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1. (KT-Chapter 1) Gale and Shapley published their paper on the stable marriage
problem in 1962; but a version of their algorithm had already been in use for ten years
by the National Resident Matching Program, for the problem of assigning medical
residents to hospitals.

Basically, the situation was the following. There were m hospitals, each with a certain
number of available positions for hiring residents. There were n medical students
graduating in a given year, each interested in joining one of the hospitals. Each hospital
had a ranking of the students in order of preference, and each student had a ranking
of the hospitals in order of preference. We will assume that there were more students
graduating than there were slots available in the m hospitals. The interest, naturally,
was in finding a way of assigning each student to at most one hospital, in such a way
that all available positions in all hospitals were filled. (Since we are assuming a surplus
of students, there would be some students who do not get assigned to any hospital.)
We say that an assignment of students to hospitals is stable if neither of the following
situations arises.

– First type of instability: There are students s and s′, and a hospital h, so that
(i) s is assigned to h, (ii) s′ is unassigned, and (iii) h prefers s′ to s.

– Second type of instability: There are students s and s′, and hospitals h and
h′, so that (i) s is assigned to h and s′ is assigned to h′, (ii) h prefers s′ to s, and
s′ prefers h to h′.

So we basically have the stable marriage problem, except that (i) hospitals generally
want more than one resident, and (ii) there is a surplus of medical students. Show
that there is always a stable assignment of students to hospitals, and give an efficient
algorithm to find one. The input size is θ(mn); ideally, you would like to find an
algorithm with this running time.

2. Consider the following algorithm for finding minimum spanning tree: sort all edges in
decreasing order of weight. Let the edges be e1, . . . , em. Consider edges in this order,
and initialize the set T to G, the entire graph. When we consider an edge ei, we remove
it from T if T contains a cycle containing ei; otherwise we keep ei. Prove that the final
set T will be a minimum spanning tree (assume that G is connected).

3. You want to throw a party and is deciding whom to call. You have n people to choose
from, and you have made up a list of which pairs of these people know each other. You
want to pick as many people as possible, subject to two constraints: at the party, each
person should have at least five other people whom they know and five other people
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whom they don’t know. Give an efficient algorithm that takes as input the list of n
people and the list of pairs who know each other and outputs the best choice of party
invitees. Give the running time in terms of n.

4. Prove the following two properties of the Huffman encoding algorithm (assume that
the sum of the frequencies of the characters is 1):(i) If some character occurs with
frequency more than 2/5, then there is guaranteed to be a codeword of length 1, (ii)
If all characters occur with frequency less than 1/3, then there is guaranteed to be no
codeword of length 1.

5. Suppose you are given a text of length nc where c is a constant and n is the number
of distinct characters in the alphabet. Show that the Huffman tree for this text has
height O(log n).
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