Debugging Optimized Programs
using Black Box Equivalence
Checker

Advisor : Prof. Sorav Bansal

e Pratik Karia (2019MCS2568)
e \aibhav Kiran Kurhe (2019MCS2572)

Problem

e Seamless source-level debugging not possible *

e Values optimized out
e Unnatural breakpoint positions

e Issues being present only in optimized version

Problem

88
(gdb) p 1
$1 =0
(gdb) s
89

(gdb) p i

(gdb) s
(gdb) p 1

(gdb) s
89

(gdb) p 1
$4 = 1
(gdb) s
88

(gdb) p 1
$5 = 1
(gdb) i

Unoptimized code

for (int 1

0; [T < 1T 14+)

X[1] = Y[1] + val;

for (int 1

0;

1 < L11; L+é

X[1] = Y[1i] + val;

for (int i

0;

1 < L11; 4

) {

88
(gdb) p
$1 =0

(gdb) s

(gdb) p
$2 =0
(gdb) s

(gdb) p
$3 =0
(gdb) s

(gdb) p
$4 = 0
(gdb) s

(gdb) p
$5 = 0
(gdb) s
89

(gdb) p
$6 = 0
(gdb) i

P

P

P

e

e

P

Optimized code

for (int 1 = 0; 1 < 111; i++) {

X[1] = Y[1] + val;

for (int 1 = 0; 1 < 111; i++) {

X[1] = Y[1] + val;

for (int 1 = 0; 1 < 111; i++) {

X[i] = Y[1] + val;

Overview

e Use of equivalence checker to incorporate relevant debugging information

e The predicates in proof file provide a mapping from source (LLVM IR) to
destination (optimized executable) variables

e The set of predicates are transformed into a matrix

e Numerical methods are performed on the matrix to get the value for
“‘optimized out” source variables in terms of destination variables

e The resulting values are converted to DWARF expressions and populated
into the optimized executables using Gimli (a Rust library)

Tool Architecture

Compiler

Unoptimized IR

Source
Program

H

Equivalence Checker

Compiler

[

Optimised
Executable

Proof File

Predicate Solver

DWARF Modifier Modified Executable

Expression
Generator

Postfix Expressions

& Location ranges

Location Range
Extractor

Equivalence Checker

e Produces a mathematical proof of equivalence between an unoptimized and
optimized versions of the same source program

e The proof of equivalence consists of predicates of the following format:

=pc Lfor.body%1%1 L3%1%0 smallest_point_cover 1 type bv pred 20
=Comment
linear2-32-free_var_idx.23
=LocalSprelAssumptions:
=LhsExpr

1 : input.src.llvm-%i.0 : BV:32
2004 U BYE32

3 : bvmul(1l, 2) : BV:32
=RhsExpr

1 : input.dst.exreg.0.0 : BV:32
=predicate done

e These predicates are used to generate expressions for source variables

Equivalence Checker

e Otherfiles needed - TFG, ETFG, Harvest file, LLVM-to-source map

e TFG : A Control Flow Graph with Transfer Functions on each edge

e ETFG : Extended TFG suitable for LLVM source program

e Harvest file: Contains mapping of PC labels used in proof file to actual PCs

e LLVM-to-source map : Contains map of LLVM variables to source variables

Predicate Solver

e [t mainly consists of 2 modules:
o Expression Generator - It finds postfix expressions for source variables

o Location Range Extractor - Finding location range for each predicate

Expression Generator

e The prooffile is read and the predicates are extracted from it
e Each predicate is split into arithmetic atoms

e \We push all the constants to RHS and the variables to LHS
e Using all the predicates, we get a system of linear equations

e The equations are represented in the form of “AX = B”

Expression Generator (contd.)

We need values for source variables in terms of destination variables for each PC
We rearrange X array to bring all source variables before destination variables
Correspondingly, we rearrange columns of the coefficient matrix (A)

We create the “Augmented Matrix” and find the “Row Reduced Echelon Form”
We start from last row and find the values of all destination variables

We take each source variable and express it in terms of destination variable for each
PC

Expression Generator for s000.c

e Example Row reduced echelon form and variable vector

11005M 3

e Expressions Generated for s000.c for variable i

=ZeroAddress

0x0

=TotalPCs

11

=Function

s000 s00O
=Expressions

i=1 %eax * 0 + 4 /

Location Range Extractor

e Reads the .tfg file to generate a Transfer Function Graph

e For each predicate, extracts the destination registers involved

e Tries to expand the range of PCs over which a predicate is valid
o Starts from the given PC
o Gets outgoing edges

o Expands until we get a back edge or a register modifying instruction

LO%0%]1

Location Range Extractor Example -

1

L3%1%0

L16%1%1
L17%1%0
E0%0%1

Valid Predicates Data Flow Analysis

e The need for doing Data Flow Analysis

Domain { P | where P is a predicate with an LHS and
RHS expression and LHS = RHS}
Direction Forward

Boundary condition

Out[n*] = {}

Initialization to T(top)

In[n] = {} for all non-start nodes

Transfer Function and Meet operator

e Inputs: TFG edge, DFA In value, DFA Out value

e Killing a predicate whose RHS expression contains any modified register

e Using the solutions generated from Expression Generator to simulate GEN set
e Meet operator:

o Randomly picking any one of the predicates having same source variable

Modifications to DFA

e Aforward edge to loop head with constant predicate

e A backward edge to loop head with non-constant predicate

e Choosing the predicate having non-constant predicate

e Consider a simple loop in a program

L17%1%0
E0%0%1

More precise DFA

e Checking the instruction type in Transfer Function
e Consider a predicate involving the modified register
e Modify the predicate itself if the computation is reversible
o E.g. Add, Subtract
e Prefer predicates from GEN set over others (backedge and forward edge)

e Adding a Backward DFA pass in sequence

Generated Expression and Location Range

=ZeroAddress

0x0

=TotalPCs

11

=Function

s000_ sO0O

=Expressions

i=1 %eax * 0 + 4 / 0x10->0x1b

i=1 %eax 16 - * 0 + 4 / Ox1b->0x2f

DWARF Modifier

e Inputs: object file to be modified, new object filename, postfix expressions
e Read and store existing location lists from input object file

e Use DFS to find the DIE for the source variable inside given function

e Construct a DWARF expression from given postfix string expression

e Merge and split if necessary while inserting new DWARF expression

e Add new location list in .debug_loc and point to it in the variable DIE

Obiject file after debug headers updation

<3><621>: AbbFev—Nuabg}: 26 (DW_TAG_variable)

<622> DW_AT_name HiE |

<624> DW_AT_decl _file 1

<625> DW_AT_decl_line : 9

<626> DW_AT_decl_column : 12

<627> DW_AT_type : <BX30>

<62b> DW_AT_location : 0x3e (location list)

<3><62f>: Abbrev Number: @
<2><630>: Abbrev Number: 0
<1><631>: Abbrev Number: ©

Contents of the .debug_loc section:

offset Begin End Expression

0000003 00000000 0000000F (DW_OP_lit0®; DW_OP_stack_value)

00000043 00000010 0000001b (DW_OP_consts: 1; DW_OP_bregd (eax): ©; DW_OP_mul; DW_OP_consts: ©; DW_OP_plus; DW_OP_consts: 4; DW_OP_div; DW_OP_stack_value)

00000060 0000001b 0000002d (DW_OP_consts: 1; DW_OP_breg® (eax): ©; DW_OP_consts: 16; DW_OP_minus; DW_OP_mul; DW_OP_consts: 0; DW_OP_plus; DW_OP_consts: 4; DW_OP_div; DW_OP_stack value)
00000079 <End of list>

Evaluator Engine

e Inputs: Original optimized object file, Updated object file
e For each object file

o Traverse through the DIEs in DFS order

o Classifying DWARF expressions to be constant or non-constant

o Maintaining the location range and whether it is constant for each variable
e Combining the obtained information from both object files

o Generate Metrics as shown in the Results Table

Results (TSVC benchmarks, clang/gcclicc

Table (1a) Table (1b)

| . : Improved

M : Missing

p:PCs

v : Count of variables

T : Total PCs

A, : Available cumulative
debug info

b, : Before updation

: After updation

Table (2a)

0/79
50/94
74/110
63/120

70/70
210/210
14/59
54/95
66/73
30/30

icc results

clang results gcc results

Results (Larger Example - 1)

1 flinclude "globals.h 1 BzeroAddress
F, .. (p/V) M(p/v) T A (b/a,)
Example1 712 2713 52 94/121

Results (Larger Example - 2)

1 # lobals.h 1 BzeroAddress

F |_(p/v) M(p/v) T A (b/a,)

Example2 -/- 24/2 62 188/212

Questions/Suggestions?

Thank You

