
COL 351

TUTORIAL 6

1. [KT-Chapter 6] Suppose we want to replicate a file over a collection of n servers,
labeled S1, S2, ..., Sn. To place a copy of the file at server Si results in a placement
cost of ci, for an integer ci > 0. Now, if a user requests the file from server Si, and
no copy of the file is present at Si, then the servers Si+1, Si+2, Si+3, . . . are searched
in order until a copy of the file is finally found, say at server Sj, where j > i. This
results in an access cost of j − i. (Note that the lower-indexed servers Si−1, Si−2, ...
are not consulted in this search.) The access cost is 0 if Si holds a copy of the file.
We will require that a copy of the file be placed at server Sn, so that all such searches
will terminate, at the latest, at Sn. We would like to place copies of the files at the
servers so as to minimize the sum of placement and access costs. Formally, we say
that a configuration is a choice, for each server Si with i = 1, 2, ..., n − 1, of whether
to place a copy of the file at Si or not. (Recall that a copy is always placed at Sn.)
The total cost of a configuration is the sum of all placement costs for servers with a
copy of the file, plus the sum of all access costs associated with all n servers. Give a
polynomial-time algorithm to find a configuration of minimum total cost.

2. [Dasgupta, Papadimitriou, Vazirani -Chapter 6] You are given a string of n
characters s[1...n], which you believe to be a corrupted text document in which all
punctuation has vanished (so that it looks something like “itwasthebestoftimes...”).
You wish to reconstruct the document using a dictionary, which is available in the
form of a Boolean function dict(): for any string w, dict(w) outputs true if w is a
valid word false otherwise. Give a dynamic programming algorithm that determines
whether the string s[] can be reconstituted as a sequence of valid words. The running
time should be at most O(n2), assuming each call to dict() takes unit time.

3. [KT-Chapter 6] We are given a checkerboard which has 4 rows and n columns, and
has an integer written in each square. We are also given a set of 2n pebbles, and we
want to place some or all of these on the checkerboard (each pebble can be placed on
exactly one square) so as to maximize the sum of the integers in the squares that are
covered by pebbles. There is one constraint: for a placement of pebbles to be legal, no
two of them can be on horizontally or vertically adjacent squares (diagonal adjacency
is fine). Give an O(n) time algorithm to find an optimal placement of the pebbles.

4. [Dasgupta, Papadimitriou, Vazirani -Chapter 6]Suppose you are given n words
w1, . . . , wn and you are given the frequencies f1, . . . , fn of these words. You would like
to arrange them in a binary search tree (using lexicographic ordering) such that the
quantity

∑n
i=1 fihi is minimized, where hi denotes the depth of the node for word wi

in this tree. Give an efficient algorithm to find the optimal tree.

1



5. [Dasgupta, Papadimitriou, Vazirani -Chapter 6] Consider the following 3-PARTITION
problem. Given integers a1, . . . , an, we want to determine whether it is possible to par-
tition of {1, . . . , n} into three disjoint subsets I, J,K such that

∑
i∈I

ai =
∑
j∈J

aj =
∑
k∈K

ak =
1

3

n∑
l=1

al.

For example, for input (1, 2, 3, 4, 4, 5, 8) the answer is yes, because there is the partition
(1, 8), (4, 5), (2, 3, 4). On the other hand, for input (2, 2, 3, 5) the answer is no. Devise
and analyze a dynamic programming algorithm for 3-PARTITION that runs in time
polynomial in n and in

∑
i ai.

6. [KT-Chapter 6] Consider the following inventory problem. You are running a store
that sells some large product (let us assume you sell trucks), and predictions tell you
the quantity of sales to expect over the next n months. Let di denote the number of
sales you expect in month i. We will assume that all sales happen at the beginning
of the month, and trucks that are not sold are stored until the beginning of the next
month. You can store at most S trucks, and it costs C to store a single truck for a
month. You receive shipments of trucks by placing orders for them, and there is a fixed
ordering fee of K each time you place an order (regardless of the number of trucks you
order). You start out with no trucks. The problem is to design an algorithm that
decides how to place orders so that you satisfy all the demands {di}, and minimize the
costs. In summary:

• There are two parts to the cost. First, storage: it costs C for every truck on hand
that is not needed that month. Second, ordering fees: it costs K for every order
placed.

• In each month you need enough trucks to satisfy the demand di, but the amount
left over after satisfying the demand for the month should not exceed the inventory
limit S.

Give an algorithm that solves this problem in time that is polynomial in n and S.

2


