such that $x_1, x_2 \dots x_i$ is an increasing sequence and $x_i, x_{i+1} \dots x_n$ is a decreasing sequence. It is possible that one of the sequences is empty, i.e., strictly increasing (decreasing) sequences are also considered bitonic. For example 3, 6, 7, 5, 1 is a bitonic sequence where 7 is the discriminating number.

Given a sequence of n numbers, design an efficient algorithm to find the longest *bitonic* subsequence. In 2, 4, 3, 1, -10, 20, 8, the reader can verify that 2,3,20, 8 is such a sequence of length 4.

6. Given a convex *n*-gon (number of vertices is *n*), we want to triangulate it by adding diagonals. Recall that n-3 diagonals are required to triangulate. The *cost* of triangulation is the sum of the lengths of the diagonals added. For example, in a parallelogram, we will choose the shorter diagonal for minimizing cost. Design an efficient algorithm to find the minimum cost diagonalization of a given *n*-gon.