TUTORIAL SHEET 5

1. You are given a positive integer N. You want to reach N by starting from 1 , and performing one of the following two operations at each step: (i) increment the current number by 1 , or (ii) double the current number. For example, if $N=10$, you can start with 1 , and then go in the sequence $1,2,4,8,9,10$, or $1,2,4,5,10$. Give an efficient algorithm, which given the number N finds the minimum number of such operations to go from 1 to N.
2. Suppose you are given two sets of n points, one set $\left\{p_{1}, \ldots, p_{n}\right\}$ on the $y=0$ line and the other set $\left\{q_{1}, \ldots, q_{n}\right\}$ on the $y=1$ line. Now we draw n line segments given by $\left[p_{i}, q_{i}\right], i=1, \ldots, n$. Describe and analyze a divide-and-conquer algorithm to determine how many pairs of these line segments intersect, in $O(n \log n)$ time.
3. You are given a rooted binary tree T where each vertex v has an integer $\operatorname{val}(v)$ stored in it (you can assume that all the integers involved are distinct). A vertex v is said to be a local minimum if $\operatorname{val}(v) \leq \operatorname{val}(w)$ for all the neighbours w of v (i.e., its value is at most the value at its children and at its parent). Show how to find a local minimum in $O(H)$ time, where H is the height of T.
Solve the same problem when the graph is an $n \times n$ grid graph. An $n \times n$ grid graph has vertices labelled (i, j), where $1 \leq i, j \leq n$ and (i, j) is adjacent to $(i-1, j),(i+$ $1, j),(i, j-1),(i, j+1)$ (with appropriate restrictions at the boundary). The time taken by the algorithm should be $O(n)$.
4. (a) Let $n=2^{l}-1$ for some positive integer l. Suppose someone claims to hold an unsorted array $A[1 \ldots n]$ of distinct l-bit strings; thus, exactly one l-bit string does not appear in A. Suppose further that the only way we can access A is by calling the function $F B(i, j)$, which returns the $j^{\text {th }}$ bit of the string $A[i]$ in $O(1)$ time. Describe an algorithm to find the missing string in A using only $O(n)$ calls to $F B$.
(b) (Hard) Now suppose $n=2^{l}-k$ for some positive integers k and l, and again we are given an array $A[1 \ldots n]$ of distinct l-bit strings. Describe an algorithm to find the k strings that are missing from A using only $O(n \log k)$ calls to $F B$.
5. You are given n charged particles located at points with coordinates $\{1,2, \ldots, n\}$ on the real line. The point at coordinate i has charge q_{i}. Note that the total Coulomb force on a particle at location i is given by

$$
-\sum_{j<i} \frac{q_{i} q_{j}}{(i-j)^{2}}+\sum_{j>i} \frac{q_{i} q_{j}}{(i-j)^{2}} .
$$

Give an $O(n \log n)$ time algorithm to compute the total force on each of the particles.
6. We are given a sequence of n distinct integers a_{1}, \ldots, a_{n} in an array. An inversion is defined as a pair (i, j) such that $i<j$ but $a_{i}>a_{j}$. Give an $O(n \log n)$ time to count the number of inversions in the array.
A strong inversion is defined as a pair (i, j) such that $i<j$ but $a_{i}>2 a_{j}$. Give an $O(n \log n)$ time to count the number of strong inversions in the array.

