
COL 351

TUTORIAL SHEET 11

1. [KT-Chapter7] Give a polynomial time algorithm for the following minimization
analogue of the max-flow problem. You are given a directed graph G = (V,E), with a
source s and sink t, and numbers (capacities) le for each edge e ∈ E. We define a flow
f , and the value of a flow, as usual, requiring that all nodes except s and t satisfy flow
conservation. However, the given numbers are lower bounds on edge flow, i.e., they
require that fe ≥ le for each edge e, and there is no upper bound on flow values on
edges.

(a) Give a polynomial time algorithm that finds a feasible flow of minimum possible
value (Hint: Start with any flow from s to t which obeys the lower bounds, and
try to send a maximum flow from t to s in a suitable modification of the graph
G).

(b) Prove an analogue of the max- flow min-cut theorem for this problem.

2. [KT-Chapter7] You have a collection of n software applications, {1, . . . , n}, running
on an old system; and now you would like to port some of these to the new system.
If you move application i to the new system, you expect a net (monetary) benefit of
bi ≥ 0. The different software applications interact with one another; if applications i
and j have extensive interaction, then the you will incur an expense if you move one of
i or j to the new system but not both – let’s denote this expense by xij ≥ 0. So if the
situation were really this simple, you would just port all n applications, achieving a
total benefit of

∑
i bi. Unfortunately, there’s a problem. Due to small but fundamental

incompatibilities between the two systems, there’s no way to port application 1 to
the new system; it will have to remain on the old system. Nevertheless, it might still
pay off to port some of the other applications, accruing the associated benefit and
incurring the expense of the interaction between applications on different systems. So
this is the question: which of the remaining applications, if any, should be moved?
Give a polynomial-time algorithm to find a set S ⊆ {2, . . . , n} for which the sum of
the benefits minus the expenses of moving the applications in S to the new system is
maximized.

3. You are given a directed graph and special vertices s and t in the graph. Give an
efficient algorithm to find the maximum number of vertex disjoint paths (i.e., no two
paths should share a common vertex) from s to t. How will you solve this problem if
the graph is undirected?

4. [KT-Chapter7] There is a set of k people {p1, . . . , pk} and for a sequence of N days,
you are given a subset Si of people who want to go work together in a car. You want
to find a fair driving schedule. We say that the total driving obligation of a person

1

pj over a set of days is the expected number of times that pj would have driven, had
a driver been chosen uniformly at random from among the people going to work each
day. More concretely, the driving obligation for pj can be written as

∆j :=
∑

i:pj∈Si

1

|Si|
.

Ideally, we would like to require that pj drives at most ∆j times; unfortunately, ∆j

may not be an integer. So lets say that a driving schedule is a choice of a driver for
each day–that is, a sequence pi1 , . . . , pin with pit ∈ St for each day t - and that a fair
driving schedule is one in which each pj is chosen as the driver on at most d∆je days.
Prove that for any sequence of sets S1, . . . , Sn there exists a fair driving schedule. Give
an efficient algorithm to compute a fair driving schedule.

5. Prove the analogue of max-flow min-cut theorem in the circulation problem when we
have lower and upper bounds on edge capacities and flow conservation needs to hold
at every vertex.

2

