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Abstract

Purpose Glaucoma is an eye disease that is chronic, asymptomatic, and cannot
be cured once it progresses. An important step in clinical analysis of glaucoma is
to measure the cup-to-disc ratio (CDR). Optic cup segmentation is a challenging
task (as compared to detecting the optic disk, for instance), due to poor contrast
on the cup boundary region, and occlusion from veins and arteries. Contemporary
systems are based on image processing/computer vision and/or machine learning.
However, obtaining accurate optic cup segmentation over large datasets is still a
challenge.

Methods We propose a novel asymmetric ‘multi-encoder U-Net’/Y-Net architec-
ture with Inception and context blocks in the bottleneck layer. The architecture
has an ResNet34-based primary encoder and a light-and-efficient EfficientNetB0
auxiliary encoder. The asymmetry involves avoiding multi-stage skip connections
from the auxiliary encoder to the decoder. This avoids the complexity of feature
map concatenation at different levels. The Inception block in the bottleneck layer
performs feature enrichment. Different receptive fields in parallel paths result in
multi-scale optic cup features. The next cascaded context block helps maintain
spatial consistency of the multi-scale feature maps.

Results and Discussion We have experimented extensively on four public datasets,
and the challenging AIIMS community camp (private) dataset. The proposed net-
work outperforms the state-of-the-art with an average Dice coefficient of 91.11%
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and 87.77% on the Drishti-GS (Sivaswamy et al. (2014)) and Refugee (Maninis
and Pont-Tuset (2010)) public datasets. Our ablation studies with different com-
peting architectures also shows the proposed method achieving the highest Dice
coefficient and cup overlap percentage. The training itself achieves a much lower
train-validation loss, as seen over a large number of epochs.

Conclusion The novel architecture has each sub-part geared towards getting good
optic cup segmentation performance across a large number of datasets. The net-
work shows robust segmentation performance on challenging images with various
retinal artifacts (blurring, poor illumination, and clinical pathologies).

Keywords Retinal Images · Optic Cup · Deep Convolutional Neural Network
(DCNN) · U-Net · Image Segmentation

1 Introduction

Fig. 1: The top row shows a sample retinal image with a few landmarks marked: the Optic

Cup/‘Physiologic Cup’ (the subject of this paper), the optic nerve head (or the Optic

Disc), and retinal blood vessels (arteries and veins) marked with black arrows. Optic cup

segmentation is difficult due to the low contrast at the cup boundaries and occlusion from

blood vessels. Sec. 1 has more details. The second row shows two images with varying optic

cup sizes, from the Drishti-GS public dataset (Sivaswamy et al. (2014)), with the the optic

cup marked with blue circles.

Robust optic cup segmentation forms an important step in early diagnosis of
glaucoma (an irreversible eye disease) (Muramatsu et al. (2009)), which involves
the computation of the vertical cup-to-disc ratio (CDR, hereafter). Optic cup seg-
mentation is a challenging task (compared to detecting the optic disk, for instance),
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due to poor contrast on the boundary of the optic cup (as in Fig. 1), and occlusion
from blood vessels (the veins and arteries, as in Fig. 1)(Muramatsu et al. (2009)).
Retinal images from fundus cameras or ophthalmoscopes are the only cost-effective
means in this regard, as compared to the expensive and more informative Opti-
cal coherence tomography (OCT), Scanning Laser Ophthalmoscopy (SLO), and
Confocal microscopy. OCT for instance, gives depth information and intra-ocular
pressure (IOP) estimates, which are useful in glaucoma identification. However,
these three techniques need specialized setup arrangements, and cannot be used
in the field, in community eye camps, for instance.

Fig. 1 shows the difficulty in optic cup segmentation. Only in a healthy retina,
the optic cup is generally horizontally oval in shape (8% greater than the verti-
cal extent) and yellowish-white in color (Algazi et al. (1985)). Color alone cannot
form a basis for optic cup segmentation (Dada and Coote (2010)). It does not help
that the local contrast in the region is often poor. It is difficult to estimate the
blood vessel bends at the cup and those at other regions, owing to the poor con-
trast (Dada and Coote (2010)). Moreover, there is occlusion from the blood vessels
themselves. Optic cup segmentation approaches generally fall into two major cat-
egories namely, Image processing/computer vision-based techniques (Sec. 1.1) and
deep convolutional network-based pixel-level classification (Sec. 1.2).

1.1 Image Processing/Computer Vision-based Approaches

Wong et al. (2009) seek to detect blood vessel kinks. in retinal images. The au-
thors use a level set-based method with Canny edge detection and wavelet trans-
form techniques in a probabilistic framework. Thakur and Juneja (2019) use a
level set-based Adaptively Regularized Kernel-Based Intuitionistic Fuzzy C Means
clustering-based approach. A related approach is a Fuzzy c-Means (FCM) clus-
tering algorithm with morphological operations (Khalid et al. (2014)). For glau-
coma diagnosis, Mittapalli and Kande (2016) use the gray level change near the
boundary. They extract bends in small blood vessels using spatially weighted
fuzzy c means (SWFCM) clustering-based thresholding. Examples of superpixel
classification-based approaches are Tan et al. (2015), Mohamed et al. (2019), and
Xu et al. (2014). These methods extract use histogram and textural image fea-
tures. Sanfilippo et al. (2010) use geometric morphometric methods of elliptic
Fourier analysis and sliding semi-landmark analysis with a minimum bending en-
ergy criterion. They eliminate the variation unrelated to shape (i.e., location, size,
and orientation) and obtain a series of PCA-summarized shape variables. Stereo-
based approaches need a specialized setup. Chakravarty and Sivaswamy (2017)
perform depth-based cup extraction using a boundary-based conditional random
field (CRF) representation of depth between optic disc and cup. A similar method
uses color difference and vessel bends (Hu et al. (2017)) to locate the optic cup
boundaries. The aggregation uses confidence values.

1.2 Machine Learning-based Approaches

In biomedical image segmentation problems, U-Net architectures (an encoder and
decoder with skip connections) are very common. Yu et al. (2019) use a ResNet-34
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based pre-trained an encoder along with classical U-Net decoding layers. A joint
optic disc and cup segmentation (Liu et al. (2019b)) uses a conditional Generative
Adversarial Network (GAN) framework. It uses a segmentation net S, a generator
G, and discriminator D network. Both the segmentation and generator networks
are trained to learn the bidirectional mappings between fundus image and seg-
mentation maps. The segmentation net learns the mapping from the fundus to the
binary image, and generator learns the mapping from binary image to the fundus
image. All networks are trained simultaneously with adversarial and segmentation
generator network reconstruction losses (segmentation and generator networks).
Kamble et al. (2020) use an EfficientNet as an encoder in a U-Net++ framework.
Hybrid methods such as Liu et al. (2019a) propose novel spatial distribution-aware
maximum conditional probability framework for joint optic disc and cup segmen-
tation. The methodology is based on the explicit variance of the spatial layout
of vessels, and the spatial sparsity of blood vessel kinks at a small scale. The
classification neural network consists of an atrous CNN module, a pyramid filter-
ing module comprising of M parallel pyramid filtering blocks. and a spatial-aware
segmentation module of M parallel spatial-aware segmentation blocks.

We summarize the main features of our work as follows:

– We propose a novel asymmetric Y-Net (multi-encoder U-Net)-based architec-
ture with an Inception block and a multi-kernel context block in the bottleneck
layer. A pre-trained ResNet34 acts as the primary encoder, and an Efficient-
NetB0, the auxiliary encoder. The decoder uses the skip connections only from
the primary encoder and up-samples the concatenated feature maps to the
original image dimension.

– The bottleneck layer has a cascade of a multi-scale Inception block and multi-
kernel context block. The multi-scale Inception block captures multi-scale fea-
tures through different receptive fields in parallel paths. The context block
maintains spatial contextual information from the Inception block.

– Retinal images from community camps and healthcare setups are taken with
low-cost hand-held ophthalmoscopes. Blurriness and poor illumination are com-
mon in such cases. Retinal pathologies (such as exudates, haemorrhages, lesions
and atrophy) are also common since the subjects often have poor access to even
basic healthcare. In addition to 4 public datasets (Drishti-GS (Sivaswamy et al.
(2014)), DRIVE, DRIONS and Refugee (Maninis and Pont-Tuset (2010)), we
have also experimented with the challenging (private) AIIMS community camp
dataset.

– We show the results of extensive experiments with different segmentation net-
works and their combinations, vis-a-vis our proposed network. We show qual-
itative and quantitative results of the proposed network outperforming the
state-of-the-art.

The organization of the rest of the paper is as follows. Sec. 2 gives details
of the proposed architecture: the asymmetric ‘multi-encoder U-Net’/Y-Net with
Inception and context blocks in the bottleneck layer. This section explains the mo-
tivation behind the choice of each architectural sub-part in the proposed network.
Sec. 3 presents results of detailed experiments with the proposed architecture,
with four public datasets, and the challenging AIIMS community camp (private)
dataset. The section describes suitable metrics for optic cup segmentation, system
implementation details, compares performance parameters with the state-of-the-
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art in the area, a comparison of competing architectural structures, and the results
of the proposed method across datasets. Sec. 5 puts the work into perspective, and
concludes the paper.

2 Methods

2.1 A Novel Asymmetric ‘Multi-Encoder U-Net’ (Y-Net) with an

Inception Block and a Context Block in the Bottleneck Layer

The paper proposes a novel asymmetric ‘multi-encoder U-Net’/Y-Net with an In-
ception block and a context block in the bottleneck layer. Fig. 2 gives an overview
of the proposed architecture, highlighting its main components. In what follows,
we explain features of each component, and illustrate their suitability to the task
of optic cup segmentation from retinal images. The architecture proposes a novel
feature extraction algorithm using multi-scale context modeling, with two inde-
pendent and asymmetric top-level segmentation networks. This is quite different
from two networks with similar names. The Y-Net of (Mehta et al. (2018)) is not
a multi-encoder network: it is a network for joint segmentation and classification.
Our asymmetric multi-encoder Y-Net differs from the symmetric Y-Net of (Mo-
hammed et al. (2018)), and has additional bottleneck layer Inception and context
blocks.

2.1.1 Motivation for a Multi-Encoder Structure

The conventional U-Net architecture (Ronneberger et al. (2015)) is now com-
monplace for biomedical segmentation tasks. The U-Net is an encoder-decoder
structure with skip connections between the encoder (contracting path) and the
decoder (expanding path, to the original image dimensions). However, with an
increase in the depth (levels) of the network, the number of weights increases due
to an increase in the number of filters. During backpropagation-based learning
methods, these weights do not get updated much due to low gradients. Conver-
gence will be slower at the deeper layers. During backpropagation, by the time we
reach the initial layers, the weights will be almost the same, implying bypassing
the initial layers (which are responsible for ‘abstract’ features, in the first place).
One can have pre-trained architectures at the encoder side to alleviate training
data scarcity issues commonly associated with medical datasets. (In other words,
one trains only the decoder side). In fact, in our results section (Sec. 3.6), we
show comparative segmentation results of optic cup segmentation of a basic U-
Net, and variants with pre-trained encoder structures (Table 4). Having a single
encoder biases the segmentation network into using only one type of features. A
multi-encoder structure can take advantage of information from different sets of
features.

2.1.2 A ResNet34-based Primary Encoder, and a EfficientNetB0-based

Auxiliary Encoder, in an Asymmetric Setting

We propose a dual encoder set up, to take advantage of different sets of input
features. This is inspired by ensemble learning models, which select diverse non-
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Fig. 2: The proposed asymmetric ‘multi-encoder U-Net’/Y-Net architecture with Inception

and context blocks in the bottleneck layer. The multi-encoder part takes features from two

independent architectures (A ResNet34 primary encoder and a light-and-efficient Efficient-

NetB0 auxiliary encoder). The asymmetry in the two encoders is to avoid the complexity of

feature map concatenation at different levels. The bottleneck layer has a cascade of an In-

ception block and a context block. The role of the inception block is to capture multi-scale

features through different receptive fields in parallel paths. The context block maintains

spatial contextual information from the Inception block. The right bottom of the figure

shows some details of an encoder and decoder block (in blue and violet, respectively). ‘BN’

represents batch normalization, ‘Conv’ convolution, and ‘ReLU’, the rectified linear unit

activation function. Further, the dark brown sub-blocks in the decoder path represent the

up-sampling operation. Sec. 2.1 has the relevant details of the network and sub-blocks.

Fig. 4 shows the Inception and context blocks in detail. Fig. 3 shows a conceptual repre-

sentation of our asymmetric multi-encoder structure.

redundant features from two or more different architectures. We use a ResNet (He
et al. (2016)) architecture-based encoder (ResNet34) as a primary encoder. This
uses pre-trained weights from the large and diverse ImageNet dataset (Deng et al.
(2009)). The choice of a ResNet architecture is governed by its deeper structure
with comparatively fewer parameters, owing to residual connections. The previous
section mentions the U-Net issue of bypassing information from the initial layers. A
pre-trained ResNet-based U-Net in the encoding layers not only provides high-level
features, it also maintains the abstract features from the initial layers. Another
interesting facet is the presence of skip connections not just in the encoder-decoder
structure: skip connections are there in the ResNet34 primary encoder as well.

We choose an EfficientNet (Tan and Le (2019)) architecture-based encoder
(EfficientNetB0) as the auxiliary encoder. The EfficientNet family of pre-trained
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Fig. 3: A conceptual description of a standard U-Net (above) and our asymmetric ‘multi-

encoder U-Net’ (Y-Net) (below), with two encoders. Our asymmetric Y-Net architecture

has a primary encoder, and a lighter auxiliary encoder with an independent set of features.

The auxiliary encoder (with no skip connections to the decoder side) avoids the complexity

of feature map concatenation at different levels. Sec. 2.1.2 has the details.

networks (EfficientNetB0-B7) provides a disciplined approach to scaling network
dimensions: the width, depth and image resolution. EfficientNet architectures are
light and efficient compared to contemporary convolutional neural network mod-
els (Tan and Le (2019)). In a standalone EfficientNet, the small number of pa-
rameters needs less training time and acts as a light model, without compromising
much on overall performance. The EfficientNetB0 architecture has MBConv as the
main building block (which consists of seven inverted residual blocks, each with
a different setting). Further, these blocks are composed of squeeze and excita-
tion blocks, and have Swish activation functions (Tan and Le (2019)). We choose
the light-and-efficient pre-trained EfficientNetB0 as the auxiliary encoder. (The
pre-training is on the ImageNet dataset (Deng et al. (2009)), again.)

The concatenation of feature sets from the primary and auxiliary encoders
happens in a multi-scale context block at the bottleneck level (after the last down-
sampling step). Fig. 3 shows this concatenation and the asymmetric part of the
architecture as well. (Fig. 3 compares the basic philosophy of our asymmetric Y-
Net architecture to that of a U-Net, as well.) A separate section (Sec. 2.1.3 explains
the Inception block and the context block in detail. In the decoder part, the pri-
mary encoder (ResNet34) skip connections remain the same as the conventional
U-Net. This re-localizes high-level features to the full-resolution optic cup binary
mask. The asymmetry in the architecture comes from the auxiliary EfficientNetB0
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Fig. 4: Details of the Inception and context blocks. The Inception block (at the top) consists

of three parallel convolution operations, with each path having a different receptive field

dimensions in order to capture the multi-resolution features for the optic cup region. The

context block (at the bottom) extracts the contextual information from the above features

and maintains the spatial consistency of the feature map. Sec. 2.1.3 has the details of the

two blocks.

encoder not having skip connections on the decoder side. (Fig. 2 and Fig. 3 show
this asymmetry in detail.) This avoids the complexity of feature map concatena-
tion at different levels. Fig. 3 presents this asymmetry, and the basic conceptual
difference between a conventional U-Net structure, and the proposed asymmetric
‘multi-encoder U-Net’/Y-Net (with Inception and context blocks in the bottleneck
layer). A separate section (Sec. 2.1.4) describes the decoder structure in detail.

2.1.3 Multi-scale Contextual Features in the Bottleneck Layer: An Inception

Block and a Context Block in Cascade

As mentioned in the previous section, the feature concatenation from the primary
and auxiliary encoders takes place at the bottleneck layer. This has the Inception
block and the context block. Fig. 4 shows a diagrammatic representation of the
architecture of these two blocks. The concatenated 16×16×512 bottleneck feature
maps from the primary and auxiliary encoders are fed to a multi-scale Inception
block that extracts the more detailed high-level features. The choice of an Inception
architecture (Szegedy et al. (2015)) is to have parallel convolution paths with
different-sized receptive fields, to capture multi-resolution features for the optic cup
region. Even though the primary and auxiliary encoder networks capture multi-
level feature maps, the process is limited by the scaling and pooling operations with
just a kernel size of 3× 3 and pooling by a factor of 2. To alleviate this constraint,
we use a multi-scale atrous/dilated convolution with residual connections. This
step not only enhances the detailed information, this also prevents the loss of
semantic segmentation to some extent (Chen et al. (2017)). In addition to this, the
retinal image dataset used in this work has been generated from different regions
and patients, where the cup may have different sizes and shapes. To cover all
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sorts of cup sizes, Inception blocks can bring out most of the multi-scale semantic
features for segmentation. The top part of Fig. 4 shows the detailed description of
the Inception block, where multiple atrous convolutions are performed and finally
integrated with an input residual connection. This module accounts for small to
large optic cup sizes by providing a range of receptive fields (larger receptive fields
for larger optic cups, and vice-versa).

The bottom part of Fig. 4 shows a diagrammatic representation of the archi-
tecture of the context block. The high-level features from the Inception block are
fed to a context block. The context block generates contextual information from
the bottleneck feature maps and preserves spatial information from precise cup
segmentation. The block consists of multi-pool kernel configurations ranging from
size 2× 2 to 4× 4. Further, the output from each pooling operation is gathered by
a shared convolutional layer with a kernel size of 1 × 1 to generate a one-channel
image map. Finally, these one-channel maps are up-sampled to the original feature
map dimension and concatenated all together with the original input feature map
using a skip connection. Fig. 4 gives a pictorial representation of the process, with
three different kernel sizes.

2.1.4 The Decoder Network

The decoder module (Fig. 2 and Fig. 3) recovers the binary cup map (with the same
resolution as the RGB input image) from the deep encoded features. The high-level
features from the multi-scale context block (Sec. 2.1.3) are fed as an input to the
decoder. The skip connections from the primary encoder (ResNet34) are fused with
the deep-semantic features. The EfficientB0 network is excluded from the decoder
side, due to the high complexity (parameters) of feature maps when concatenated
at different levels. (In our experiments, putting these in increased the training time,
without any significant improvement in the performance.) In our system work, the
decoder network consists of five decoder blocks. Each block comprises of an up-
sampling layer of kernel size 2 followed by a concatenation operation with the skip
connections. Lastly, a ConvBlock is added to decode the much larger feature maps
from the previous layer, to the binary cup mask. The ConvBlock is a series of two
3×3 convolutional operations followed by batch normalization operation and ReLU
activation function. Fig. 2 shows all decoder blocks along with their sub-blocks. In
the last step of the decoder network, the convolution operation with one feature
map and sigmoid activation function is employed to predict the cup probability of
each pixel. It is interesting to note that instead of using residual skip connections,
we employed concatenated skip connections when fusing the deep semantic features
with shallow high-resolution features. This seems to improve the performance of
optic cup segmentation. Further ahead, Sec. 3.6 (Table 4 summarizes the results)
presents a detailed ablation study of different encoder and decoder setups.

3 Results

3.1 Datasets

For the evaluation of the proposed work, we use four public datasets namely
Drishti-GS (Sivaswamy et al. (2014)), DRIONS, DRIVE and Refugee (Maninis
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and Pont-Tuset (2010)). We have also experimented with the challenging AIIMS
community camp (private) dataset. Table 1 shows details about all the datasets
used in this work. The Drishti-GS (Sivaswamy et al. (2014)) and Refugee (Maninis
and Pont-Tuset (2010)) datasets have the optic disk margin ground truth avail-
able. For the others: DRIVE, DRIONS and the challenging AIIMS community
camp (private) dataset, we had the optic cup ground truth segmentation given by
experienced ophthalmologists from AIIMS New Delhi. The Drishti-GS (Sivaswamy
et al. (2014)) and Refugee (Maninis and Pont-Tuset (2010)) datasets have been
divided into a 50:50 train-test ratio (which we have tweaked, to have a 40:10:50
train-validate-test ratio), whereas the rest are divided in a 80:10:10 train-validate-
test ratio. There are no particular reasons for these split ratios. For the Drishti-GS

Table 1: Retinal image datasets, and their details. We use four public datasets Drishti-

GS (Sivaswamy et al. (2014)), Refugee, DRIONS, DRIVE (Maninis and Pont-Tuset (2010)),

and the challenging AIIMS community camp (private) dataset. Sec. 3.1 has the details,

including the choice of the train-test split for these datasets.

S.No
Dataset Name Total Images Image Dimension

1 DRIONS 110 600 × 400

2 DRIVE 40 768 × 584

3 Drishti-GS 101 2896 × 1944

4 Refugee 1200 1634 × 1634

5 AIIMS (private) 364 1536 × 1584

dataset (Sivaswamy et al. (2014)), this division is already done by the dataset
provider. Further, others researchers have also tested their work on 51 images
(the dataset has 101 images in all). We have tweaked this to have a 40:10:50
train-validate-test split. The situation is similar for the Refugee dataset (Maninis
and Pont-Tuset (2010)) in the MICCAI competition: the train-validate-test split is
given as 400:400:400. For the other datasets DRIVE, DRIONS and the challenging
AIIMS community camp dataset, there is no a priori train-test (or train-validate-
test) split. For these, we choose an 80:10:10 train-validate-test split, a fairly com-
mon method method used for small-sized datasets. Further, these datasets were
collected for other ophthalmological tasks, and are not ground-truthed. For these
cases as mentioned above, experienced ophthalmologists (at AIIMS New Delhi)
manually marked the optic cup ground truth for our work.

3.2 Evaluation Metrics for Optic Cup Segmentation

The standard representation of the statistical performance of a particular method
is in terms of the ROC parameters/the confusion matrix parameters, in various
forms. These parameters are true positives (TP), true negatives (TN), false posi-
tives (FP) and false negatives (FN). For our cup segmentation task, TP indicates
those pixels which the segmentation method identifies as being from the cup region,
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and which are corroborated by the ground truth as well. TN counts the number of
non-cup pixels correctly classified as background (or non-cup) pixels. FP indicates
the number of background pixels misclassified as being from the cup region. FN
represents the ground-truth cup pixels that are misclassified as background (or
non-cup) pixels.

The Dice coefficient (F1 score) (Eq. 1) and the Jaccard coefficient (Intersection-
over-Union (IOU), or the percentage overlap) (Eq. 2) are the most commonly used
performance measures in segmentation problems.

Dice coefficient (F1 score) = 2 × (TP )

TP + FN + FP
(1)

Intersection over Union (Jaccard coefficient, Overlap) =
(TP )

TP + FN + FP
(2)

For instance, the IOU/Jaccard coefficient also represents the percentage overlap
between between the predicted cup segmentation map, and the ground-truth bi-
nary mask.

Sensitivity (Recall) =
(TP )

TP + FN
(3)

Specificity =
(TN)

TN + FP
(4)

As mentioned above, the Dice coefficient/F1 score and the Jaccard coefficient/IOU/cup
overlap percentage are suitable parameters. ROC analysis also cites sensitivity and
specificity values. In the medical informatics tasks, sensitivity is the more signifi-
cant of the two, since it gives a measures of false negatives (which are crucial in
disease diagnosis). To this end, Tables 2, 3, 4 and 5 all mention the Dice coefficient,
the cup overlap percentage and the sensitivity values. We also note that the notion
of specificity is intrinsically captured through the use of the Dice coefficient.

3.3 System Implementation Details

The input images to the system are semi-automatically processed as follows. Un-
necessary background removal happens through a process of optic disk localiza-
tion (Meyer et al. (2018)). (As mentioned before, optic disk localization is a much
easier task, and can be performed in a much more robust manner (Muramatsu
et al. (2009)).) The system extracts the region-of-interest (the optic disk), crops
this, and resizes images of all datasets (Sec. 3.1) to a uniform 512 × 512 pixels.
The data augmentation (to avoid over-fitting issues) happens through the follow-
ing geometric operations: zooming in steps of 0.2, vertical flipping, shear within
steps of 0.1, and rotation within 90◦. We use a heuristic of keeping the augmented
training set as 8 times the size of the training set. (Fig. 6 clearly indicates that
the proposed Y-Net architecture has no over-fitting issues.

For training the proposed Y-Net model (the asymmetric ‘multi-encoder U-
Net’/Y-Net with an Inception block and a context block in the bottleneck layer),
we show some representative experiments here with the Drishti-GS dataset (Sivaswamy
et al. (2014)). The Drishti-GS dataset often serves a standard glaucoma dataset
with marked optic cup positions. This has 50 training and 51 test images. The
segmentation converges within 100 epochs with a training batch size set to 4 input
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RGB images (with their corresponding binary masks). We use an Adam optimizer
with accuracy as the training metric. For the purpose of image segmentation loss
function we use a pixel-wise cross-entropy loss, which compares the class predic-
tions for each pixel individually. In addition to this, we have experimented with
other segmentation losses such as the Dice loss and the IOU loss. The model uses
a initial learning rate of 1e-4. This is dynamically updated after 10 epochs. The
system implementation is on an Intel i7 Windows 10 System with an NVIDIA
Quadro P5000 GPU card with 2560 CUDA cores. An important part of the learn-
ing process is a check for over-fitting. Fig. 6 shows that the proposed Y-Net model
does not suffer from over-fitting issues. In addition to the above training regimen,
we perform a post-processing step while testing the image. We use an empirically
set threshold of 0.7 for the predicted optic cup map. All pixel values greater than
this are set to 1 (the optic cup region), and rest (the background) are set to 0. As
mentioned in Sec. 2.1.4, the proposed Y-net architecture has a sigmoid activation
function after the last fully connected layer of the network. Optic cup detection is
a binary classification problem, hence a sigmoid is quite apt (instead of a softmax,
which is better-suited for multi-class classification). The sigmoid gives a probabil-
ity value between 0 to 1, to predict how much the pixel belongs to the optic cup
region. This explains the use of the threshold, above.

3.4 Some Representative Results with Different Datasets

Fig. 5 shows some representative optic cup segmentation results of images from
the Drishti-GS (Sivaswamy et al. (2014)) Refugee (Maninis and Pont-Tuset (2010))
public datasets, and the extremely challenging AIIMS community camp (private)
dataset. As mentioned before, the AIIMS community camp dataset is extremely
challenging since this contains images taken in poor lightning conditions using
low-cost hand-held ophthalmoscopes. The red circles represent the ground truth,
and the blue ones represent the predicted optic cup boundaries.

3.5 Quantitative Comparison with the State-of-the-Art across Datasets

This section compares the performance of the proposed method (asymmetric
‘multi-encoder-based U-Net’/Y-Net with an Inception block and a context block)
with the state-of-the-art methods for two popular public datasets. Table 2 shows a
comparison of all performance parameters (Dice coefficient, cup overlap percentage
and the sensitivity) for the Drishti-GS dataset (Sivaswamy et al. (2014)) with six
state-of-art optic cup segmentation methods. The proposed method scores 1.0%
over the closest (Wang et al. (2019)) method, has a very high cup overlap percent-
age, at an acceptable high sensitivity. Our sensitivity values are less than that of
(Fu et al. (2018)), indicating a higher relative number of false negatives. However,
the much larger Dice coefficient indicates a better overall relation between the
sensitivity and specificity.

Table 3 shows a similar comparison of the proposed method with five state-of-
the-art methods, for the Refugee dataset (Maninis and Pont-Tuset (2010)). In this
case as well, our approach clearly outperforms the state-of-art methods in terms
of the Dice coefficient and overlap, with values 87.77% and 78.60%, respectively.
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(a) Four Representative Examples from the Drishti-GS Public Dataset

(b) Four Representative Examples of from the Refugee Public Dataset

(c) Four Representative Examples from the AIIMS Community Camp Private Dataset

(d) Four Representative Miscellaneous Challenging Examples

Fig. 5: Some representative optic cup segmentation results with different datasets: (a)

Drishti-GS (Sivaswamy et al. (2014)), (b) Refugee (Maninis and Pont-Tuset (2010)), (c)

the challenging AIIMS community camp dataset, and (d) other miscellaneous challenging

examples across different datasets. The AIIMS community camp (private) dataset has

images taken in poor lighting conditions, using low-cost hand-held ophthalmoscopes. The

red and blue circles represent the ground-truth and predicted cup margins respectively.

Sec. 3.4 presents a visual description of representative results, while Sec. 3.5 presents

quantitative results of cup segmentation across datasets, compared with the state-of-the-

art. Sec. 3.6 compares quantitative results with different architectures keeping the dataset

the same. Sec. 3.7 presents quantitative results of the proposed method (asymmetric ‘multi-

encoder U-Net’/Y-Net with an Inception block and a context block in the bottleneck layer)

for different datasets.
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Table 2: A comparison of the proposed approach with the state-of-the-art, keeping the

dataset the same: representative results for the Drishti-GS dataset (Sivaswamy et al.

(2014)). The proposed approach (asymmetric ‘multi-encoder U-Net’/“Y-Net”, with In-

ception and context blocks in the bottleneck layer) scores the highest in terms of the Dice

coefficient, has an very high cup overlap percentage, at an acceptable high sensitivity.

Sec. 3.5 has the details. Table 3 has the corresponding details for the Refugee (Maninis

and Pont-Tuset (2010)) dataset.

S.No Detection method Dice coeffi-
cient (%)

Cup
overlap
(%)

Sensitivity
(%)

1 (Al-Bander et al. (2018)) 82.82 71.13 -

2 (Fu et al. (2018)) 88.60 85.88 97.38

3 GL-Net (Jiang et al. (2019)) 90.50 - -

4 (Wang et al. (2019) 90.1 - -

5 (Yu et al. (2019)) 88.77 80.42 -

6 GlaucoNet (Panda et al. (2021)) 89.99 82.29 -

7 Proposed Approach (Y-Net) 91.11 83.38 86.29

Table 3: A comparison of the proposed approach with the state-of-the-art, keeping the

dataset the same: representative results for the Refugee dataset (Maninis and Pont-Tuset

(2010)). Just as it was for the Drishti-GS dataset (Sivaswamy et al. (2014)) in Table 2, the

proposed approach (asymmetric multi-encoder U-Net/“Y-Net”, with Inception and context

blocks in the bottleneck layer) scores the highest in terms of the Dice coefficient, has a

very high cup overlap percentage, at a very high sensitivity. Sec. 3.5 has the details. Here,

‘GAN’ refers to a representative conditional GAN with 4 convolutional layers and an 8-level

encoder-decoder setup.

S.No Detection method Dice coeffi-
cient (%)

Cup
overlap
(%)

Sensitivity
(%)

1 (Liu et al. (2019b)) - 80 -

2 GAN - 74.49 -

3 SegNet (Badrinarayanan et al.
(2017))

- 79.06 -

4 (Wang et al. (2019)) 87.5 - -

5 (Fu et al. (2018)) 86.48 84.02 -

6 Proposed Approach (Y-Net) 87.77 78.60 97.69
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Most state-of-the-art methods choose these two datasets for their experimen-
tation: this explains our choice of the two datasets for a comparative analysis,
above. In the corresponding tables (Table 2 and Table 3), we have quoted statis-
tical figures from these contemporary systems based on what the authors state in
their papers. Contemporary work has not experimented with other datasets such
as the DRIVE and DRIONS datasets (Maninis and Pont-Tuset (2010)).

3.6 A Comparison of Different Architectures for the same Dataset

In this section, we show results of a comparison of the comparative performance
of different optic cup segmentation architectures, on the same dataset. Table 4
shows a comparison of the performance of optic cup segmentation with architec-
tures, starting from a sample representative conditional GAN (with 4 convolu-
tional layers, and an 8-level encoder-decoder setup). The next 5 rows (rows 2-6)

Table 4: Representative validation results with different architectures: results for the

Drishti-GS dataset Sivaswamy et al. (2014). As shown in the table, the proposed method

‘Y-Net Res34-EffB0 IC’ (asymmetric ‘multi-encoder U-Net’/Y-Net with an Inception block

and a context block at the bottleneck layer: ResNet34 as the primary encoder, and Efficient-

NetB0 as the auxiliary encoder) has the largest cup coverage percentage, and the highest

Dice coefficient, at an acceptable level of sensitivity. It is interesting to note the good

performance of a similar architecture with a different primary encoder ‘Y-Net Res50-EffB0’

(which replaces the primary encoder with a deeper ResNet50, but is otherwise architec-

turally similar). This gives a larger sensitivity with a similar cup overlap percentage and Dice

coefficient. Further details are in Sec. 3.6. The cup overlap percentage is the Intersection-

over-Union Jaccard coefficient of Eq. 2. ‘GAN’ refers to a representative conditional GAN

with 4 conditional layers and an 8-level encoder-decoder setup. Rows 2-6 in the table rep-

resent different U-Net variants, ranging from a sample representative convolutional U-Net

in row 2, to variants with a particular pre-trained structure in the encoder, for the others.

S.No Detection method Dice coeffi-
cient (%)

Cup overlap
(%)

Sensitivity
(%)

1 GAN 86.34 76.87 88.86

2 U-Net (seven levels) 84.79 74.51 85.03

3 Res34-U-Net 89.94 82.11 90.62

4 Res50-U-Net 88.24 79.79 92.69

5 EfficientNetB0 U-Net 84.01 73.89 94.90

6 EfficientNetB4 U-Net 71.62 58.53 86.55

7 Y-Net (Res50-EffB0) with IC 89.39 81.32 90.87

8 Y-Net (Res34-EffB0) with IC 91.11 83.38 86.29
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represent U-Net variants. Row 2 represents a sample convolutional U-Net. Rows
3-6 represent U-Nets which have specific pre-trained networks on their encoder
side: ResNet34 (row 3), ResNet50 (row 4), EfficientNetB0 (row 5) and Efficient-
NetB4 (row 6). The first observation from the table is the relative improvement
in performance of the basic U-Net architecture, through the addition of a suitable
pre-trained deep network in the encoder part. The performance parameters in rows
3-6 represent a considerable improvement over those for a basic U-Net structure
(row 2). Among these variants, ResNet34-based U-Net alone achieves an average
Dice coefficient value of 89.94% which has outperformed the ResNet50-based U-
Net architecture by 1.70%. This shows that increasing the depth of a network
component does not necessarily lead to better performance (owing to the larger
number of hyper-parameters for a relatively small dataset).

The proposed structure (the last row) achieves the best optic cup segmenta-
tion, as borne by the highest values of the Dice coefficient and the cup overlap
percentage, at an acceptably high sensitivity. The proposed basic structure is an
asymmetric ‘multi-encoder U-Net’/Y-Net with an Inception block and a context
block in the bottleneck layer. The particular architecture proposed in the paper
has a ResNet34-based primary encoder, and an EfficientNetB0-based auxiliary
encoder. Table 4 shows that the proposed Y-net improves the Dice coefficient by
5.32% over that of the conventional U-Net model. It is interesting to note the good
performance of a similar basic architecture (row 7), but the primary encoder with
a deeper structure (ResNet50). This also outperforms the U-Net variants in perfor-
mance on an average, by a fair margin. Interestingly, this gives a larger sensitivity
value, with similar values of the Dice coefficient and the cup overlap percentage.
The table shows that the EfficientNetB0 works better than EfficientNetB4. The
observation extends from using the two in a U-Net-based architecture, to the pro-
posed asymmetric ‘multi-encoder U-Net’/Y-Net. Performance improvement is not
guaranteed with the deeper (or larger) variants of EfficientNet, especially for tasks
with less data or fewer classes. Moreover, for larger EfficientNet variants, hyper-
parameters tuning is not easy. Further, the Res34-U-Net performs better than
EfficientNet on smaller datasets (especially those with lower resolution images),
owing to over-fitting challenges.

We have also compared the proposed asymmetric ‘multi-encoder U-Net’/“Y-
Net” architecture with a sample representative baseline U-Net model, with regard
to training and validation losses. Fig. 6 shows that the proposed model architecture
achieves a much lower train-validation loss (cross-entropy loss) over a large number
of epochs as compared to a representative U-Net model. Another take-home point
from the above figure is the following (as briefly mentioned before in Sec. 3.3):
neither the baseline U-Net, nor the proposed Y-Net model have over-fitting issues.

It is also interesting to see a confusion matrix comparison between a sample
baseline U-Net model, and the proposed Y-Net architecture. Fig. 7 shows this
comparison for a representative image of the Drishti-GS dataset (Sivaswamy et al.
(2014)). For this representative case, the number of true positives is quite com-
parable in both cases (both correctly classify optic cup regions quite well). The
proposed Y-Net classifies non-optic cup regions considerably better than the U-
Net. Further, the U-Net misclassifies a considerably larger number of optic cup
pixels as background pixels as compared to the proposed Y-Net. This indicates a
higher sensitivity of the proposed Y-Net for instance, as borne out by statistics
of a complete dataset. Table 4 in Sec. 3.6 shows the proposed Y-Net architecture
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Fig. 6: The proposed Y-Net architecture achieves a much lower train-validation loss over

a large number of epochs, as compared to a sample representative baseline U-Net model.

Further, neither the sample baseline U-Net model, nor the proposed Y-Net model have

over-fitting issues. Sec. 3.6 has the details.

(a) (b)

Fig. 7: A confusion matrix comparison between (a) a sample baseline U-Net model

and (b) the proposed Y-Net architecture, for a representative image of the Drishti-GS

dataset (Sivaswamy et al. (2014)). The rows represent the output of the architecture,

while the columns represent the ground truth. The total number of true positives in both

cases is quite comparable. The proposed Y-Net behaves considerably better for true nega-

tives (non-optic cup regions). The proposed Y-Net also significantly reduces the number of

false negatives (optic cup region identified as the background), as compared to a U-Net.

This indicates a higher sensitivity of the Y-Net over a U-Net, for instance. Table 4 has the

overall statistics (Dice coefficient, cup overlap and sensitivity) for a complete representative

dataset: Drishti-GS (Sivaswamy et al. (2014)). The proposed Y-Net architecture outscores

competing architectures on all these counts. Sec. 3.6 has the relevant discussion.

outperforming competing architectures across a set of suitable parameters: the
Dice coefficient, cup overlap, and sensitivity.
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3.7 Performance of the Proposed Architecture over Different Datasets

Table 5: The proposed approach (asymmetric ‘multi-encoder U-Net’/“Y-Net”, with In-

ception and context blocks in the bottleneck layer) scores very high across performance

measures for four (public) datasets i.e., Drishti-GS (Sivaswamy et al. (2014)), Refugee,

DRIVE, DRIONS (Maninis and Pont-Tuset (2010)) and the challenging AIIMS commu-

nity camp (private) dataset. We have taken a 50:50 train-test split for the Drishti-GS and

Refugee datasets, and an 80:20 split for the others. Sec. 3.7 has the details. Sec. 3.1 has

details about the retinal image datasets, including the choice of the train-test split ratios.

S.No Dataset No. of Train-
Validate-Test
Images

Dice coeffi-
cient (%)

Cup
overlap
(%)

Sensitivity
(%)

1 Drishti-GS 40-10-51 91.11 83.38 86.29

2 Refugee 400-400-400 86.34 76.87 88.87

3 DRIVE 30-5-5 83.90 72.64 81.71

4 DRIONS 88-11-11 84.91 74.21 85.86

5 AIIMS (private) 229-49-49 86.66 77.14 89.08

Table 5 shows the results of the proposed method on four (public) datasets
Drishti-GS (Sivaswamy et al. (2014)), Refugee, DRIVE, DRIONS (Maninis and
Pont-Tuset (2010)). Sec. 3.1 has details about the retinal image datasets, including
the choice of the train-test split ratios. As can be seen from the table, the proposed
architecture performs admirably across datasets. Even on the challenging AIIMS
community camp (private) dataset, the proposed method reports an average Dice
coefficient of 86.66, average cup overlap of 77.14% and a sensitivity of 89.08%. The
AIIMS community camp dataset is full of blurred and noisy retinal images taken
in poor illumination conditions, with low-cost hand-held ophthalmoscopes.

4 Declarations

Conflict of interest The authors declare no competing interests.

5 Conclusion

We propose a novel architecture for optic cup segmentation. Our novel asym-
metric ‘multi-encoder U-Net’/Y-Net has pre-trained ResNet34 and EfficientNetB0
primary and auxiliary encoders. The Inception and context blocks in the bottle-
neck layer maintain multi-scale details, and spatial consistency across the optic
cup feature map. The asymmetry in the auxiliary encoder (no skip connections
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to the decoder side) avoids the complexity of feature map concatenation at dif-
ferent levels. We have validated the performance of the proposed network on four
public datasets, and the challenging AIIMS community camp (private) dataset.
We achieve an average Dice coefficient of 91.11% and 87.77% on the Drishti-
GS (Sivaswamy et al. (2014)) and Refugee (Maninis and Pont-Tuset (2010)) public
datasets, which outperforms state-of-art methods.
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