
Debugging Optimized Programs
using Black Box Equivalence

Checker

● Pratik Karia (2019MCS2568)
● Vaibhav Kiran Kurhe (2019MCS2572)

Advisor : Prof. Sorav Bansal

● Seamless source-level debugging not possible

● Values optimized out

● Unnatural breakpoint positions

● Issues being present only in optimized version

Problem

Problem
Unoptimized code Optimized code

● Use of equivalence checker to incorporate relevant debugging information

● The predicates in proof file provide a mapping from source (LLVM IR) to
destination (optimized executable) variables

● The set of predicates are transformed into a matrix

● Numerical methods are performed on the matrix to get the value for
“optimized out” source variables in terms of destination variables

● The resulting values are converted to DWARF expressions and populated
into the optimized executables using Gimli (a Rust library)

Overview

Tool Architecture

Equivalence Checker

● Produces a mathematical proof of equivalence between an unoptimized and
optimized versions of the same source program

● The proof of equivalence consists of predicates of the following format:

● These predicates are used to generate expressions for source variables

Equivalence Checker

● Other files needed - TFG, ETFG, Harvest file, LLVM-to-source map

● TFG : A Control Flow Graph with Transfer Functions on each edge

● ETFG : Extended TFG suitable for LLVM source program

● Harvest file: Contains mapping of PC labels used in proof file to actual PCs

● LLVM-to-source map : Contains map of LLVM variables to source variables

● It mainly consists of 2 modules:

○ Expression Generator - It finds postfix expressions for source variables

○ Location Range Extractor - Finding location range for each predicate

Predicate Solver

● The proof file is read and the predicates are extracted from it

● Each predicate is split into arithmetic atoms

● We push all the constants to RHS and the variables to LHS

● Using all the predicates, we get a system of linear equations

● The equations are represented in the form of “AX = B”

Expression Generator

● We need values for source variables in terms of destination variables for each PC

● We rearrange X array to bring all source variables before destination variables

● Correspondingly, we rearrange columns of the coefficient matrix (A)

● We create the “Augmented Matrix” and find the “Row Reduced Echelon Form”

● We start from last row and find the values of all destination variables

● We take each source variable and express it in terms of destination variable for each
PC

Expression Generator (contd.)

Expression Generator for s000.c
● Example Row reduced echelon form and variable vector

● Expressions Generated for s000.c for variable i

● Reads the .tfg file to generate a Transfer Function Graph

● For each predicate, extracts the destination registers involved

● Tries to expand the range of PCs over which a predicate is valid

○ Starts from the given PC

○ Gets outgoing edges

○ Expands until we get a back edge or a register modifying instruction

Location Range Extractor

Location Range Extractor Example

● The need for doing Data Flow Analysis

Valid Predicates Data Flow Analysis

Domain { P | where P is a predicate with an LHS and
RHS expression and LHS = RHS}

Direction Forward

Boundary condition Out[nstart] = {}

Initialization to T(top) In[n] = {} for all non-start nodes

● Inputs: TFG edge, DFA In value, DFA Out value

● Killing a predicate whose RHS expression contains any modified register

● Using the solutions generated from Expression Generator to simulate GEN set

● Meet operator:

○ Randomly picking any one of the predicates having same source variable

Transfer Function and Meet operator

● Consider a simple loop in a program

● A forward edge to loop head with constant predicate

● A backward edge to loop head with non-constant predicate

● Choosing the predicate having non-constant predicate

Modifications to DFA

● Checking the instruction type in Transfer Function

● Consider a predicate involving the modified register

● Modify the predicate itself if the computation is reversible

○ E.g. Add, Subtract

● Prefer predicates from GEN set over others (backedge and forward edge)

● Adding a Backward DFA pass in sequence

More precise DFA

Generated Expression and Location Range

DWARF Modifier

● Inputs: object file to be modified, new object filename, postfix expressions

● Read and store existing location lists from input object file

● Use DFS to find the DIE for the source variable inside given function

● Construct a DWARF expression from given postfix string expression

● Merge and split if necessary while inserting new DWARF expression

● Add new location list in .debug_loc and point to it in the variable DIE

Object file after debug headers updation

● Inputs: Original optimized object file, Updated object file

● For each object file

○ Traverse through the DIEs in DFS order

○ Classifying DWARF expressions to be constant or non-constant

○ Maintaining the location range and whether it is constant for each variable

● Combining the obtained information from both object files

○ Generate Metrics as shown in the Results Table

Evaluator Engine

Results (TSVC benchmarks, clang/gcc/icc)

clang results gcc results
icc results

Im : Improved
M : Missing
p : PCs
v : Count of variables
T : Total PCs
Av : Available cumulative
 debug info
bf : Before updation
af : After updation

Results (Larger Example - 1)

Fn Im(p/v) M(p/v) T Av(bf/af)

Example1 7/2 27/3 52 94/121

Results (Larger Example - 2)

Fn Im(p/v) M(p/v) T Av(bf/af)

Example2 -/- 24/2 62 188/212

 Questions/Suggestions?

Thank You

