
Active Partial Reconfiguration

Abhinav Golas Pawan Jain

30 July 2005

1

1 Aim

The aim of this project was to create a working model of an Active Partially
reconfigurable system. An active partially reconfigurable system is one where
we can reconfigure a part of the circuit with the fixed part unperturbed
and working. For the implementation purposes we used a Xilinx Virtex IIP
FPGA - 2VP30. The board has 4 dip=switches, 4 push buttons and 4 LEDs
as on-board user interface. The board also contains support for a serial port,
which we have used for communicating with the PC, which controls when
the FPGA is reconfigured.

2 Circuit design

The design we have implemented is a very basic design, invloving taking
inputs from dipswitches on the FPGA board The design consists of 2 main
modules:

1. LatchIO : module to latch inputs, send to computation module, latch
the result and return it, alongwith sending a status signal to the com-
puter.

2. Reconfig : This is the computation module which can be configured as
an adder or a subtractor(more options can be added), as per require-
ment.

2.1 The LatchIO module

This module is the interface of the design and thus is a fixed module.

Structurally, this module consists of:

1. Three 4-bit registers.

2. One rs232IO submodule which further consists of many submodules.

Behaviourally, this module performs the following functions:

1. It takes inputs from the dip switches, and latches them into 2 reg-
isters,each on pressing a push-button. These are sent to the module
Reconfig for computation.

2. It gets the output from the module Reconfig, and latches it into another
register, which is sent to the LED’s on pressing a push-button.

2

3. The submodule rs232IO performs the function of communicating to
the PC through the RS-232 serial port whenever the module Reconfig
needs to be reconfigured. The importance of this additional module
can be seen from the fact that it cannot be pre-determined when this
reconfiguration may be required. So some means is required through
which the hardware will demand reconfiguration. This is exactly what
module rs232IO does. In our case just for the sake of demonstration,
we send a reconfiguration request after every single computation. But
this is absolutely modifiable. This request is sent in the form of a single
byte of data which is sensed by a C program running on top of it all.

2.2 The Reconfig module

The Reconfig module is a very basic module which performs the computation
on the two operands given by the user. In our design for the purpose of
demonstration, we have two possible computation modules, an adder and
a subtractor. Both designs have two 4-bit wide input ports to get the two
input values, and one 4-bit wide output port to return the result.

3 Implementation details

This section contains information on the steps we took to implement the
active partial reconfiguration.

3.1 Initial Budgeting phase

3.1.1 Basic requirements

The Initial Budgeting phase involves setting up of the top level design in
which the modules will fit in. The basic requirements which we need to
complete in this step are as follows:

1. Decide the modules and their names.

2. Decide the area on the FPGA, each module will take.

3. Create a basic top level design - implying that how each module will
communicate (port maps) and any other top level logic which may be
required.

4. Create a directory structure for the project. This is very essential as
an incorrect structure can lead to very arbitrary errors.

3

The initial budgeting mode serves as a base for further operations and thus
must be finalised before further development can take place. Once decided,
the module constraints must be met, or it will result in errors. Keep in
mind, that for each reconfigurable state you wish to achieve, you must create
a separate top level design. Essentially it is like creating separate designs,
except that they will have certain common modules.

3.1.2 Implementation considerations

While performing the Initial Budgeting, it is better to follow the following
order:

Create the directory structure
It is essential that a proper directory structure be set up before design process
begins. You can follow this structure which we followed.

• HDL folder for the HDL source files

• src folder for keeping the compiled netlists

• ISE folder for HDL compilation

• Topi folders for the ith top level design

• Modules folder for the files of each module

• Assemble and Initial folders in each Topi folder for the Initial budgeting
and Assemble phases

• Folders for each module and top level design in ISE

• Folders for each module in Modules

Creating the HDL files
The HDL files you create for the initial budgeting phase only need to contain
the module component descriptions and the inter-module connections. This
apart from the top-level logic that you wish to put into your design. How-
ever, try to keep the top level logic to a minimum. For the interconnections,
you will need to route connections through bus macros for modules that will
be reconfigured. This implies that any module that needs to be reconfigured,
will have all its ports routed through a bus-macro. (For more details on bus
macros, refer to Xilinx documents xapp290 and the Development guide on
the Xilinx website. If you are using VHDL as your HDL, then you can use
the VHDL files of our project as a guide.) However, if the modules which are

4

being connected are going to be fixed, then there is no need for a bus macro.

Compilation
For compiling the HDL files, you will need to create a separate project for
each configuration layout. Each project will contain the HDL file, and its
corresponding ucf. Each project must however, only contain the top level
design for the project. All the modules whose design is not provided at this
stage are assumed to be black boxes, whose design will be completed at a
later stage. Also an effort must be made to keep top level logic to a minimum.
While compiling it is up to you whether you wish to make use of the GUI or
the command mode interface. However, it is our personal recommendation
that the command line mode be used, as it tends to speed up the process.
The commands below are given for command and GUI modes. Also these
commands are given for the Xilinx XST VHDL compiler. The command
mode is given in case you wish to run the compilation under batch mode
from scripts. However, while using either, you will need to set the following
options for :

• Setting Bus delimiters to () : This is required as bus macros are imple-
mented using ()

• Setting Keep hierarchy to ’yes’

• Setting Add I/O buffers option to ’yes’ : Note that this is only done
in the Initial budgeting mode. For other phases, this option will be
disabled

• Adding modular and initial commands to ensure compilation for Initial
Budgeting mode : This is only required in the GUI mode if you plan to
use Floorplanner or Pace to set area constraints, because in that case
ISE will attempt to Translate the project on its own.

For GUI mode :
First select the HDL file which is your source file. Then you will see certain
options for this file. These option ma be hidden by default. To display
these options if not visible, go to Edit-¿Preferences-¿Processes tab and set
the ’Property Display Level’ to high.

• Select the properties for the Synthesize option. Under the Synthesis
Options tab ’Bus Delimiter’ must be set to ’()’

• Under the same tab, set ’Keep Hierarchy’ to ’yes’

• Under the Xilinx Specific Options tab, set ’Add I/O buffers’ to ’yes’

5

• Select the properties for the Translate option. Under the ’Other Ngdbuild
Command line Options’ tab , add the text ’-modular initial’

For the command mode :

• -bus delimiter ()

• -keep hierarchy YES

• -iobuf YES

• This is not required for compilation. This is required in the build step,
where it will be given

For more details on writing the compilation scripts, please refer to our tips
section.

Building
For building the design, we used the ngdbuild tool. Note, that for this step,
you will need to have a compiled copy of the bus macro implementation. For
using the ngdbuild tool, you need to specify the target FPGA, the command
to specify Initial Budgeting Mode, i.e. ’-modular initial’ and the complete
path of the compiled .ngc file and the .ucf file. The ngdbuild tool will build
these files into a .ngd file which can be used for specifying area constraints
usinf Floorplanner or Pace. However, if you do change the ucf file, it is
recommended that you rerun the Initial budgeting mode. This completes
the Initial Budgeting mode, and brngs us to the next step, i.e. the Active
Module Implementation.

3.2 Active Module Implementation

3.3 Basic requirements

In the Active Module Implementation phase, we add each module to the
design. At the end of this phase, you will have the partial bitfiles that
are used to reconfigure the FPGA. Note, however, that these file can only
change the configuration after a full bitfile, which is obtained after the Final
Assembly phase , has been loaded. To complete this step, we will need to
complete the following steps :

1. Create designs for each individual modules used in the design

6

2. Run certain commands to compile the module designs, and get partial
bitfiles for each

This step is the final step in the design phase of the process. After this, the
Final Assembly phase only involves putting together these modules based on
the initial top level designs we made in the Initial Budgeting mode.

3.3.1 Implementation considerations

Note that this section onwards, we will only specify commands for command
line execution. For GUI based working, the corresponding options can be
easily figured out.

Creating the HDL files
In this phase, all the modules which were left as black boxes in the Initial
budgeting phase need to be defined. Note, that the designs need to comply
with the constraints you have set earlier in the ucf file. However, the designs
made in this section, are no different from the usual designs you make. No ex-
tra code is required in the design files, other than that required for the design.

Compilation
For this phase, again you will need to setup different projects for each mod-
ule. However, you will not need to include the ucf file in the project. During
this phase, you will need to set similar options as in the Initial Budgeting
phase. Bus delimiters will again be set to the same ’()’, however adding
I/O buffers must be disabled. You may leave the ’Keep Hierarchy’ option
disabled as it defaults to a ’no’ value, or you may explicitly define it to be
so. After doing this for all modules, we are ready to build these modules.

Building
For the build phase you will need to run a series of commands for which
you can refer to the active mode script given. At the end of this step, you
will get partial bitfiles for each module, whether you can reconfigure with
them or not. Also you will note that after this step, the pimcreate utility
creates certain files for each module. These are the files which will be used
to complete the top level designs.

7

3.4 Assembly phase

3.4.1 Basic requirements

To run this phase, you only need to ensure that the above phases have been
completed successfully. Even if the Active Module Implementation did not
complete successfully, you can still proceed with this step if the errors you
received were in the partial bitstream generation. Why I am stating this,
is that even while working, sometimes we did get segmentation faults in
the bitgen tool. But since the pims were created successfully, we could still
proceed and complete this step. Also, the partial bitstreams can be generated
later as well. In this step, you do not need any new files, this step will
complete you designs, and give you full bitstreams to configure the FPGA.

3.4.2 Implementation Considerations

For running this step, please refer to the scripts provided for your reference
in this document. There is nothing else required to do for this.

4 Error log

8

5 Reference files

5.1 Scripts

5.1.1 Initial Budgeting phase toplevel script

echo ===

echo ==== Initial Stage ====

echo ===

cd ISE

#reconfig and reconfig1 are our 2 top level designs

#You may have as many as you like

mkdir reconfig

mkdir reconfig1

cd reconfig

#Compilation stage

#Calling compilation scripts for the 2 top level designs

xst -ifn ../../scripts/main.scr

cd ../reconfig1

xst -ifn ../../scripts/main1.scr

cd ../../

#Compiled sources are kept in this path for backup and use for further

stages

cp ISE/reconfig/main.ngc src

cp ISE/reconfig1/main.ngc src/main1.ngc

#Build stage begins

echo =====================

echo Running Initial Stage Top

echo =====================

cd Top/Initial

#Getting files for the build process

cp ../../src/main.ngc .

cp ../../ucf/main.ucf .

cp ../../bm 4b v2p.nmc .

#Running the script for running build commands

#This script will be run separately for each top level design

./initial.cmd

cd ../..

echo =====================

9

echo Running Initial Stage Top1

echo =====================

cd Top1/Initial

cp ../../src/main1.ngc main.ngc

cp ../../ucf/main.ucf .

cp ../../bm 4b v2p.nmc .

./initial.cmd

cd ../..

5.1.2 Command script for building each top level design (ini-
tial.cmd)

#rem ==== ngdbuild (Translate) ====

ngdbuild -p xc2vp30-ff896-5 -modular initial -uc main.ucf main.ngc

Build Target Phase UCF Compiled design

5.1.3 Command script for compiling each top level design (main(1).scr)

The file main.prj contains the path of the vhdl file(s) to be compiled for the
top level design run

-ifn ../../prj/main.prj

-ifmt VHDL

-opt mode SPEED

-opt level 1

-ofmt NGC

-ofn main.ngc

-p xc2vp30-ff896-5

-tristate2logic YES

-bus delimiter ()

-iobuf YES

-keep hierarchy YES

-ent main

For more details on what each option means, please refer to tool manuals
and help.

5.1.4 Active Module Implementation phase top level script

echo ===

echo ==== Active Modules ====

10

echo ===

cd ISE

#Make directories for each module

mkdir latchio

mkdir adder

mkdir subt

cd latchio

#Compilation Stage

xst -ifn ../../scripts/latchio.scr

cd ../adder

xst -ifn ../../scripts/adder.scr

cd ../subt

xst -ifn ../../scripts/subt.scr

cd ../../

#Backing up compiled source

cp ISE/latchio/latchio.ngc src

cp ISE/adder/adder.ngc src

cp ISE/subt/subt.ngc src

#Building each module

echo =====================

echo Running Active module latchio

echo =====================

cd Modules/latchio

cp ../../src/latchio.ngc .

cp ../../ucf/main.ucf .

#Bitgen options are stored in this file

cp ../../bitgen v2 jtag.ut .

#Build script for building each module

./active.cmd

echo =====================

echo Running Active module adder

echo =====================

cd ../adder

cp ../../src/adder.ngc .

cp ../../ucf/main.ucf .

cp ../../bitgen v2 jtag.ut .

./active.cmd

11

echo =====================

echo Running Active module subt

echo =====================

cd ../subt

cp ../../src/subt.ngc .

cp ../../ucf/main.ucf .

cp ../../bitgen v2 jtag.ut .

./active.cmd

5.1.5 Script for compiling each module

run

-ifn ../../prj/adder.prj

-ifmt VHDL

-opt mode SPEED

-opt level 1

-ofmt NGC

-ofn adder.ngc

-p xc2vp30-ff896-5

-iobuf NO

-ent adder

5.1.6 Module building script

#rem ==== ngdbuild (Translate) ====

ngdbuild -p xc2vp30-ff896-5 -modular module -active adder ../../Top/Initial/main.ngc

#rem ==== map ====

map -pr b main.ngd -o main map.ncd main.pcf

#rem ==== par (Placement & Routing) ====

par -w main map.ncd main.ncd main.pcf

#rem ==== bitgen ====

bitgen -d -f bitgen v2 jtag.ut -g ActiveReconfig:yes main.ncd

trce main.ncd main.pcf

pimcreate -ncd main.ncd -ngm main map.ngm ../../Pims

12

5.1.7 Bitgen options file (bitgen v2 jtag.ut)

-w

-l

-m

-g ReadBack

-g DebugBitstream:No

-g CRC:Enable

-g ConfigRate:4

-g CclkPin:PullUp

-g M0Pin:PullUp

-g M1Pin:PullUp

-g M2Pin:PullUp

-g ProgPin:PullUp

-g DonePin:PullUp

-g DriveDone:No

-g PowerdownPin:PullUp

-g TckPin:PullUp

-g TdiPin:PullUp

-g TdoPin:PullNone

-g TmsPin:PullUp

-g UnusedPin:PullUp

-g UserID:0xFFFFFFFF

-g DCMShutDown:Disable

-g DisableBandgap:No

-g StartUpClk:JtagClk

-g DONE cycle:4

-g GTS cycle:5

-g GWE cycle:6

-g LCK cycle:NoWait

-g Match cycle:NoWait

-g Security:None

-g Persist:No

-g DonePipe:No

-g Encrypt:No

5.1.8 Assemble phase top level script

echo ===

echo ==== Assemble Stage ====

13

echo ===

echo ======================

echo Running Assemble Stage Top

echo ======================

cd Top/Assemble

cp ../../src/main.ngc .

cp ../../ucf/main.ucf .

cp ../../bm 4b v2p.nmc .

cp ../../bitgen v2 jtag.ut .

./assemble.cmd

echo ======================

echo Running Assemble Stage Top1

echo ======================

cd ../../Top1/Assemble

cp ../../src/main1.ngc main.ngc

cp ../../ucf/main.ucf .

cp ../../bm 4b v2p.nmc .

cp ../../bitgen v2 jtag.ut .

./assemble.cmd

5.1.9 Assembly script for each top level design

ngdbuild -p xc2vp30-ff896-5 -modular assemble -pimpath ../../Pims

main.ngc

map -pr b main.ngd -o main map.ncd main.pcf

par -w main map.ncd main.ncd main.pcf -rl high

bitgen -f bitgen v2 jtag.ut main.ncd

trce main.ncd main.pcf

5.2 The UCF file

#SWITCHES

NET "SW 0" LOC = "AC11";

NET "SW 1" LOC = "AD11";

NET "SW 2" LOC = "AF8";

NET "SW 3" LOC = "AF9";

14

NET "SW 0" IOSTANDARD = LVCMOS25;

NET "SW 1" IOSTANDARD = LVCMOS25;

NET "SW 2" IOSTANDARD = LVCMOS25;

NET "SW 3" IOSTANDARD = LVCMOS25;

#LEDs

NET "LED 0" LOC = "AC4";

NET "LED 1" LOC = "AC3";

NET "LED 2" LOC = "AA6";

NET "LED 3" LOC = "AA5";

NET "LED 0" IOSTANDARD = LVTTL;

NET "LED 1" IOSTANDARD = LVTTL;

NET "LED 2" IOSTANDARD = LVTTL;

NET "LED 3" IOSTANDARD = LVTTL;

NET "LED 0" DRIVE = 12;

NET "LED 1" DRIVE = 12;

NET "LED 2" DRIVE = 12;

NET "LED 3" DRIVE = 12;

NET "LED 0" SLEW = SLOW;

NET "LED 1" SLEW = SLOW;

NET "LED 2" SLEW = SLOW;

NET "LED 3" SLEW = SLOW;

#PUSH BUTTONS

NET "PB UP" LOC = "AH4";

NET "PB ENTER" LOC = "AG5";

NET "PB RIGHT" LOC = "AH2";

NET "PB UP" IOSTANDARD = LVTTL;

NET "PB ENTER" IOSTANDARD = LVTTL;

NET "PB RIGHT" IOSTANDARD = LVTTL;

for RS232 :::

master of system clock

NET "CLK" LOC = "AJ15";

NET "CLK" IOSTANDARD = LVCMOS25;

NET "CLK" TNM NET = "CLK";

TIMESPEC "TS SYSTEM CLOCK" = PERIOD "CLK" 10.00 ns HIGH 50 %;

15

RS232 connector

NET "RS232 TX DATA" LOC = "AE7";

NET "RS232 TX DATA" IOSTANDARD = LVCMOS25;

NET "RS232 TX DATA" DRIVE = 8;

NET "RS232 TX DATA" SLEW = SLOW;

NET "PB DOWN" LOC = "AG3";

NET "PB DOWN" IOSTANDARD = LVTTL;

Beginning of reconfigurable constraints

Bus macros

INST "busmacro1" LOC = "TBUF X16Y4" ;

INST "busmacro2" LOC = "TBUF X16Y12" ;

INST "busmacro3" LOC = "TBUF X16Y20" ;

AREA GROUP "AG fix" RANGE = SLICE X20Y159:SLICE X91Y0 ;

AREA GROUP "AG fix" RANGE = TBUF X20Y159:TBUF X90Y0 ;

AREA GROUP "AG fix" MODE = RECONFIG ;

AREA GROUP "AG fix" GROUP = CLOSED ;

AREA GROUP "AG fix" PLACE = CLOSED ;

INST "take" AREA GROUP = "AG fix" ;

AREA GROUP "AG reco module" RANGE = SLICE X0Y159:SLICE X19Y0 ;

AREA GROUP "AG reco module" RANGE = TBUF X0Y159:TBUF X18Y0 ;

AREA GROUP "AG reco module" MODE = RECONFIG ;

AREA GROUP "AG reco module" GROUP = CLOSED ;

AREA GROUP "AG reco module" PLACE = CLOSED ;

INST "reconfig" AREA GROUP = "AG reco module" ;

INST "Internal Gnd Mux" AREA GROUP = "AG fix" ;

INST "Internal Vcc Mux" AREA GROUP = "AG fix" ;

INST "Internal Gnd Fix" AREA GROUP = "AG fix" ;

INST "Internal Vcc Fix" AREA GROUP = "AG fix" ;

INST "Internal Gnd Reco" AREA GROUP = "AG reco module" ;

INST "Internal Vcc Reco" AREA GROUP = "AG reco module" ;

INST Internal Gnd Mux LOCK PINS;

INST Internal Gnd Fix LOCK PINS;

INST Internal Gnd Reco LOCK PINS;

16

INST Internal Vcc Mux LOCK PINS;

INST Internal Vcc Fix LOCK PINS;

INST Internal Vcc Reco LOCK PINS;

5.3 VHDL source

5.3.1 Main top level design(main.vhd/main1.vhd

--

-- main.vhd - Simple Adder

--

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;

use ieee.std logic arith.all;

use ieee.std logic misc.all;

library UNISIM;

use UNISIM.VComponents.all;

library work;

entity main is

port(

SW 0: in std logic;

SW 1: in std logic;

SW 2: in std logic;

SW 3: in std logic;

LED 0: out std logic;

LED 1: out std logic;

LED 2: out std logic;

LED 3: out std logic;

PB UP: in std logic ;

PB RIGHT: in std logic ;

PB ENTER: in std logic ;

CLK: in std logic ;

RS232 RX DATA: in std logic ;

17

RS232 TX DATA: out std logic ;

PB DOWN: in std logic

);

end main;

architecture mixed of main is

signal clock : std logic;

signal RESET : std logic ;

signal oper1 : std logic vector(3 downto 0) ;

signal oper2 : std logic vector(3 downto 0) ;

signal oper rec1 : std logic vector(3 downto 0) ;

signal oper rec2 : std logic vector(3 downto 0) ;

signal ans : std logic vector(3 downto 0) ;

signal ans rec : std logic vector(3 downto 0) ;

-- signal count oper main : std logic vector(3 downto 0) ;

-- signal load new bit main : std logic ;

-- signal status main : std logic vector(7 downto 0) ;

-- signal status main tmp : std logic vector(7 downto 0) ;

signal FFake Gnd, FFake Vcc, RFake Vcc,RFake Gnd, FMux Gnd, FMux Vcc

: std logic;

component latchio is

port(

SW 0: in std logic;

SW 1: in std logic;

SW 2: in std logic;

SW 3: in std logic;

out1: out std logic vector(3 downto 0);

out2: out std logic vector(3 downto 0);

res out: out std logic vector(3 downto 0);

res in: in std logic vector(3 downto 0);

RESET: in std logic;

PB UP: in std logic ;

18

PB RIGHT: in std logic ;

PB ENTER: in std logic ;

-- Pins for rs232IO

td pin: out std logic;

rd pin: in std logic;

clk pin: in std logic

);

end component ;

component adder is

port(

in1: in std logic vector(3 downto 0) ;

in2: in std logic vector(3 downto 0) ;

ans: out std logic vector(3 downto 0)

);

end component ;

component bm 4b v2p

port (LI : in std logic vector (3 downto 0);

LT : in std logic vector (3 downto 0);

RI : in std logic vector (3 downto 0);

RT : in std logic vector (3 downto 0);

O : out std logic vector (3 downto 0));

end component;

component LUT1

generic (INIT : bit vector(1 downto 0) := b"01");

port (O : out std logic;

I0 : in std logic);

end component;

begin

RESET <= PB DOWN ;

clock <= CLK;

-- CLOCK DISTRIBUTION: --

19

-- Fake Gnd and Fake Vcc

Internal Gnd Mux: LUT1

generic map (INIT => b"00")

port map (O => FMux Gnd, I0 => FMux Vcc);

Internal Vcc Mux: LUT1

generic map (INIT => b"11")

port map (O => FMux Vcc, I0 => FMux Gnd);

-- FIXED MODULE: --

take : latchio port map

(

SW 0 => SW 0,

SW 1 => SW 1,

SW 2 => SW 2,

SW 3 => SW 3,

out1 => oper1,

out2 => oper2,

res out(3)=> LED 3,

res out(2)=> LED 2,

res out(1)=> LED 1,

res out(0)=> LED 0,

res in => ans,

RESET => RESET,

PB UP => PB UP,

PB RIGHT => PB RIGHT,

PB ENTER => PB ENTER,

td pin => RS232 TX DATA,

rd pin => RS232 RX DATA,

clk pin => clock

) ;

-- Fake Gnd and Fake Vcc

20

Internal Gnd Fix: LUT1

generic map (INIT => b"00")

port map (O => FFake Gnd, I0 => FFake Vcc);

Internal Vcc Fix: LUT1

generic map (INIT => b"11")

port map (O => FFake Vcc, I0 => FFake Gnd);

-- RECONFIGURABLE MODULE: --

reconfig : adder port map

(

in1 => oper rec1,

in2 => oper rec2,

ans => ans rec

) ;

-- Fake Gnd and Fake Vcc

Internal Gnd Reco: LUT1

generic map (INIT => b"00")

port map (O => RFake Gnd, I0 => RFake Vcc);

Internal Vcc Reco: LUT1

generic map (INIT => b"11")

port map (O => RFake Vcc, I0 => RFake Gnd);

-- BUS MACRO FOR INTER-MODULE COMMUNICATION: --

--Bus macro for sending output from the adder module to latchio

busmacro1: bm 4b v2p -- LEFT side: reconfigurable, right side:

fixed

port map (

LI(3) => ans rec(3),

LI(2) => ans rec(2),

LI(1) => ans rec(1),

21

LI(0) => ans rec(0),

-- LT(3) => RFake Gnd, -- "enable" the left side...

LT(2) => RFake Gnd, -- "enable" the left side...

LT(1) => RFake Gnd, -- "enable" the left side...

LT(0) => RFake Gnd, -- "enable" the left side...

-- ----------------------

RI(3) => FFake Gnd, -- dummy data

RI(2) => FFake Gnd, -- dummy data

RI(1) => FFake Gnd, -- dummy data

RI(0) => FFake Gnd, -- dummy data

--

RT(3) => FFake Vcc, -- tri-state the right side...

RT(2) => FFake Vcc, -- tri-state the right side...

RT(1) => FFake Vcc, -- tri-state the right side...

RT(0) => FFake Vcc, -- tri-state the right side...

-- ----------------------

O(3) => ans(3),

O(2) => ans(2),

O(1) => ans(1),

O(0) => ans(0)

);

-- Bus macro for sending inputs from latchio to adder module

busmacro2: bm 4b v2p -- LEFT side: reconfigurable, right side:

fixed

port map (

LI(3) => RFake Gnd,-- dummy data

LI(2) => RFake Gnd,-- dummy data

LI(1) => RFake Gnd,-- dummy data

LI(0) => RFake Gnd,-- dummy data

--

LT(3) => RFake Vcc, -- tri-state the left side...

LT(2) => RFake Vcc, -- tri-state the left side...

LT(1) => RFake Vcc, -- tri-state the left side...

LT(0) => RFake Vcc, -- tri-state the left side...

-- ----------------------

RI(3) => oper1(3),

RI(2) => oper1(2),

22

RI(1) => oper1(1),

RI(0) => oper1(0),

--

RT(3) => FFake Gnd, -- "enable" the right side...

RT(2) => FFake Gnd, -- "enable" the right side...

RT(1) => FFake Gnd, -- "enable" the right side...

RT(0) => FFake Gnd, -- "enable" the right side...

-- ----------------------

O(3) => oper rec1(3),

O(2) => oper rec1(2),

O(1) => oper rec1(1),

O(0) => oper rec1(0)

);

-- Bus macro for sending input from latchio to adder module

busmacro3: bm 4b v2p -- LEFT side: reconfigurable, right side:

fixed

port map (

LI(3) => RFake Gnd,-- dummy data

LI(2) => RFake Gnd,-- dummy data

LI(1) => RFake Gnd,-- dummy data

LI(0) => RFake Gnd,-- dummy data

--

LT(3) => RFake Vcc, -- tri-state the left side...

LT(2) => RFake Vcc, -- tri-state the left side...

LT(1) => RFake Vcc, -- tri-state the left side...

LT(0) => RFake Vcc, -- tri-state the left side...

-- ----------------------

RI(3) => oper2(3),

RI(2) => oper2(2),

RI(1) => oper2(1),

RI(0) => oper2(0),

--

RT(3) => FFake Gnd, -- "enable" the right side...

RT(2) => FFake Gnd, -- "enable" the right side...

RT(1) => FFake Gnd, -- "enable" the right side...

RT(0) => FFake Gnd, -- "enable" the right side...

-- ----------------------

O(3) => oper rec2(3),

O(2) => oper rec2(2),

23

O(1) => oper rec2(1),

O(0) => oper rec2(0)

);

end mixed ;

5.3.2 LatchIO module

--

-- latchio.vhd - Latch I/Os and send signals to serial port

--

library ieee;

use ieee.std logic 1164.all;

use ieee.numeric std.all;

use ieee.std logic unsigned.all;

use ieee.std logic arith.all;

use ieee.std logic misc.all;

library work;

entity latchio is

port(

SW 0: in std logic;

SW 1: in std logic;

SW 2: in std logic;

SW 3: in std logic;

out1: out std logic vector(3 downto 0);

out2: out std logic vector(3 downto 0);

res out: out std logic vector(3 downto 0);

res in: in std logic vector(3 downto 0);

PB UP: in std logic ;

PB RIGHT: in std logic ;

PB ENTER: in std logic ;

RESET: in std logic ;

-- Pins for rs232IO

td pin: out std logic;

rd pin: in std logic;

24

clk pin: in std logic

);

end latchio;

architecture behav of latchio is

component rs232IO is

port (

pin sysclk: in std logic;

send data : in std logic;

statusdata: in std logic vector(7 downto 0);

reset pushbtn: in std logic;

pin rs232 rd: in std logic;

pin rs232 td: out std logic

);

end component;

signal load new bit: std logic;

signal status: std logic vector(7 downto 0);

begin

COMMUNICATOR: rs232IO port map

(

pin sysclk => clk pin,

send data => load new bit,

statusdata => status,

reset pushbtn => RESET,

pin rs232 rd => rd pin,

pin rs232 td => td pin

);

process(PB UP)

begin

if(PB UP’event and PB UP=’1’)

then

res out<=res in;

end if ;

end process ;

process(PB RIGHT)

25

begin

if(PB RIGHT’event and PB RIGHT=’1’)

then

out1(3) <= SW 3 ;

out1(2) <= SW 2 ;

out1(1) <= SW 1 ;

out1(0) <= SW 0 ;

end if ;

end process ;

load new bit <= ’1’ when PB UP = ’1’ else ’0’ ;

status <= "01010101" when PB UP = ’1’ else "00000000" ;

process(PB ENTER)

begin

if(PB ENTER’event and PB ENTER=’1’)

then

out2(3) <= SW 3 ;

out2(2) <= SW 2 ;

out2(1) <= SW 1 ;

out2(0) <= SW 0 ;

end if ;

end process ;

end behav ;

5.3.3 Adder source

--

-- adder.vhd - 4 bit simple adder

--

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;

use ieee.std logic arith.all;

use ieee.std logic misc.all;

library work;

26

entity adder is

port(

in1: in std logic vector(3 downto 0);

in2: in std logic vector(3 downto 0);

ans: out std logic vector(3 downto 0)

);

end adder;

architecture behav of adder is

begin

ans <= in1 + in2 ;

end behav ;

6 Further Work

Further work may involve:

1. Enable taking inputs from the serial port itself so that the whole process
can be made computerised and optimal performance can be extracted
from this feature

2. Dynamic C++ Parsing and using partial reconfiguration to speed up
computation by loading program specific computation units on demand

3. Attempt reconfiguration from the FPGA itself, using the PowerPC
processors onboard, to enable development of Hardware based Learning
systems

27

