
Debugging Optimized Programs using
Black-Box Equivalence Checker

Advisor: Prof. Sorav Bansal
Vaibhav Kurhe

June 2021



Acknowledgements

I would like to wholeheartedly thank my advisor Prof. Sorav Bansal for his constant
guidance and support throughout the project and for floating courses on Compiler
Design and Optimization, which also helped me in my project. I am grateful to
Shubhani and Abhishek for helping me and solving my doubts whenever I was stuck.
I am thankful to Pratik for collaborating with me on this project. Pratik worked on
and took the responsibility for the modules 3.4(Expression Generator) and 3.5.1(TFG
Traversal). I would also like to thank Philip Craig - Lead Gimli developer - for
providing his support and reference code while using the libraries gimli and object.

1



Abstract

Debugging a program usually necessitates disabling the compiler optimizations. This
is due to the loss of much of the debugging information in presence of multiple
compiler optimizations. Yet, there are some scenarios when a developer would need
the ability to debug optimized programs. This thesis presents a technique that can
improve the debugging information in an optimized program, to allow debugging the
optimized program in debuggers such as gdb.

2



Contents

List of Figures 5

List of Tables 6

List of Algorithms 7

1 Introduction 8

2 Issues in debugging optimized programs 10

3 Improving Debugging Information 13
3.1 Equivalence Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 DWARF Debugging Standard . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Tool Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Expression Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.1 Solving predicates . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Location Range Extractor . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5.1 TFG Traversal . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5.2 Valid Predicates Data Flow Analysis . . . . . . . . . . . . . . 19

3.5.2.1 Transfer Function . . . . . . . . . . . . . . . . . . . . 20
3.5.2.2 Meet operator . . . . . . . . . . . . . . . . . . . . . . 20

3.5.3 Modifications to DFA . . . . . . . . . . . . . . . . . . . . . . . 21
3.5.4 Making the DFA more precise . . . . . . . . . . . . . . . . . . 23
3.5.5 Adding a Backward DFA pass . . . . . . . . . . . . . . . . . . 23

3.6 DWARF Modifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6.1 Rewriting DWARF debug information . . . . . . . . . . . . . 29

3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7.1 Evaluator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3



3.7.2.1 Metrics Description . . . . . . . . . . . . . . . . . . . 32
3.7.2.2 Comparison between compilers . . . . . . . . . . . . 36

3.7.3 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Conclusion 51

Bibliography 53

4



List of Figures

2.1 GDB debugging session - Unoptimized code . . . . . . . . . . . . . . 11
2.2 GDB debugging session - Optimized code . . . . . . . . . . . . . . . . 12

3.1 Tool Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Example of a TFG involving a simple loop . . . . . . . . . . . . . . . 22
3.3 Example 1 source code . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Expressions generated for Example 1 . . . . . . . . . . . . . . . . . . 37
3.5 Example 2 source code . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Expressions generated for Example 2 . . . . . . . . . . . . . . . . . . 38

5



List of Tables

3.1 Valid Predicates Data Flow Analysis Formulation . . . . . . . . . . . 19
3.2 TSVC benchmarks results for Clang. . . . . . . . . . . . . . . . . . . . . . 33
3.3 TSVC benchmark results for GCC. . . . . . . . . . . . . . . . . . . . . . . 34
3.4 TSVC benchmark results for ICC. . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Results for Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Results for Example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7 Results for clang without Forward and Backward DFA. . . . . . . . . . . . . . 41
3.8 Results for clang with Forward DFA without handling reversible computation. . . 42
3.9 Results for clang with Forward DFA and reversible computation. . . . . . . . . 43
3.10 Results for gcc without Forward and Backward DFA. . . . . . . . . . . . . . 44
3.11 Results for gcc with Forward DFA without handling reversible computation. . . . 45
3.12 Results for gcc with Forward DFA and reversible computation. . . . . . . . . . 46
3.13 Results for icc without Forward and Backward DFA. . . . . . . . . . . . . . . 47
3.14 Results for icc with Forward DFA without handling reversible computation. . . . 48
3.15 Results for icc with Forward DFA and reversible computation. . . . . . . . . . 49

6



List of Algorithms

1 Expression Generator: Main() function . . . . . . . . . . . . . . . . . . 15
2 Expression Generator: Solve() function . . . . . . . . . . . . . . . . . . 15
3 Data Flow Analysis: Transfer Function . . . . . . . . . . . . . . . . . . 24
4 Data Flow Analysis: Meet Operation . . . . . . . . . . . . . . . . . . . 25
5 DWARF Modifier: Main() function . . . . . . . . . . . . . . . . . . . . 27
6 DWARF Modifier: RewriteDwarf() function . . . . . . . . . . . . . . . 28

7



Chapter 1

Introduction

Debugging is a crucial part of the software development lifecycle. There are many
ways to debug a program such as rubber duck debugging, using print statements
within the code, analyzing the logs, etc. One such important technique involves the
use of a debugger tool, which helps a programmer trace the program step-by-step as
it runs.

A debugger tool such as gdb, uses the debugging information present inside an
executable program to allow stepping through the program when it runs. There
are multiple standards defining the structure of an executable program file and ELF
is one such standard widely used across Linux and UNIX based systems. Similarly,
there are many standards defining the debugging information format in an executable
program file; DWARF is one such widely used standard.

Although the production code is almost always compiled with the highest level of
optimization, when debugging, programmers typically have to use flags that instruct
the compiler to disable all optimizations and insert the debugging information into
the executable. In scenarios where it is necessary to debug the optimized executable,
such as when a programmer is developing a tool that applies code transformation-
s/optimizations or when a certain bug is present only in an optimized version of a
program, it becomes difficult and error-prone due to the rigorous transformation-
s/optimizations performed by the compiler or the tool itself.

We introduce a tool to improve the debugging information in DWARF format
present inside an optimized ELF executable program, so that we could step through
the updated executable program in a debugger such as gdb & inspect the variables,
in similar way as much as possible to how it is done for an unoptimized program.

We do this by using an equivalence checker – it’s a tool which when given two
input programs, checks whether the two programs are equivalent in terms of their

8



functionality and if so, generates a mathematical proof. We first generate optimized
and unoptimized versions of the same source program written in C. We pass them
to an equivalence checker that produces an equivalence proof, which has correlations
between the two programs. We further process the proof, to get predicates, i.e. the
value/address of source variables in terms of registers used in the optimized exe-
cutable program. We finally convert these predicates into DWARF expressions and
add them into the debugging information present in the optimized program.

The thesis is organized as follows:-
We start with a concrete example denoting the issues faced while debugging

an optimized program inside a debugger(gdb). We then sketch out a high-level
architecture of the tool pipeline and discuss each component in a separate section.
This is followed by the evaluation section at the end.

9



Chapter 2

Issues in debugging optimized
programs

Unlike for unoptimized code, while trying to debug an optimized code, we may come
across a variable being optimized out, a variable being re-allocated to a register, etc.
So, it becomes difficult to track a variable and debug the program. To demonstrate
this, we show the difference in debugging an unoptimized vs an optimized program.

In figures 2.1 and 2.2, we show part of the debugging sessions for a function s000()
inside the TSVC benchmark.

Following is the relevant source code for s000() function:-

Source Code 2.1: s000 function

#define LEN 32000

#define TYPE int

#define lll LEN

TYPE val = 1;

__attribute__((aligned(16))) TYPE X[lll], Y[lll];

int s000()

{

for (int i = 0; i < lll; i++) {

X[i] = Y[i] + val;

}

return 0;

}

10



Figure 2.1: GDB debugging session - Unoptimized code

int main() {

s000();

return 0;

}

In the unoptimized code(2.1), we can see that the iterator variable - ’i’ is updated
in the for loop. Initially it was zero and as we stepped through the unoptimized
program, it got updated to 1 when we reached the ”i++” instruction. But, in the
optimized code(2.2), the value for variable ’i’ didn’t change – it remained as zero
throughout the loop.
This happened because at optimization level O3, the compiler has applied rigorous
transformations to the original program and it resulted in storing the value of variable
’i’ into a register, as it’s being frequently accessed.

11



Figure 2.2: GDB debugging session - Optimized code

12



Chapter 3

Improving Debugging Information

We will first describe the terminologies and tools used to achieve our desired goal:

3.1 Equivalence Checker

Determining if two Turing machines are equivalent is a classical problem in theoretical
computer science, which is undecidable in its generality. Equivalence Checker [5] [7]
is realization of such a tool which when given two input programs, checks if they are
equivalent and produces a proof of equivalence.

3.2 DWARF Debugging Standard

For a debugger such as GDB to work on an ELF executable, it needs debugging
information in a particular format available inside the ELF. DWARF is one such
standard/format for defining the debugging information in an ELF file.

DWARF debugging information consists of multiple sections such as .debug info,
.debug loc, etc. The .debug info section consists of DIEs (DWARF Debug-
ging Information Entities) which can denote individual units of a program such
as variables, functions, different types, etc.

These DIEs are interlinked with each other using parent-child and sibling rela-
tionships to form a graph. And the .debug loc section consists of the information
about the locations and/or values of variables in the form of location lists. Each
location list essentially represents values of the corresponding variable at different
program points using DWARF expressions.

13



Figure 3.1: Tool Pipeline

A DWARF expression is a postfix expression, that describes how to compute a
value or name a location during debugging of a program. It is expressed in terms of
a set of DWARF operations that operate on a stack of values.

3.3 Tool Pipeline

The overall pipeline of our tool is shown in the Figure [3.1]. To improve debugging
information of a particular program e.g. s000.c, we first compile it with -O0 and
-O3 flags separately. Then, we pass these unoptimized and optimized versions to an
equivalence checker, which outputs a mathematical proof of how those two programs
are equivalent in a .proof file.

We take this proof file and process it in different stages as follows:-

3.4 Expression Generator

The high-level logic for main() function in Expression Generator module is shown in
algorithm 1.

A proof file from equivalence checker consists of a predicates section, where pro-
gram points from unoptimized and optimized versions of a source program are cor-
related and predicates are established between the source and destination variables.
An example of a predicate in proof file is shown as below:-

=pc Lfor.body%1%1_L3%1%0 type bv pred 6

14



input : A predicates file, LLVM-to-src-var-mapping
result: Generates the solutions for given set of equations between the

unoptimized and optimized variables

1 while there is some predicate to read do
2 pc ← read the PC;
3 pred ← read and parse the predicate;
4 pred ← PredicateRearrange(pred);
5 atoms lhs ← GetArithmeticAddSubAtoms(pred.LhsExpr);
6 lhsMap ← Maintain the set of atoms lhs for pc;
7 rhsMap ← Maintain the set of pred.RhsExpr for pc;
8 predicateMap ← Maintain the set of pred for pc;

9 end
10 for each pc in predicateMap do
11 solutions ← Solve(pc, set of pred, lhsMap, rhsMap);
12 end

Algorithm 1: Expression Generator: Main() function

input : set of predicates for given PC, lhsMap, rhsMap
output: solutions to the set of predicates

1 matrixX ← CreateVariableMatrixX();
2 matrixA ← CreateCoeffMatrixA();
3 matrixB ← CreateRhsMatrixB();
4 RearrangeMatrices(matrixX, matrixA);
5 augmentedMatrix ← CreateAugmentedMatrix(matrixA, matrixB);
6 augmentedMatrix ← ConvertToRowEchelonForm(augmentedMatrix);
7 solutions ← GetSolutionsBottomUp(augmentedMatrix, matrixX);
8 return solutions;

Algorithm 2: Expression Generator: Solve() function

15



=LhsExpr

1 : input.src.llvm-%i.0 : BV:32

2 : 4 : BV:32

3 : bvmul(1, 2) : BV:32

4 : 4294839296 { -128000 } : BV:32

5 : bvadd(3, 4) : BV:32

=RhsExpr

1 : input.dst.exreg.0.0 : BV:32

The above predicate specifies the relation between LLVM source variable i.0 and
a destination program register exreg.0.0 (which is %eax) at correlated PCs defined
by the labels Lfor.body%1%1 and L3%1%0 from source and destination programs
respectively. The above predicate is built from bitvector operations of specified size
(32-bits). The simplified infix form of the above equation/predicate is as follows:-

4 * i.0 - 128000 = %eax

We read and parse the predicates from the proof file one-by-one and we rearrange
them by calling PredicateRearrange(). The function pushes all the constants to RHS,
combines all other terms in the predicate and puts them into LHS. The above example
after rearrangement looks like this:-

4 * i.0 - %eax = 128000

We also extract individual terms from LHS using GetArithmeticAddSubAtoms()
function as shown in Algorithm 1 at line no. 5. We then store and maintain these
terms from LHS and the constant expression from RHS into helper maps lhsMap
and rhsMap. This is done so that we could readily create matrices needed in the
next steps (Algorithm 2). We also maintain a predicateMap that stores the set of
predicates valid for a PC.

Once we parse and process the predicates from the proof file, we try to solve them
for each PC by calling Solve() function, as shown in Algorithm 1, line no. 11.

3.4.1 Solving predicates

We describe the individual steps specified in algorithm 2 - Solve() function.

• Creating Variable Matrix
We first scan the individual terms from LHS of each predicate. We remove the
coefficients from the expression variables and we insert the variables into a helper
map. As the same variable may be involved into multiple predicates, we add the

16



variable to the map only if it is unique. For each expression variable, we add its
corresponding index i.e. we number the variables.
We add all the unique variables from map into a variables vector and this way,
we get our variable column matrix.

• Creating Coefficient Matrix and RHS Matrix
Once we get the variables vector (variable column matrix), we know the no. of
entries in a row from Coefficient Matrix will be same as the size of the vari-
ables vector. Then, for each predicate, using lhsMap that we maintained, we go
through the individual terms of its LHS and extract the coefficients to create a
Coefficient Matrix.
Similarly, using the rhsMap maintained, we go through constant expressions in
RHS for each predicate and create an RHS matrix of constants.

• Rearranging Matrices
The Coefficient Matrix A and the Variable Matrix X created so far have no or-
dering in particular among the source and destination predicates. Consider below
examples of the matrices - coefficient matrix A of order 3 × 4 and the variable
matrix X of order 4 × 1.0 −16 1 0

6 0 0 −10
0 −4 0 8



input.src.llvm−%j.0
input.dst.exreg.0.2

input.src.llvm−%i.0
input.dst.exreg.0.3


We rearrange them so that the source variables(starting with ”input.src”) come
before the destination variables(starting with ”input.dst”) inside the Variable Ma-
trix X. The matrix X after the rearranging is shown below.
input.src.llvm−%j.0
input.src.llvm−%i.0
input.dst.exreg.0.2
input.dst.exreg.0.3


We moved all the source variables to the top of the column matrix X and the
destination variables to the bottom. To maintain our original predicates, we cor-
respondingly rearrange the columns of the Coefficient Matrix A i.e. if we exchange
a source variable at n1th row in variable matrix with a destination variable at n2th

row, we correspondingly exchange the whole n1th column with n2th column in the
Coefficient Matrix.

For our example, as we exchanged the 2nd and 3rd rows of the variable matrix X,
we exchange the 2nd column in coefficient matrix A (corresponding to 2nd row

17



in variable matrix X) with the 3rd column (corresponding to 3rd row in variable
matrix) as follows:0 1 −16 0

6 0 0 −10
0 0 −4 8


• Creating Augmented Matrix

We combine the Coefficient Matrix A with the RHS Matrix B to create an Aug-
mented Matrix A|B.

• Converting into Row Echelon Form
Now we convert our Augmented Matrix into the Row Echelon Form by performing
the standard Matrix Row transformations.

• Bottom-Up solutions
Once we get the Row Echelon Form for our Augmented Matrix, we traverse the
matrix from bottom-to-top. We would first get a series of equations involving only
the destination variables, followed by a series of equations with source variables.
Even after performing a set of row transformations during the Row Echelon Form
conversion, this will hold true, as we had arranged our variable vector and coeffi-
cient matrix such that the source variable rows and columns would come before
destination variables in the variable vector and coefficient matrix respectively. We
have also not interchanged any columns in the coefficient matrix. And even so, if
an only-destination variable row comes before a source variable row, that would
mean the leading non-zero coefficient of a row isn’t to the right of the leading non-
zero coefficient of the row above it. This would violate the Row Echelon Form
property and hence it wouldn’t be possible.
So we go from bottom to top, storing the values of each destination variable in
terms of the others and when we come across source variable predicates, we use the
already calculated expression values to get the expressions for the source variables.

Next, we use the solutions thus generated by the Solve() function as shown in
algorithm 2, and try to expand the range of PCs over which a predicate is valid.
This is described in the next section.

3.5 Location Range Extractor

Before equivalence checking, the unoptimized and optimized versions of the source
program are transformed into corresponding Transfer Function Graph (TFG) files.

18



Domain
{ P where P is a predicate with an LHS and RHS

expression and LHS = RHS}
Direction Forward
Transfer function fxfer, as specified in algo.3
Meet operator ⊗ as specified in algo.4
Boundary condition out[nstart] = {}
Initialization to > in[n] = {} for all non-start nodes

Table 3.1: Valid Predicates Data Flow Analysis Formulation

Along with encoding the control flow, a TFG also has a set of transfer functions for
each edge in the graph.

The equivalence checker typically outputs the predicates over loop heads in a
program i.e. for each predicate, only a single PC is provided by the equivalence
checker. But, to we would like to improve/add debugging information to as many
PCs as possible. Thus, after getting the set of predicates for each PC, we traverse the
TFG for the optimized program to try to cover as much other PCs in the optimized
program as possible.

3.5.1 TFG Traversal

Initially, we started with a simple TFG traversal from a loop head in the optimized
program. We start with the loop head and traverse next edges until we either find
a branch or we find that next instruction is modifying any of the destination vari-
ables(registers) present in a predicate.
This way, we could expand the predicates within a simple loop body, although we
could not handle multiple branches and merging of predicates when two branches
meet.
A Data Flow Analysis (DFA) technique is suitable for flowing information through-
out the program, involving any number of loops or branches and so we designed a
DFA that is described in the next section.

3.5.2 Valid Predicates Data Flow Analysis

As the same common framework can be used for implementing multiple, different
Data Flow Analyses, we use a base DFA framework from superopt library, which is
part of the equivalence checker infrastructure.
The formulation of the DFA is as specified in the table 3.1. The domain of values is
the set of predicates and the direction of the valid predicates DFA is forward.

19



We pass the solutions, i.e. the set of predicates for each PC, generated by the Solve()
function to our DFA. This will be used later during the DFA, to simulate the GEN
set (generating a new set of predicates at a PC).
We initialize the set of predicates at each PC to be an empty set.

We motivate the use of Transfer Function and Meet Operator as specified in the
table 3.1 by providing initial version of Transfer Function and Meet Operator first,
followed by the set of modifications performed in a few of the next subsections.

3.5.2.1 Transfer Function

The transfer function takes as input, the instruction through which we want to pass
our DFA value (or an edge in a TFG), the current DFA IN value or the set of
predicates for the program point just before the current instruction and the current
DFA OUT value (set of predicates) for the program point just after the current
instruction.

We extract the set of destination variables (registers) being modified at the cur-
rent instruction (or edge in the TFG) and check if any of the predicates present in
the DFA IN value have those registers present in their RHS expression. As specified
earlier, the LHS expression will have just the source variable and the RHS will have
the value of the source variable in terms of destination variables (registers). So, if
any of the modified registers are present in a predicate’s RHS expression, we kill that
predicate, as that predicate will no longer be held true at the program point after
the current instruction due to change in the value of the register.

After killing the appropriate predicates, we use the solutions (the set of predicates
valid over a PC) generated earlier from the Solve() function to simulate the GEN
set (generation of new predicates while we pass through the current instruction).
We merge these new predicates with the current set of predicates remained after
applying KILL operation above.

Once we finish transferring the DFA values (set of predicates) through an instruc-
tion (an edge in a TFG), we perform the Meet operation as described in the next
subsection.

3.5.2.2 Meet operator

The meet operation takes two DFA values (set of predicates) as input, one which is a
DFA value got after performing transfer function on the DFA IN value of an edge/in-
struction and another which is the current DFA OUT value of the edge/instruction.
We compare the both the set of predicates with one another and check if any two

20



of the predicates have the same source variable. If so, we randomly pick one of the
predicates, otherwise we pick both of them.
This way, we get a new DFA OUT value for the current instruction/edge in TFG.
As the worklist algorithm is being used in the DFA implementation, we also need to
check and return if the original DFA OUT value was changed or not. Based on this,
the worklist algorithm will continue the DFA further or stop it.

3.5.3 Modifications to DFA

Consider the head of a simple loop in the TFG (as shown in figure 3.2) of a program
(as shown in source code listing 2.1). The loop head(labeled as L3%1%0) will have
an incoming forward edge from the top and a backward edge that will be coming
from the loop tail(labeled as L16%1%1). Let’s say the set of predicates coming from
the forward edge and the backward edge are preds forward and preds backward. In
our earlier implementation of the DFA, while merging the two set of predicates, we
would pick only one if the two predicates have same source variable. But, the choice
of one predicate over another was random.

For a typical loop, an iterator variable will be initialized to some constant and
then the loop body starts. So, we would get a constant value predicate (e.g. src variable
== constant) from the forward edge, while the back edge would give us the predicate
that is valid inside the loop body, which would typically be a non-constant predicate
(e.g. src variable == non-constant expression in terms of registers). So we should
pick the predicate having non-constant expression in RHS.

Thus we assigned TAGs to every predicate. A predicate coming from a forward
edge would have a FORWARD TAG, while the one coming from a back edge will have
a BACKWARD TAG. We modified our Transfer Function to change the TAGs for
incoming predicates, based on whether the current edge is back-edge or not. These
TAGs will be used in the meet operation - when we come across two predicates
having same LHS expression i.e. source variable, we would pick one based on their
TAGs. So if their TAGs are different, we will pick one with the BACKWARD TAG.
On the other hand, if their TAGs are same, then we pick any of them randomly.
This way we could differentiate between predicates coming from a tail of the loop
and those coming from the program point before the loop head.

21



Figure 3.2: Example of a TFG involving a simple loop

22



3.5.4 Making the DFA more precise

As we saw in the earlier section, in the valid predicates DFA, when we transfer a
DFA IN value (set of predicates) through an instruction/edge in TFG, we check
whether the current instruction modifies any of the registers present in any of the
input predicates. If so, we kill the predicates i.e. remove them.

But this limits the range of PCs over which we can generate predicates. As we
show later, based on the compiler used to generate the code, an instruction modifying
the register might come immediately after the loop head or near the loop tail. So for
the programs of former kind (modifying instruction coming immediately after loop
head), the predicates will get killed immediately and they will not hold over any of
the later PCs in the loop body. Also, for the programs of latter kind (modifying
instruction near the loop tail), we will not be able to flow the predicates outside the
loop.

So we modified our DFA implementation to be more precise about the current
instruction. We check if the current instruction that modifies a register present in
some predicate has a reversible operation e.g. addition, subtraction. If so, we do not
kill the original predicate. Instead, we modify the predicate itself by adding a reverse
of the computation done by the current instruction. e.g. if the original predicate was
”src var == %ecx”, and the current instruction was ”%ecx = %ecx + 8”, we would
change our predicate to account for the change in register value i.e. we would make
it as ”src var == %ecx - 8”.

But, due to this change, combined with the priority for backedge predicates would
imply that at the loop head in a program, we would pick the predicate ”src var ==
%ecx - 8” over ”src var == %ecx” in the next DFA iteration. Also, this would go
out indefinitely. So, we added another TAG for predicates – ORIGINAL, which will
have higher priority than the BACKEDGE TAGs. We set this ORIGINAL TAG for
all those predicates that are part of the GEN set, when we simulate generating new
predicates in the Transfer Function. If we consider the whole loop body now, this
has the effect of doing the iterator variable updation at the loop head instead of the
actual place in the optimized program, as only then the new updated value of the
register will be used in the predicate.

The valid predicates DFA with changes described so far is shown in algorithm 3
and algorithm 4.

3.5.5 Adding a Backward DFA pass

The valid predicates DFA pass that we describe in the previous sections, would
expand the range of PCs for which a predicate is valid in the forward direction.

23



input : TFG edge e, DFA IN value inPreds, DFA OUT value outPreds
result: Updated DFA OUT value outPreds

1 regNames ← GetModifiedRegNames(e);
2 genPreds ← GetPredsAtPc(e.to pc);
3 thisPreds ← inPreds;
4 for pred in thisPreds do
5 if e is backEdge then
6 tag pred as backEdge;
7 end
8 else
9 tag pred as forwardEdge;

10 end

11 end
12 for pred in thisPreds do
13 for regName in regNames do
14 if regName present in pred then
15 if reversible computation at e then
16 modify pred to add complement operation;
17 end
18 else
19 remove pred;
20 end

21 end

22 end

23 end
24 for genPred in genPreds do
25 for pred in thisPreds do
26 if genPred.LhsExpr = pred.LhsExpr then
27 remove pred;
28 end

29 end

30 end
31 insert all genPreds into thisPreds with original tag;
32 Meet(thisPreds, outPreds);

Algorithm 3: Data Flow Analysis: Transfer Function

24



input : DFA IN value thisPreds, DFA OUT value outPreds
result : Updated DFA OUT value outPreds
returns: boolean value representing if outPreds was modified

1 for pred in thisPreds do
2 for outPred in outPreds do
3 if pred.LhsExpr = outPred.LhsExpr then
4 pick one based on tag where original > backEdge > forwardEdge;
5 end
6 else
7 pick both;
8 end

9 end

10 end
11 if outPreds is modified in the process then
12 return true;
13 end
14 else
15 return false;
16 end

Algorithm 4: Data Flow Analysis: Meet Operation

25



To extend them even further where possible, we implemented a Backward valid
predicates DFA pass. When we finish our Forward valid predicates DFA, we get the
set of predicates for each PC. We run our Backward DFA pass in sequence after the
Forward DFA and use the DFA values generated from Forward DFA as an input to
the Backward DFA.

We incorporate all the modifications specified for the Forward DFA in earlier
sections into the Backward DFA e.g. the prioritizing predicates based on their TAGs
- the ORIGINAL TAG having the highest priority, followed by the BACKWARD
and the FORWARD TAG respectively. There are some changes due to reversal of
the direction of information flow, that are specified below.

In the Transfer Function of the Backward DFA, we do the complement of the
operations as done inside a Forward DFA. e.g. we would create GEN set (set of
predicates) at the IN program point of the current instruction as opposed to OUT
that is done in the Forward DFA.

Also, while handling a register-modifying instruction and doing the reversible
computation in the predicate, we would do addition or subtraction if we pass through
an instruction doing addition or subtraction respectively. This is because the DFA
values are moving backwards through the edge. So, passing through an instruction
doing addition in backwards direction has an effect of doing subtraction over the
involved register.

Once we get the results(set of predicates for each PC) from Backward DFA, we
calculate the PC range for each predicate, convert the predicate into Postfix form
and then pass them along with the corresponding PC range to the DWARF Modifier.

3.6 DWARF Modifier

DWARF Modifer reads the predicates generated after the Data Flow Analysis from
STDIN. It takes two arguments :- the input object file(the object file to be modified)
and the output object filename(to be generated).

The high-level logic for DWARF Modifier is specified in algorithm 5 and algo-
rithm 6.

We first open the input object file and create a memory-map of its file contents.
We then parse the memory-map contents and create an object::Object struct out of
it.

Next, we create a writable Object using write::Object::new(), which will have the
same format and architecture as that of the input object. We set its mangling to be
none and its flags to the input object flags.

26



input : Input object file inputFile, Output object filename outputFile,
STDIN

result: Creates Output object file with updated debug information

1 inputObject ← Open(inputFile);
2 create new outputObject;
3 for each section in inputObject do
4 if not a metadata or a debugSection then
5 create corresponding outputSection;
6 add outputSection to outputObject;

7 end

8 end
9 for each symbol in inputObject do

10 if symbol is not null then
11 create corresponding outputSymbol;
12 add outputSymbol to outputObject;

13 end

14 end
15 for each section in inputObject do
16 for each relocation in section.Relocations do
17 create corresponding outputRelocation;
18 get corresponding outputSection from outputObject;
19 add outputRelocation to outputSection;

20 end

21 end
22 outputObject ← RewriteDwarf(inputObject, outputObject);
23 write out the outputObject contents to outputFile;

Algorithm 5: DWARF Modifier: Main() function

27



input : Input Object inputObject, Output Object outputObject
result: Stores the updated debug information into Output Object

outputObject

1 for each debugSection in inputObject do
2 (sectionData, relocations) ← GetSection(debugSection);
3 end
4 readDwarf ← add sectionData and relocations for each debugSection;
5 buffer ← read from stdin;
6 functionName ← read from buffer;
7 varMap ← ReadExistingLocationLists(readDwarf);
8 writeDwarf ← CreateWritableDwarf(readDwarf, convertAddress);
9 for each predicateLine in buffer.lines do

10 funcId ← GetFuncId(functionName);
11 varId ← GetVarId(predicateLine.srcVar);
12 varInfo ← GetVarInfo(varMap);
13 dwarfExpr ← CreateDwarfExpr(predicateLine.RhsExpr);
14 for each existing locRange in varInfo do
15 ProcessLocation(locRange, predicateLine.NewLocRange);
16 newLocList ← add processed locRange;

17 end
18 newLocList ← add predicateLine.NewLocRange;
19 insert the newLocList into debugLoc section;
20 modify locAttr in variable DIE to refer to newLocList;

21 end
22 write each debugSection from writeDwarf to outputObject;

Algorithm 6: DWARF Modifier: RewriteDwarf() function

28



Now, we create a HashMap – outSections, which will basically map an input
object index to the output object id. We traverse all the sections of the input object
(while skipping the Metadata and the ”.debug *” sections) and create corresponding
section in the output object. We then add a mapping between the input section
index and the output section id, which will be used later.

Once the sections in the input object file are processed, we read the symbols in
the input object file. We create a HashMap – outSymbols, which has a mapping
from the input object symbol index to the output object symbol id. We traverse the
symbols from input object (skipping ones of type Null), convert the input section
(from object::SymbolSection to object::write::SymbolSection), flags and value for the
symbols accordingly, so as to create the corresponding object::write::Symbol. We add
the mapping from input object symbol index to the output object symbol id into the
HashMap - outSymbols.

Finally, we read the input object sections, to get the relocations for each section
and covert them into write::Relocation structs. For each output object section, we
add the corresponding relocation thus generated into the object file.

We then call a RewriteDwarf() function with the arguments inObject, outObject
and outSymbols, where only the outObject is mutable.

Once we get the modified out object from the RewriteDwarf() function, we call
its write() function to write out the data to a string and finally call fs::write() to
write this string to the output object file path.

3.6.1 Rewriting DWARF debug information

The function RewriteDwarf() accepts three arguments :- the input object, output
object (mutable) and the symbols map (from input symbol index to output symbol
id).

We first call GetSection() on the input object, for every debug section – e.g.
.debug info, .debug line, .debug str, .debug loc, etc. to get the corresponding sec-
tion’s data and relocations. Then, we combine this information to create instances
for the structs such as gimli::read::DebugInfo, DebugAddr, DebugLine, etc. And we
encapsulate these instances to create a gimli::read::Dwarf instance.

Now, we read from STDIN, to get the intermediate postfix expressions, generated
at previous step in out tool pipeline. We store it in a buffer as a string. Then, we
read each line one by one. There are fields marked with ”=Function” and ”=Ze-
roAddress”, which denote the function name and the starting/low address for that
function.

Next, we define a HashMap named VarMap, where we will store a mapping from

29



a variable name to the corresponding DWARF expression and the address range over
which that expression is present. Then we call a function - ReadExistingLocation-
Lists() - which traverses through the DIEs starting from the function and stores all
the existing variable’s debug information into the VarMap defined earlier.

Now, we call gimli::write::Dwarf::from() function to convert the readable Dwarf
instance to a writable one. For this, we use a ConvertAddress() closure - which
converts the gimli::read::Addresses to gimli::write::Addresses.

And then we parse the ”=Expressions” line from STDIN/buffer and start reading
the predicates of the form LHS=RHS one by one, where RHS is an expression written
in postfix form and LHS is a source variable.

We use a loop to iterate over each such predicate. For each predicate, STDIN
will have a corresponding address range over which the predicate is valid.

For each loop iteration, we perform following steps:-

• We first get the first compilation unit from the Dwarf struct instance. Then, we
call GetFuncId() to get an id for the function. The id is of type gimli::write::UnitEntryId.

• We calculate the start and end address for the predicate, using given zeroaddress
and the address range.

• Then, we verify that our VarMap indeed has an entry for the variable name
mentioned in LHS of the predicate.

• Next, we call a function - GetVar() - to get the UnitEntryId for the variable inside
the function denoted by UnitEntryId found earlier.

• Then, we query the VarMap, to get the location info and the DWARF expression
for the variable.

• Now, we call CreateDwarfExpr() function, with the postfix expression from STDIN
as an argument. It creates and returns an instance of gimli::write::Expression,
which denotes the DWARF expression corresponding the postfix expression string
given as an input.

• Now, we try to insert the DWARF expression into the existing set of expressions
for the variable. For this, based on the presence of earlier expressions, we split
into two or three.

• Finally, we create a new location list with all these expressions and insert it into
the output object - in the .debug loc section.

30



• We also change the variable DIE attribute - DW AT location - to point to the
new location list thus created. If the DIE attribute DW AT location was not
present earlier and the DIE had DW AT const attribute earlier, we remove the
DW AT const before adding the DW AT location attribute.

This is the end of our for loop iteration/body.
After this, we write all the sections data from the gimli::write::Dwarf struct to

a new sections struct - gimli::write::Sections and add these sections into the output
object.

3.7 Evaluation

We run our tool on a set of functions in TSVC benchmark and get the updated
object files for each of these functions.

The evaluator uses the original and updated object files to generate the result
tables for compilers Clang, GCC and ICC.

We describe the results and the evaluator used to generate these results in the
following sections.

3.7.1 Evaluator

We have created an evaluator using a library - ’gimli’ in Rust.
The evaluator takes the original and updated object files as input for each TSVC
function, analyzes the two object files, compares them and then generates the results
table (shown in the following section).

The evaluator starts by first traversing through the DIEs(DWARF Debugging
Information Entries) to find the corresponding function’s DIE and its starting offset,
for each object file. Next, we start a Depth First Search on the DIE graph starting
from the function’s DIE. While scanning each DIE, we note its static scope using DIE
attributes ’low pc’ and ’high pc’. Whenever we encounter a DIE of type ’variable’
or ’formal parameter’, we look at its ’location’ attribute, and check its DWARF
expression. If the DWARF expression has a ’constant signed / unsigned’ value, we
classify it as a constant expression and all other expressions as non-constant.

For each variable, we maintain a map from its name to a set of tuples of the form
”(range begin, range end, is const)”, which denotes the range of PCs where debug
info for the variable is present in the object file and whether the DWARF expression
over the range is constant or non-constant.

We also maintain an instructions map, which represents the count of variables

31



accessible at a particular PC. For this, we read the ’.text’ section in each object file
and perform instructions disassembly using the capstone library in Rust.

Upon getting the maps for both the object files (original and updated) and the
instructions map, we analyze and compare them to calculate the number of PCs
where debugging information is improved (was a constant earlier and became non-
constant later, after updation), number of PCs where the debugging information
was absent earlier and which was added during the debug headers updation and a
cumulative count of PCs before and after updation.

In the next section, we describe the results generated by the evaluator.

3.7.2 Results

3.7.2.1 Metrics Description

• Improved PCs : This metric denotes the number of PCs where debug informa-
tion has been improved, where ”Improved” is defined as – it was a constant before
and we’ve updated it to point to some register.
Note that each PC is counted only once here.

• Improved Variable Count : It denotes the count of variables, whose debug in-
formation has been improved (according to the definition of improvement specified
above).

• Missing PCs : It denotes the number of PCs where no debug information was
present earlier and we’ve added new debug information there. (Note: Each PC is
counted only once.)

• Missing Variable Count : It denotes the count of variables, whose debug infor-
mation was absent earlier and new debug information for them has been added.

• Total PCs : This denotes the total number of PCs present inside the given
function.

• Before Cumulative Count : This represents the cumulative count of PCs where
debug information was present earlier, i.e. before debug headers updation.

• After Cumulative Count : This represents the cumulative count of PCs where
debug information is present, after the debug headers updation.

The tables table 3.2, table 3.3 and table 3.4 display the results for TSVC bench-
marks. We also tested our tool on larger examples as given in fig. 3.3(example1) and

32



Table 3.2: TSVC benchmarks results for Clang.

Function

Name

Improved

PCs

Improved

Variable

Count

Missing

PCs

Missing

Variable

Count

Total

PCs

Before

Cumulative

Count

After

Cumulative

Count

s000 14 1 - - 21 19 19
s1112 22 1 - - 29 27 27
s1119 8 1 - - 20 20 20
s112 - - 10 1 15 0 10
s116 1 1 15 1 19 1 16
s119 12 1 - - 40 60 60
s121 17 1 - - 42 62 62
s1221 12 1 - - 17 12 12
s1251 17 1 - - 22 17 17
s131 17 1 - - 39 76 76
s132 21 1 - - 55 220 220
s1351 14 1 15 3 19 14 59
s162 - - 35 1 55 57 92
s173 14 1 - - 19 34 34
s2244 15 1 - - 49 46 46
s243 16 1 - - 53 50 50
s251 12 1 - - 17 12 12
s252 14 1 - - 19 32 32
s319 27 1 1 1 33 55 56
s351 - - 19 1 27 28 47
s352 - - 28 2 36 33 61
s452 26 1 - - 33 31 31
s453 14 1 - - 21 19 19
vdotr 20 1 1 1 26 41 42
vpvpv 18 1 - - 23 18 18
vpvts 18 1 - - 25 23 23
vpvtv 18 1 - - 23 18 18
vtv 14 1 - - 19 14 14
vtvtv 18 1 - - 23 18 18

33



Table 3.3: TSVC benchmark results for GCC.

Function

Name

Improved

PCs

Improved

Variable

Count

Missing

PCs

Missing

Variable

Count

Total

PCs

Before

Cumulative

Count

After

Cumulative

Count

s000 1 1 7 1 12 3 10
s111 1 1 13 1 29 15 28
s1111 - - 18 1 21 1 19
s1112 1 1 8 1 13 3 11
s112 1 1 10 1 23 12 22
s113 1 1 8 1 21 13 21
s119 1 1 30 2 31 23 61
s121 1 1 6 1 19 23 29
s1221 - - 6 1 10 2 8
s122 6 1 11 2 18 73 84
s1251 - - 11 1 14 1 12
s127 - - 15 2 18 2 32
s1281 1 1 16 1 19 2 18
s128 1 2 18 2 21 4 40
s131 1 1 6 1 16 25 31
s132 4 1 8 1 29 108 116
s1351 - - 7 4 10 1 29
s162 1 1 8 1 46 66 74
s173 - - 7 1 10 11 18
s174 2 1 8 1 68 112 120
s2233 2 1 34 1 41 24 75
s2244 1 1 9 1 25 15 24
s243 - - - - 23 21 21
s311 1 1 7 1 16 4 11
s319 1 1 15 1 24 4 19
s3251 3 1 12 1 46 32 44
s423 5 1 6 1 35 62 68
s452 1 1 10 1 15 3 13
s453 1 1 7 1 12 3 10
sum1d 1 1 13 1 16 4 17
va - - 6 1 9 1 7

vdotr 1 1 10 1 19 4 14
vpv - - 7 1 10 1 8

vpvpv - - 8 1 11 1 9
vpvts 1 1 8 1 13 3 11
vpvtv - - 8 1 11 1 9
vtv - - 7 1 10 1 8
vtvtv - - 8 1 11 1 9

34



Table 3.4: TSVC benchmark results for ICC.

Function

Name

Improved

PCs

Improved

Variable

Count

Missing

PCs

Missing

Variable

Count

Total

PCs

Before

Cumulative

Count

After

Cumulative

Count

s000 - - - - 25 22 22
s111 - - - - 19 15 15
s112 - - - - 22 18 18
s114 - - 53 2 60 0 99
s119 - - - - 29 50 50
s122 - - - - 25 96 96
s124 - - 44 1 52 49 93
s125 - - 36 1 38 64 100
s127 - - 57 1 65 62 119
s1279 - - - - 51 48 48
s1281 - - - - 67 64 64
s132 - - - - 41 39 39
s1421 - - - - 42 62 82
s173 - - - - 28 25 25
s2244 - - - - 67 63 63
s252 - - 9 1 21 17 26
s254 - - - - 16 13 13
s2711 - - - - 47 44 44
s274 - - - - 46 43 43
s293 - - - - 18 15 15
s311 - - - - 23 42 42
s317 - - - - 15 25 25
s319 - - - - 38 73 73
s4115 - - - - 31 86 86
s441 - - - - 54 51 51
s452 - - - - 69 66 66
s453 - - - - 53 50 50
sum1d - - - - 26 22 22
va - - - - 14 11 11

vdotr - - - - 65 127 127
vif - - - - 29 26 26
vpv - - - - 28 25 25

vpvpv - - - - 35 32 32
vpvts - - - - 61 58 58
vpvtv - - - - 65 62 62

35



Figure 3.3: Example 1 source code

Table 3.5: Results for Example 1.

Function

Name

Improved

PCs

Improved

Variable

Count

Missing

PCs

Missing

Variable

Count

Total

PCs

Before

Cumulative

Count

After

Cumulative

Count

Example1 7 2 27 3 52 94 121

fig. 3.5(example2). The intermediate postfix expressions and metrics for example 1
are given in fig. 3.4 and table 3.5 respectively. Similarly, the intermediate postfix
expressions and metrics for example 2 are given in fig. 3.6 and table 3.6 respectively.

3.7.2.2 Comparison between compilers

From the tables table 3.2, table 3.3 and table 3.4, we can see that most debug in-
formation improvements/additions are done for Clang, GCC mostly has only debug
information additions, while only a few functions in ICC have any improvements/ad-
ditions.

Our tool is observed to perform best for the Clang compiler, whereas we didn’t
see much improvements/additions for ICC compiler, as even with optimizations, ICC
was able to retain a considerable amount of debug information.

Apart from these, we see that our tool performs considerably well for GCC com-
piler, where most of the updates in debug information were in the form of new
additions rather than improving on the existing debug information.

36



Figure 3.4: Expressions generated for Example 1

Figure 3.5: Example 2 source code

Table 3.6: Results for Example 2.

Function

Name

Improved

PCs

Improved

Variable

Count

Missing

PCs

Missing

Variable

Count

Total

PCs

Before

Cumulative

Count

After

Cumulative

Count

Example2 - - 24 2 62 188 212

37



Figure 3.6: Expressions generated for Example 2

38



3.7.3 Ablation Studies

To show the contribution of individual components of our tool, we show and then
discuss about the TSVC benchmark results for each of them.

The TSVC benchmark results for

• Clang, GCC and ICC compiler without the Forward and Backward DFA
(clang no dfa, gcc no dfa, icc no dfa) are shown in table 3.7, table 3.10 and ta-
ble 3.13 respectively.

• Clang, GCC and ICC compiler with Forward DFA but without the re-
versible computation handling(clang basic dfa, gcc basic dfa, icc basic dfa)
are shown in table 3.8, table 3.11 and table 3.14 respectively.

• Clang, GCC and ICC compiler with Forward DFA and the reversible com-
putation handling(clang reversible, gcc reversible, icc reversible) are shown in
table 3.9, table 3.12 and table 3.15 respectively.

• Clang, GCC and ICC compiler with Forward DFA, the reversible computa-
tion handling as well as Backward DFA (clang upto backward, gcc upto backward,
icc upto backward) are shown in table 3.2, table 3.3 and table 3.4 respectively.

For clang no dfa, gcc no dfa and icc no dfa, we can see that the count of PCs inside
the Improved or Missing column is only 1 or 2. This is because the equivalence
checker typically gives predicates only at certain points in a program e.g. at the loop
heads. We can observe that the Improved PCs are more dominant for clang, whereas
gcc and icc have only Missing PCs.

Once we add the Forward DFA, the count of PCs inside Improved and Missing
columns for is increased significantly, as the DFA is able to flow the information(set of
predicates) through the program over multiple PCs. But for gcc, in many functions,
the improvement in Missing PCs column seems to be smaller. This can be attributed
to the fact that optimized programs produced by gcc are observed to be having the
iterator variable increment/decrement instruction much earlier in a loop body. And
as we are killing predicates when it contains any modified register at a program point,
the range of PCs will be smaller.

After we handle the reversible computation inside the Forward DFA, we can see
that the results for clang improved by a small margin, while there is improvement
by larger margin for gcc. This would be due to the same reason described earlier –
gcc producing optimized programs with loops having their iterator variable updation

39



instruction much closer to the loop head. But, because we can now flow our infor-
mation(set of predicates) through such instructions, it increased the PC range. Still,
for some functions, it is not increased significantly. This can be attributed to the
presence of some instructions such as ”mov” in the loop body, whose computations
are not reversible.

After adding the Backward DFA with same features as the Forward DFA, we
can see improvement in the metrics for some functions in clang, gcc and icc. The
improvements are smaller as the PCs after the loop head would already be covered
by the Forward DFA earlier and the scope of improvement would be at the program
points before the loop head which is usually smaller.

3.7.4 Limitations

Currently, our tool supports modifications only in the ’.debug info’ and ’.debug loc’
section of an object file. We are not able to update any other sections such as
’.debug line’.

Our tool strongly relies on the Equivalence Checker which generates a proof of
equivalence between an un-optimized and optimized versions of a program. Thus the
debugging information modification is possible only for those programs for whom a
proof of equivalence can be established.

40



Table 3.7: Results for clang without Forward and Backward DFA.

Function

Name

Improved

PCs

Improved

Variable

Count

Missing

PCs

Missing

Variable

Count

Total

PCs

Before

Cumulative

Count

After

Cumulative

Count

s000 1 1 - - 21 19 19
s1112 1 1 - - 29 27 27
s1119 1 1 - - 20 20 20
s112 - - 1 1 15 0 1
s116 - - 1 1 19 1 2
s119 1 1 - - 40 60 60
s121 1 1 - - 42 62 62
s1221 1 1 - - 17 12 12
s1251 1 1 - - 22 17 17
s131 1 1 - - 39 76 76
s132 1 1 - - 55 220 220
s1351 1 1 1 3 19 14 17
s162 - - 2 1 55 57 59
s173 1 1 - - 19 34 34
s2244 1 1 - - 49 46 46
s243 1 1 - - 53 50 50
s251 1 1 - - 17 12 12
s252 1 1 - - 19 32 32
s319 1 1 1 1 33 55 56
s351 - - 1 1 27 28 29
s352 - - 1 1 36 33 34
s452 1 1 - - 33 31 31
s453 1 1 - - 21 19 19
vdotr 1 1 1 1 26 41 42
vpvpv 1 1 - - 23 18 18
vpvts 1 1 - - 25 23 23
vpvtv 1 1 - - 23 18 18
vtv 1 1 - - 19 14 14
vtvtv 1 1 - - 23 18 18

41



Table 3.8: Results for clang with Forward DFA without handling reversible computation.

Function

Name

Improved

PCs

Improved

Variable

Count

Missing

PCs

Missing

Variable

Count

Total

PCs

Before

Cumulative

Count

After

Cumulative

Count

s000 13 1 - - 21 19 19
s1112 21 1 - - 29 27 27
s1119 7 1 - - 20 20 20
s112 - - 9 1 15 0 9
s116 - - 11 1 19 1 12
s119 11 1 - - 40 60 60
s121 16 1 - - 42 62 62
s1221 11 1 - - 17 12 12
s1251 15 1 - - 22 17 17
s131 16 1 - - 39 76 76
s132 20 1 - - 55 220 220
s1351 13 1 13 3 19 14 53
s162 - - 23 1 55 57 80
s173 13 1 - - 19 34 34
s2244 13 1 - - 49 46 46
s243 13 1 - - 53 50 50
s251 11 1 - - 17 12 12
s252 13 1 - - 19 32 32
s319 19 1 1 1 33 55 56
s351 - - 17 1 27 28 45
s352 - - 25 1 36 33 58
s452 25 1 - - 33 31 31
s453 13 1 - - 21 19 19
vdotr 13 1 1 1 26 41 42
vpvpv 17 1 - - 23 18 18
vpvts 17 1 - - 25 23 23
vpvtv 17 1 - - 23 18 18
vtv 13 1 - - 19 14 14
vtvtv 17 1 - - 23 18 18

42



Table 3.9: Results for clang with Forward DFA and reversible computation.

Function

Name

Improved

PCs

Improved

Variable

Count

Missing

PCs

Missing

Variable

Count

Total

PCs

Before

Cumulative

Count

After

Cumulative

Count

s000 14 1 - - 21 19 19
s1112 22 1 - - 29 27 27
s1119 8 1 - - 20 20 20
s112 - - 10 1 15 0 10
s116 - - 13 1 19 1 14
s119 12 1 - - 40 60 60
s121 17 1 - - 42 62 62
s1221 12 1 - - 17 12 12
s1251 17 1 - - 22 17 17
s131 17 1 - - 39 76 76
s132 21 1 - - 55 220 220
s1351 14 1 15 3 19 14 59
s162 - - 25 1 55 57 82
s173 14 1 - - 19 34 34
s2244 15 1 - - 49 46 46
s243 16 1 - - 53 50 50
s251 12 1 - - 17 12 12
s252 14 1 - - 19 32 32
s319 26 1 1 1 33 55 56
s351 - - 19 1 27 28 47
s352 - - 27 1 36 33 60
s452 26 1 - - 33 31 31
s453 14 1 - - 21 19 19
vdotr 19 1 1 1 26 41 42
vpvpv 18 1 - - 23 18 18
vpvts 18 1 - - 25 23 23
vpvtv 18 1 - - 23 18 18
vtv 14 1 - - 19 14 14
vtvtv 18 1 - - 23 18 18

43



Table 3.10: Results for gcc without Forward and Backward DFA.

Function

Name

Improved

PCs

Improved

Variable

Count

Missing

PCs

Missing

Variable

Count

Total

PCs

Before

Cumulative

Count

After

Cumulative

Count

s000 - - 1 1 12 3 4
s1111 - - 1 1 21 1 2
s111 - - 1 1 29 15 16
s1112 - - 1 1 13 3 4
s112 - - 1 1 23 12 13
s113 - - 1 1 21 13 14
s119 - - 2 2 31 23 26
s121 - - 1 1 19 23 24
s1221 - - 1 1 10 2 3
s122 - - 1 1 18 73 74
s1251 - - 1 1 14 1 2
s127 - - 1 2 18 2 4
s1281 - - 1 1 19 2 3
s128 - - 1 2 21 4 6
s131 - - 1 1 16 25 26
s132 - - 1 1 29 108 109
s1351 - - 1 4 10 1 5
s162 - - 1 1 46 66 67
s173 - - 1 1 10 11 12
s174 - - 1 1 68 112 113
s2233 - - 3 1 41 24 28
s2244 - - 1 1 25 15 16
s243 - - - - 23 21 21
s311 - - 1 1 16 4 5
s319 - - 1 1 24 4 5
s3251 - - 1 1 46 32 33
s423 - - 1 1 35 62 63
s452 - - 1 1 15 3 4
s453 - - 1 1 12 3 4
sum1d - - 1 1 16 4 5
va - - 1 1 9 1 2

vdotr - - 1 1 19 4 5
vpv - - 1 1 10 1 2

vpvpv - - 1 1 11 1 2
vpvts - - 1 1 13 3 4
vpvtv - - 1 1 11 1 2
vtv - - 1 1 10 1 2
vtvtv - - 1 1 11 1 2

44



Table 3.11: Results for gcc with Forward DFA without handling reversible computation.

Function

Name

Improved

PCs

Improved

Variable

Count

Missing

PCs

Missing

Variable

Count

Total

PCs

Before

Cumulative

Count

After

Cumulative

Count

s000 - - 2 1 12 3 5
s1111 - - 15 1 21 1 16
s1112 - - 3 1 13 3 6
s111 - - 3 1 29 15 18
s112 - - 3 1 23 12 15
s113 - - 2 1 21 13 15
s119 - - 25 2 31 23 54
s121 - - 3 1 19 23 26
s1221 - - 2 1 10 2 4
s122 - - 4 1 18 73 77
s1251 - - 3 1 14 1 4
s127 - - 12 2 18 2 26
s1281 - - 3 1 19 2 5
s128 - - 3 2 21 4 10
s131 - - 3 1 16 25 28
s132 - - 2 1 29 108 110
s1351 - - 3 4 10 1 13
s162 - - 3 1 46 66 69
s173 - - 3 1 10 11 14
s174 - - 4 1 68 112 116
s2233 - - 23 1 41 24 67
s2244 - - 3 1 25 15 18
s243 - - - - 23 21 21
s311 - - 2 1 16 4 6
s319 - - 3 1 24 4 7
s3251 - - 3 1 46 32 35
s423 2 1 - - 35 62 37
s452 - - 3 1 15 3 6
s453 - - 2 1 12 3 5
sum1d - - 2 1 16 4 6
va - - 2 1 9 1 3

vdotr - - 2 1 19 4 6
vpv - - 3 1 10 1 4

vpvpv - - 3 1 11 1 4
vpvts - - 2 1 13 3 5
vpvtv - - 2 1 11 1 3
vtv - - 2 1 10 1 3
vtvtv - - 2 1 11 1 3

45



Table 3.12: Results for gcc with Forward DFA and reversible computation.

Function

Name

Improved

PCs

Improved

Variable

Count

Missing

PCs

Missing

Variable

Count

Total

PCs

Before

Cumulative

Count

After

Cumulative

Count

s000 - - 6 1 12 3 9
s111 1 1 13 1 29 15 28
s1111 - - 18 1 21 1 19
s1112 - - 7 1 13 3 10
s112 1 1 10 1 23 12 22
s113 - - 7 1 21 13 20
s119 1 1 25 2 31 23 56
s121 1 1 6 1 19 23 29
s122 1 1 9 1 18 73 82
s1221 - - 6 1 10 2 8
s1251 - - 11 1 14 1 12
s127 - - 15 2 18 2 32
s1281 - - 14 1 19 2 16
s128 1 2 17 2 21 4 38
s131 1 1 6 1 16 25 31
s132 1 1 7 1 29 108 115
s1351 - - 7 4 10 1 29
s162 1 1 8 1 46 66 74
s173 - - 7 1 10 11 18
s174 - - 7 1 68 112 119
s2233 - - 34 1 41 24 80
s2244 1 1 9 1 25 15 24
s243 - - - - 23 21 21
s311 - - 6 1 16 4 10
s319 - - 13 1 24 4 17
s3251 3 1 12 1 46 32 44
s423 5 1 6 1 35 62 68
s452 - - 9 1 15 3 12
s453 - - 6 1 12 3 9
sum1d - - 12 1 16 4 16
va - - 6 1 9 1 7

vdotr - - 8 1 19 4 12
vpv - - 7 1 10 1 8

vpvpv - - 8 1 11 1 9
vpvts - - 7 1 13 3 10
vpvtv - - 8 1 11 1 9
vtv - - 7 1 10 1 8
vtvtv - - 8 1 11 1 9

46



Table 3.13: Results for icc without Forward and Backward DFA.

Function

Name

Improved

PCs

Improved

Variable

Count

Missing

PCs

Missing

Variable

Count

Total

PCs

Before

Cumulative

Count

After

Cumulative

Count

s000 - - - - 25 22 22
s111 - - - - 19 15 15
s112 - - - - 22 18 18
s114 - - 2 2 60 0 4
s119 - - - - 29 50 50
s122 - - - - 25 96 96
s124 - - 1 1 52 49 50
s125 - - 2 1 38 64 66
s127 - - 1 1 65 62 63
s1279 - - - - 51 48 48
s1281 - - - - 67 64 64
s132 - - - - 41 39 39
s1421 - - - - 42 62 63
s173 - - - - 28 25 25
s2244 - - - - 67 63 63
s252 - - 1 1 21 17 18
s254 - - - - 16 13 13
s2711 - - - - 47 44 44
s274 - - - - 46 43 43
s293 - - - - 18 15 15
s311 - - - - 23 42 42
s317 - - - - 15 25 25
s319 - - - - 38 73 73
s4115 - - - - 31 86 86
s441 - - - - 54 51 51
s452 - - - - 69 66 66
s453 - - - - 53 50 50
sum1d - - - - 26 22 22
va - - - - 14 11 11

vdotr - - - - 65 127 127
vif - - - - 29 26 26
vpv - - - - 28 25 25

vpvpv - - - - 35 32 32
vpvts - - - - 61 58 58
vpvtv - - - - 65 62 62

47



Table 3.14: Results for icc with Forward DFA without handling reversible computation.

Function

Name

Improved

PCs

Improved

Variable

Count

Missing

PCs

Missing

Variable

Count

Total

PCs

Before

Cumulative

Count

After

Cumulative

Count

s000 - - - - 25 22 22
s111 - - - - 19 15 15
s112 - - - - 22 18 18
s114 - - 53 2 60 0 90
s119 - - - - 29 50 50
s122 - - - - 25 96 96
s124 - - 39 1 52 49 88
s125 - - 20 1 38 64 84
s127 - - 53 1 65 62 115
s1279 - - - - 51 48 48
s1281 - - - - 67 64 64
s132 - - - - 41 39 39
s1421 - - - - 42 62 82
s173 - - - - 28 25 25
s2244 - - - - 67 63 63
s252 - - 3 1 21 17 20
s254 - - - - 16 13 13
s2711 - - - - 47 44 44
s274 - - - - 46 43 43
s293 - - - - 18 15 15
s311 - - - - 23 42 42
s317 - - - - 15 25 25
s319 - - - - 38 73 73
s4115 - - - - 31 86 86
s441 - - - - 54 51 51
s452 - - - - 69 66 66
s453 - - - - 53 50 50
sum1d - - - - 26 22 22
va - - - - 14 11 11

vdotr - - - - 65 127 127
vif - - - - 29 26 26
vpv - - - - 28 25 25

vpvpv - - - - 35 32 32
vpvts - - - - 61 58 58
vpvtv - - - - 65 62 62

48



Table 3.15: Results for icc with Forward DFA and reversible computation.

Function

Name

Improved

PCs

Improved

Variable

Count

Missing

PCs

Missing

Variable

Count

Total

PCs

Before

Cumulative

Count

After

Cumulative

Count

s000 - - - - 25 22 22
s111 - - - - 19 15 15
s112 - - - - 22 18 18
s114 - - 53 2 60 0 89
s119 - - - - 29 50 50
s122 - - - - 25 96 96
s124 - - 42 1 52 49 91
s125 - - 29 1 38 64 93
s127 - - 56 1 65 62 118
s1279 - - - - 51 48 48
s1281 - - - - 67 64 64
s132 - - - - 41 39 39
s1421 - - - - 42 62 95
s173 - - - - 28 25 25
s2244 - - - - 67 63 63
s252 - - 3 1 21 17 20
s254 - - - - 16 13 13
s2711 - - - - 47 44 44
s274 - - - - 46 43 43
s293 - - - - 18 15 15
s311 - - - - 23 42 42
s317 - - - - 15 25 25
s319 - - - - 38 73 73
s4115 - - - - 31 86 86
s441 - - - - 54 51 51
s452 - - - - 69 66 66
s453 - - - - 53 50 50
sum1d - - - - 26 22 22
va - - - - 14 11 11

vdotr - - - - 65 127 127
vif - - - - 29 26 26
vpv - - - - 28 25 25

vpvpv - - - - 35 32 32
vpvts - - - - 61 58 58
vpvtv - - - - 65 62 62

49



3.8 Related work

Debugging optimized code is a problem for which many approaches have been sug-
gested over the years, including limiting compiler optimizations, restricting the de-
bugger functionality, using recompilation or dynamic de-optimization to undo the
optimizations, having the debugger determine the effect of optimizations and mask
them from the user, changing the source program to reflect the effects of compiler
optimizations and providing new compiler-debugger interfaces.

Some of the approaches make it transparent to the user while others prefer non-
transparent method, where being non-transparent to the user means exposing the
optimization effects. Some of them use their custom language/compiler and/or de-
bugger. We now summarize different approaches and highlight the difference with
our approach.

[11], [13], [15], [2], [3], [1], and [9] all use a specific custom compiler and modify
it to gather extra information for debugging. [14], [1] and [4] provide techniques
to determine the currentness of variables (a variable value is considered as non-
current, if it is inconsistent with the source-level value expected at a breakpoint).
[10] takes a very different approach, where it runs both unoptimized and optimized
programs together, compares their behaviour and reports if any difference is found,
while suggesting disabling the concerned optimization in a traditional debugger.

[8] gives algorithms to recover debugging information by modeling unoptimized
and optimized programs as graphs and performing static analysis on them, although
no implementation is provided that use these techniques. [9] provides a complete
debugging system SELF and suggests that this could be used for other languages
such as C, C++. [2] uses Data Flow Analysis and provides a new compiler-debugger
interface in the form of flow graphs to support source-level debugging of optimized
programs. [12] and [6] validate the already existing debugging information in opti-
mized programs and demonstrate the bugs found in optimization passes of respective
compilers.

Our approach supports the use of existing modern compilers GCC, LLVM/Clang
and ICC and the debuggers such as GDB for debugging optimized versions of pro-
grams written in C. We do not assume any knowledge about the optimization passes
or their order in these compilers. We present a novel approach of using a black-box
equivalence checker [5] [7] to correlate the unoptimized and optimized versions of a
source program and provide predicates for source variables in terms of registers in the
optimized program, which are then converted into DWARF expressions and inserted
into the optimized program to improve its debugging information. The updated
optimized program can be directly run inside standard debuggers such as GDB.

50



Chapter 4

Conclusion

This thesis presents a technique of using an equivalence checker to improve debugging
information present in optimized executable programs, which are difficult to debug
due to the loss of debugging information while doing rigorous transformations by
a compiler. We evaluated our tool across a set of benchmarks for three compilers
- Clang, GCC and ICC and we could add/improve the debugging information in
the corresponding optimized programs. The improvement varies across the three
compilers, as it depends upon the kind of transformations done and the amount of
debugging information the compiler was able to persist during compilation.

51



Bibliography

[1] Ali-Reza Adl-Tabatabai and Thomas Gross. “Source-level debugging of scalar
optimized code”. In: May 1996, pp. 33–43. isbn: 0897917952. doi: 10.1145/
231379.231388.

[2] Lutz Berger and Roland Wismüller. “Source-Level Debugging of Optimized
Programs Using Data Flow Analysis”. In: Dec. 1992. url: http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.43.2997.

[3] Gary Brooks, Gilbert J. Hansen, and Steve Simmons. “A new approach to
debugging optimized code”. In: July 1992, pp. 1–11. isbn: 0897914759. doi:
10.1145/143103.143108.

[4] Max Copperman. “Debugging optimized code without being misled”. In: May
1994, pp. 387–427. doi: 10.1145/177492.177517.

[5] Manjeet Dahiya and Sorav Bansal. “Black-Box Equivalence Checking Across
Compiler Optimizations”. In: Nov. 2017, pp. 127–147. isbn: 978-3-319-71236-9.
doi: 10.1007/978-3-319-71237-6_7.

[6] Giuseppe Antonio Di Luna et al. “Who’s debugging the debuggers? exposing
debug information bugs in optimized binaries”. In: Apr. 2021, pp. 1034–1045.
isbn: 9781450383172. doi: 10.1145/3445814.3446695.

[7] Shubhani Gupta, Abhishek Rose, and Sorav Bansal. “Counterexample-Guided
Correlation Algorithm for Translation Validation”. In: Proc. ACM Program.
Lang. 4.OOPSLA (Nov. 2020). doi: 10.1145/3428289.

[8] John Hennessy. “Symbolic Debugging of Optimized Code”. In: July 1982,
pp. 323–344. doi: 10.1145/357172.357173.

[9] Urs Hölzle, Craig Chambers, and David Ungar. “Debugging optimized code
with dynamic deoptimization”. In: July 1992, pp. 32–43. isbn: 0897914759.
doi: 10.1145/143095.143114.

52

https://doi.org/10.1145/231379.231388
https://doi.org/10.1145/231379.231388
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.2997
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.2997
https://doi.org/10.1145/143103.143108
https://doi.org/10.1145/177492.177517
https://doi.org/10.1007/978-3-319-71237-6_7
https://doi.org/10.1145/3445814.3446695
https://doi.org/10.1145/3428289
https://doi.org/10.1145/357172.357173
https://doi.org/10.1145/143095.143114


[10] Clara Jaramillo, Rajiv Gupta, and Mary Lou Soffa. “Comparison Checking: An
Approach to Avoid Debugging of Optimized Code”. In: Aug. 1999, pp. 268–
284. isbn: 978-3-540-48166-9. doi: 0.1007/3-540-48166-4_17.

[11] Clara Jaramillo, Rajiv Gupta, and Mary Lou Soffa. “FULLDOC: A Full Re-
porting Debugger for Optimized Code”. In: June 2000, pp. 240–259. isbn:
3540676686. doi: 10.5555/647169.718156.

[12] Yuanbo Li et al. “Debug information validation for optimized code”. In: June
2020, pp. 1052–1065. isbn: 9781450376136. doi: 10.1145/3385412.3386020.

[13] Caroline M. Tice. “Non-Transparent Debugging of Optimized Code”. In: Feb.
2000. url: https://dl.acm.org/doi/book/10.5555/894940.

[14] Roland Wismüller. “Debugging of globally optimized programs using data flow
analysis”. In: Aug. 1994, pp. 278–289. doi: 10.1145/178243.178430.

[15] Polle T. Zellweger. “An interactive high-level debugger for control-flow op-
timized programs”. In: Aug. 1983, pp. 159–172. doi: 10 . 1145 / 1006142 .

1006183.

53

https://doi.org/0.1007/3-540-48166-4_17
https://doi.org/10.5555/647169.718156
https://doi.org/10.1145/3385412.3386020
https://dl.acm.org/doi/book/10.5555/894940
https://doi.org/10.1145/178243.178430
https://doi.org/10.1145/1006142.1006183
https://doi.org/10.1145/1006142.1006183

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Issues in debugging optimized programs
	Improving Debugging Information
	Equivalence Checker
	DWARF Debugging Standard
	Tool Pipeline 
	Expression Generator
	Solving predicates

	Location Range Extractor
	TFG Traversal
	Valid Predicates Data Flow Analysis
	Transfer Function
	Meet operator

	Modifications to DFA
	Making the DFA more precise
	Adding a Backward DFA pass

	DWARF Modifier
	Rewriting DWARF debug information

	Evaluation
	Evaluator
	Results
	Metrics Description
	Comparison between compilers

	Ablation Studies
	Limitations

	Related work

	Conclusion
	Bibliography

