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Abstract—Early and accurate identification of parkinsonian 

syndromes (PS) involving presynaptic degeneration from non-

degenerative variants such as Scans Without Evidence of 

Dopaminergic Deficit (SWEDD) and tremor disorders, is 

important for effective patient management as the course, 

therapy and prognosis differ substantially between the two 

groups. In this study, we use Single Photon Emission Computed 

Tomography (SPECT) images from healthy normal, early PD 

and SWEDD subjects, as obtained from the Parkinson's 

Progression Markers Initiative (PPMI) database, and process 

them to compute shape- and surface fitting-based features for the 

three groups. We use these features to develop and compare 

various classification models that can discriminate between scans 

showing dopaminergic deficit, as in PD, from scans without the 

deficit, as in healthy normal or SWEDD. Along with it, we also 

compare these features with Striatal Binding Ratio (SBR)-based 

features, which are well-established and clinically used, by 

computing a feature importance score using Random forests 

technique. We observe that the Support Vector Machine (SVM) 

classifier gave the best performance with an accuracy of 97.29%. 

These features also showed higher importance than the SBR-

based features. We infer from the study that shape analysis and 

surface fitting are useful and promising methods for extracting 

discriminatory features that can be used to develop diagnostic 

models that might have the potential to help clinicians in the 

diagnostic process. 

 
Index Terms—Computer-aided early detection, Parkinson's 

Disease (PD), Scans Without Evidence of Dopaminergic Deficit 

(SWEDD), Pattern classification, Quantification and estimation, 

Shape analysis, Surface fitting 

I. INTRODUCTION 

ARKINSONIAN SYNDROMES (PS) is a group of movement 

disorders that is clinically characterized by symptoms of 

resting tremor, rigidity and bradykinesia [1]. The clinical 

diagnosis of PD based on clinical signs and a good response to 

levodopa, can be straightforward. However, in the early stages 
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of the disease, when the symptoms are mild, atypical or 

ambiguous with unconvincing responses to levodopa, the 

diagnosis can be difficult and inconclusive [1, 2]. The 

Parkinson's Progression Markers Initiative (PPMI) [3] which 

is a landmark large-scale study to identify PD progression 

biomarkers points out that early diagnosis of de novo PD 

subjects, like those being recruited for the study, is difficult 

because the characteristic signs and symptoms of the disease 

have not yet fully emerged (Study Protocol of the PPMI; 

http://www.ppmi-info.org/study-design/research-documents-

and-sops/). Few tremor disorders, such as Essential Tremor 

(ET) that do not depict any dopaminergic deficit, but share 

several clinical features as in PS, can also lead to difficulties 

in the diagnostic process [4]. 

Early and accurate diagnosis of PS involving presynaptic 

degeneration is of prime importance for effective disease 

management and for allowing neuroprotective strategies to be 

administered earlier when they become available [2]. Accurate 

identification is crucial for effective patient management 

because the disease course, prognosis and therapy differ 

substantially from the non-degenerative variants or other 

tremor disorders [4]. 

SPECT imaging using 
123

I-Ioflupane (DaTSCAN or 

[123I]FP-CIT) is presently among the most sensitive imaging 

techniques, even in the early stages of the disease [1, 2, 5]. 

Dopaminergic imaging discriminates patients with 

neurodegenerative PS from healthy normal, non-degenerative 

PS and tremor disorders such as ET by identifying presynaptic 

dopaminergic deficits in the caudate and putamen with high 

sensitivity and specificity [2]. Based on the pattern of uptake 

of the radiotracer, SPECT images can be normal (that shows 

no dopaminergic deficit) or abnormal. Normal scans are 

characterized by intense and symmetric DAT binding in the 

caudate nucleus and putamen on both hemispheres that appear 

as two 'comma' shaped regions (Figs. 2(a) and 2(e)). Any 

asymmetry or distortion of this shape implies an abnormal 

finding (Fig. 2(i)) [1, 4]. A number of studies on early PD 

have observed that about 10–15% of subjects recruited in their 

studies by movement disorder experts with the diagnosis of 

PD, showed Scans Without Evidence of Dopaminergic Deficit 

or normal dopaminergic activity, which led to the coining of 

the term SWEDD [6-8]. Subsequent follow-up showed that 

they neither deteriorate nor respond to levodopa, and that their 

SPECT scans remain normal [8, 9]. It was inferred that they 
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were highly unlikely of having PD. The results from these 

studies clearly point out that dopaminergic imaging is highly 

useful and that an abnormal imaging, at least in cases of 

diagnostic uncertainty, is strongly supportive of a diagnosis of 

neurodegenerative PS. 

In clinical practice, SPECT images are usually evaluated 

visually or through region-of-interest (ROI) analysis [10]. 

Researchers have also carried out voxel-based analysis where 

voxel clusters that show significant decrease in the uptake are 

identified [10-14]. Visual analysis, however, relies on the 

judgement of the observer that heavily depends on his 

expertise and knowledge [10]. ROI techniques involve 

outlining or positioning the ROI over the striatum (target 

region) and the occipital cortex (reference region), and a 

quantitative measure termed the background subtracted striatal 

uptake ratio is computed [10]. Despite odds, the quantitative 

method is the most acceptable one, since, according to Phase 

III trial, it provides an excellent intra and interobserver 

agreement. Visual assessment may lead to pitfalls. PPMI 

provides quantified striatal values, called the Striatal Binding 

Ratio (SBR) values, via their database and they are computed 

by nuclear medicine experts of the PPMI (SPECT Manual of 

the PPMI; http://www.ppmi-info.org/study-design/research-

documents-and-sops/). These quantitative measures may be 

more helpful in cases when there is ambiguity in visual 

assessment [15]. On the other hand, voxel-based techniques 

are widely used for scientific purposes but are observed to be 

not practical for use in routine clinical practise [16]. 

An alternate approach is to carry out shape and intensity 

distribution (surface profile) analysis, and use pattern 

recognition techniques for differentiation. This method has the 

following advantages: 1) It does not require positioning of 

ROI, 2) It can be automated or semi-automated thus, avoiding 

or reducing inter-operator and intra-operator variability, 3) 

Shape metric is more strongly associated with the visual 

appearance of the striatal uptake than the striatal uptake ratio 

measurement [15]. To the best of our knowledge, there has 

been only one study [15] which carry out shape analysis to 

assess patients with PS. They observed that it is a viable 

alternative to conventional techniques for analysing SPECT 

images. They segmented regions corresponding to higher 

uptake areas of striatum and quantify the shape by fitting an 

ellipse to the region, followed by computing the aspect ratio of 

the fitted ellipse (they called it as north/south, east/west ratio 

or NSEW ratio in the paper). Although the shape could be 

quantified with many different parameters, they had limited to 

using only this one parameter. The other limitation of the 

study is that they had limited sample size of 52 subjects (27 

with neurodegenerative PS, and 25 had normal scans that 

include healthy normal and subjects with non-degenerative PS 

or movement disorders such as ET). 

Surface fitting is a useful approach that is widely used in 

biomedical applications [17-19]. Surface fitting using implicit 

polynomial functions of degree greater than two can 

efficiently represent surfaces that are more complicated than 

those represented by quadric surfaces (e.g., ellipsoid, 

paraboloid, etc.) [20]. As the intensity distribution in the 

uptake regions also vary during diseased condition, this 

approach can be useful in extracting discriminatory features 

from the distribution pattern. 

Realizing the potential of these techniques, we had 

previously carried out shape analysis [21] and surface fitting 

[22] to extract discriminatory features using a small dataset. In 

this work, we combine and extend them by using a larger 

dataset, compute more relevant shape-based features (such as 

features based on asymmetry of uptake), develop classification 

models, and compare these features with SBR-based features 

that are clinically used. Overall, the study can be summarised 

as follows. We use SPECT scan data of early PD, SWEDD 

and healthy normal subjects and process these images to 

segment the regions of high activity. This is followed by two 

kinds of analysis to extract the features 1) Shape analysis of 

these regions by computing various shape-based features 2) 

Fitting of a cubic surface based on the intensities in these 

segmented regions. We use these features to develop 

classification models to classify degenerative PS (early PD 

group in our study) from healthy normal/non-degenerative 

condition (Normal/SWEDD group) using machine learning 

techniques. Along with this, we also compare these features 

with the SBR-based features in a feature importance 

estimation framework using the Random Forests technique. 

II. MATERIALS AND METHODS 

A. Database and cohort details 

Data used in the preparation of this article were obtained 

from the PPMI database (www.ppmi-info.org/data). For up-to-

date information on the study, please visit www.ppmi-

info.org. PPMI is a landmark, large-scale, international and 

multi-centre study to identify PD progression biomarkers [3].  

We use SPECT imaging data corresponding to the subject's 

screening visit, from the database. The images were 

downloaded on 25
th

 June 2014. The numbers of subjects in the 

study are 208 healthy normal, 427 PD and 80 SWEDD. All the 

PD patients are in the early stage (Hoehn and Yahr (HY) stage 

1 or 2 with mean ± SD as 1.50 ± 0.50) and all the SWEDD 

subjects (these are the newly diagnosed PD patients based on 

clinical symptoms, but show normal dopaminergic imaging) 

show early stage (mean ± SD HY stage as 1.46 ± 0.53) PD 

symptoms. 

B. Image analysis and feature extraction 

1) Preprocessing by PPMI 

All SPECT scan data acquired at the PPMI sites undergo a 

pre-processing procedure before they are publically shared via 

the database. This pre-processing ensures that all scans were 

in the same anatomical alignment (spatially normalized). The 

process include reconstruction from raw projection data, 

attenuation correction, followed by applying a standard 

Gaussian 3D 6.0 mm filter, and then normalizing these images 

to standard Montreal Neurologic Institute (MNI) space [23]. 

We use these pre-processed scans for analysis and the analysis 

pipeline is as shown in Fig. 1.  
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Fig. 1. Processing pipeline 

2) Selection of slices for processing 

A SPECT scan consists of 91 transaxial slices (from bottom 

to top of the head). The radioligand [123I]FP-CIT specifically 

binds to the striatal DAT, and with dopaminergic 

neurodegeneration, DAT density decreases and therefore 

striatal [123I]FP-CIT uptake is reduced. Therefore, striatum is 

the region to look for to observe deterioration in DAT 

imaging. We observe that the slice with the highest striatal 

uptake is near to the 42
nd

 slice. We selected the slices around 

it, from 35
th

 to 48
th

, for each scan for further processing as 

they depict the dopaminergic activity of the subject. A further 

discussion on the basis of slice selection in given in Sec. III.D. 

3) Intensity normalization and Segmentation 

Each slice is normalized to the range [0, 1], and then a mean 

image is generated for a subject. This image is again 

normalized to [0, 1].  

In the next step, image segmentation is carried out to extract 

the high uptake regions, which correspond to the 

dopaminergic activity. This is done by converting it to a 

binary image based on a threshold. The threshold was 

carefully chosen for each image based on empirical 

experiments (by observing closely at the accurateness of the 

segmented regions) (Fig. 2). A further discussion on the 

threshold selection is given in Sec. III.D. Following this, we 

perform two kinds of analysis which are 1) Quantification of 

these regions through shape analysis, and 2) Surface fitting. 

They are described as below. 

4) Shape analysis using shape-based features 

During the course of most degenerative PS, dopamine 

transporters are first lost in the putamen and then in the 

caudate, giving a deficit that proceeds from the posterior to 

anterior striatum (Fig. 1(i)) [15]. Visually, it can be observed 

that the shape of the high activity region changes from 

'comma' to 'dot' shaped. Asymmetry of the uptake regions in 

the two hemispheres is also a usual observation [1].  

In this paper, we segment these uptake regions and quantify 

them using various shape-based features. They are area, major 

axis length, minor axis length, aspect ratio, eccentricity, 

equivalent diameter, orientation, roundness, area asymmetry 

index (AI), major axis length AI, minor axis length AI, aspect 

ratio AI, eccentricity AI, equivalent diameter AI, orientation 

AI, roundness AI. A description of these features is given in 

supplementary document (Table S.I). To compute these 

features, the left side region is kept as reference and the right 

side region is flipped from right to left.  

5) Surface fitting based on intensity distribution  

A polynomial surface is fit based on the intensity 

distribution in the segmented region. We choose polynomial 

model of order 3 (cubic model) for surface fitting as higher 

orders can lead to over-fitting. The cubic model is given by  

𝑓 𝑥, 𝑦 = 𝑝00 + 𝑝10𝑥 + 𝑝01𝑦 + 𝑝20𝑥2 + 𝑝11𝑥𝑦 + 𝑝02𝑦2

+ 𝑝30𝑥3 + 𝑝12𝑥𝑦2 + 𝑝21𝑥2𝑦 + 𝑝03𝑦3      (1) 

where 𝑝𝑖𝑗 ; 𝑖, 𝑗 ∈ {0,1,2,3} are the model coefficients which are 

estimated using linear least-squares method where it 

minimizes the summed square of residuals (or errors). Prior to 

the fitting process, the coordinates { 𝑥𝑖 , 𝑦𝑖 ; 𝑖 = 1,2, … , 𝑛} of 

the pixels in the segmented region is normalized by centering 

them to zero mean and scaling to unit standard deviation. This 

transformation won't change the fit theoretically, but it will 

make the results better conditioned on a computer with finite 

precision. This removes any scaling problems that may arise. 

The pixel size is approximately 2 x 2 mm. 

The goodness-of- fit of the final model is evaluated using 

Sum of squares due to Error (SE), 𝑅2, Adjusted R
2 (𝑅2

𝑎𝑑𝑗 ) 

and Root Mean Squared Error (RMSE) measures. 

6) Feature set 

The 16 features through shape analysis and 14 features (10 

model coefficients and 4 goodness-of-fit evaluation measures) 

via surface fitting form the feature set. Along with these, we 

compute 4 Striatal Binding Ratio (SBR)-based features using 

the SBR values of the four striatal regions (left and right 

caudate, and left and right putamen) which are available from 

the PPMI database. The SBR based features are caudate SBR, 

putamen SBR, caudate SBR asymmetry index (AI), putamen 

AI. We use these SBR-based features for comparison with the 

shape- and surface fitting-based features. More details are 

provided in the supplementary document (Table S.II). 

From our previous studies [21, 22, 24], we observe that 

shape-, surface fitting- and SBR-based features show good 

variations between early PD (who show dopaminergic deficit) 

and healthy normal or SWEDD (who do not show 

dopaminergic deficit). While comparing the healthy normal 

and SWEDD groups, the features do not show substantial 

variation [21, 22]. These observations are consistent with the 

dopaminergic imaging perspective for early PD, healthy 

normal and SWEDD groups [2].  

C. Statistical Analysis of Features 

The features are tested for statistical significance using 

Wilcoxon rank sum test. Statistically significant (p-

value<0.05) features are used for classification modeling to 

distinguish scans with deficit from the scans without deficit. 

Healthy normal and SWEDD groups show similar 

characteristics on dopaminergic imaging (p-value>0.05, Table 

I).We consider them as a single entity as Normal/SWEDD 

group for further analysis. 

D. Classification of degenerative PS (early PD) from non-

degenerative types (Normal/SWEDD) 

We carry out binary classification (early PD vs. 

Normal/SWEDD) using Support Vector Machine (SVM) [25], 
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Boosted Trees [26], Random Forests [27] and Naïve Bayes 

[28] techniques. We used LIBSVM library [29] for 

classification using SVM, statistics toolbox in MATLAB for 

classification using Naïve Bayes, Boosted Trees and Random 

Forests. The classifiers are evaluated based on 10-fold cross 

validation that is repeated 100 times. 

1) Feature importance estimation 

Along with classification, the Random forests [27] 

technique can also carry out feature importance estimation. In 

this technique, while choosing n out of n observations with 

replacement, it omits on average 37% of observations for each 

decision tree. These are 'out-of-bag' observations. Out-of-bag 

estimates of feature importance are computed by randomly 

permuting out-of-bag data across one feature at a time, and 

estimating the increase in the out-of-bag error due to this 

permutation. The larger the increase in error, higher the 

importance of the feature. 

III. RESULTS AND DISCUSSION 

Fig. 2 illustrates average SPECT image generated, image 

segmentation and surface fitting for a healthy normal, 

SWEDD and early PD subject. It is observed that the uptake 

regions in both normal and SWEDD groups are 'comma' 

shaped, whereas in PD (early stage) the region deteriorates to 

become 'circular' or 'dot' shaped. These shapes are consistent 

with the clinical perspective of the respective conditions. 

SWEDD subjects show normal dopaminergic imaging, 

whereas in PD, the change in shape is due to the deterioration 

or loss of striatal DATs.  

The fitted 3D surfaces for both the left and right side 

regions are similar for normal (Figs. 4(c & d)) and SWEDD 

(Figs. 4(g & h)) groups, indicating a symmetric behavior of 

intensity distributions in these regions. On the other hand, the 

surfaces for PD (Figs. 4(k & l)) show variation between the 

left and the right side, indicating an asymmetry in the intensity 

distributions. Another interesting observation is that the cubic 

surfaces for PD show more positive curvature, whereas for 

normal and SWEDD, it shows a saddle-shaped or surface with 

a negative curvature. This is because during the course of PD, 

DATs are first lost in the putamen (lower portion of the 

segmented regions or striatum), then in the caudate (upper 

portion of the segmented regions), or in other words, it 

proceeds from posterior to anterior striatum [15]. This loss of 

DATs in PD in the putamen (or posterior striatum) leads to the 

loss of negative curvature. Table I lists the values of shape-

based (1 to 16), surface fitting-based (17 to 30) and SBR-

based (31 to 34) features used in the study. 

A. Feature values, statistical analysis and justification for 

considering normal and SWEDD as a single group 

Clinically, it is established that SWEDD subjects show 

dopaminergic imaging characteristics similar to that of healthy 

normal. Table I which shows the values along with the results 

of the statistical testing of the features, are consistent with this 

perspective. Box plots of the computed features also indicate 

the same (included in the supplementary file). 

 

TABLE I 

SHAPE-, SURFACE FITTING- AND SBR-BASED FEATURE VALUES (MEAN ± SD), 
AND STATISTICAL TESTING FOR COMPARING HEALTHY NORMAL VS. SWEDD 

AND EARLY PD VS. NORMAL/SWEDD 

SNo. Features Normal  SWEDD Early PD  p1 p2 

1. Area 122.2 ± 18.9 123.9 ± 16.7 71.8 ± 17.6 0.43 ≈ 0 

2. Major Axis 

Length 

16.58 ± 1.47 16.65 ± 1.4 11.06 ± 1.59 0.64 ≈ 0 

3. Minor axis length 9.67 ± 0.78 9.75 ± 0.66 8.25 ± 1.1 0.52 ≈ 0 

4. Aspect Ratio 1.72 ± 0.13 1.71 ± 0.12 1.35 ± 0.15 0.54 ≈ 0 

5. Eccentricity 0.81 ± 0.03 0.81 ± 0.03 0.63 ± 0.1 0.55 ≈ 0 

6. Equivalent 

diameter 

12.43 ± 0.98 12.52 ± 0.86 9.41 ± 1.21 0.45 ≈ 0 

7. Orientation 49.46 ± 7.89 50.75 ± 7 29.66 ± 17.34 0.26 ≈ 0 

8. Roundness 0.88 ± 0.04 0.89 ± 0.04 1.03 ± 0.06 0.8 ≈ 0 

9. Area AI* 0.07 ± 0.06 0.09 ± 0.1 0.43 ± 0.28 0.75 ≈ 0 

10. Major Axis 

Length AI 

0.06 ± 0.05 0.07 ± 0.06 0.25 ± 0.17 0.5 ≈ 0 

11. Minor axis length 

AI 

0.05 ± 0.04 0.06 ± 0.05 0.2 ± 0.15 0.18 ≈ 0 

12. Aspect Ratio AI 0.08 ± 0.06 0.08 ± 0.06 0.13 ± 0.1 0.67 ≈ 0 

13. Eccentricity AI 0.04 ± 0.04 0.04 ± 0.04 0.23 ± 0.27 0.71 ≈ 0 

14. Equivalent 

diameter AI 

0.03 ± 0.03 0.04 ± 0.05 0.22 ± 0.15 0.75 ≈ 0 

15. Orientation AI 0.12 ± 0.12 0.12 ± 0.09 0.01 ± 0.85 0.89 ≈ 0 

16. Roundness AI 0.05 ± 0.04 0.06 ± 0.05 0.09 ± 0.08 0.97 ≈ 0 

17 𝑝00  0.93 ± 0.02 0.93 ± 0.02 0.92 ± 0.03 0.13 0.15 

18 𝑝10 -0.01 ± 0.02 -0.01 ± 0.02 0.01 ± 0.02 0.55 ≈ 0 

19 𝑝01  -0.09 ± 0.02 -0.09 ± 0.02 -0.03 ± 0.02 0.92 ≈ 0 

20 𝑝20  -0.11 ± 0.01 -0.11 ± 0.01 -0.07 ± 0.01 0.48 ≈ 0 

21 𝑝11 -0.11 ± 0.02 -0.11 ± 0.02 -0.03 ± 0.02 0.65 ≈ 0 

22 𝑝02  -0.11 ± 0.01 -0.11 ± 0.01 -0.07 ± 0.02 0.65 ≈ 0 

23 𝑝30  0.01 ± 0.01 0.01 ± 0.01 0 ± 0.01 0.2 ≈ 0 

24 𝑝21  0.03 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.49 ≈ 0 

25 𝑝12 0 ± 0.01 0 ± 0.01 -0.01 ± 0.01 0.97 ≈ 0 

26 𝑝03  0.03 ± 0.01 0.03 ± 0.01 0.01 ± 0.01 0.89 ≈ 0 

27 SE 0.05 ± 0.03 0.06 ± 0.04 0.01 ± 0.01 0.19 ≈ 0 

28 𝑅2 0.96 ± 0.02 0.96 ± 0.02 0.98 ± 0.01 0.26 ≈ 0 

29. 𝑅2
𝑎𝑑𝑗  0.96 ± 0.02 0.95 ± 0.03 0.98 ± 0.01 0.26 ≈ 0 

30. RMSE 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0 0.26 ≈ 0 

31. Caudate SBR 2.97 ± 0.62 2.85 ± 0.57 2.02 ± 0.54 0.26 ≈ 0 

32. Putamen SBR 2.13 ± 0.56 2.06 ± 0.48 0.84 ± 0.31 0.55 ≈ 0 

33. Caudate SBR AI 0.08 ± 0.06 0.08 ± 0.06 0.18 ± 0.12 0.66 ≈ 0 

34. Putamen SBR AI 0.11 ± 0.09 0.12 ± 0.1 0.37 ± 0.25 0.67 ≈ 0 

p1 and p2 represent the p-values of features for healthy normal vs. SWEDD 

comparison and for early PD vs. (healthy normal/SWEDD) comparison, 

respectively. All the features, except the model coefficient 𝑝00 , are highly 

statistically significant (p-value<0.01) in depicting the changes in PD as 

compared to normal or SWEDD. On the other hand, no feature is significant 

(p-value>0.05) while comparing normal and SWEDD groups. 

We observe the following from the table: 

a) Area, major axis length, minor axis length and equivalent 

diameter decreases in PD as compared to the non-

degenerative groups (healthy normal or SWEDD). This 

indicates that the size of uptake regions reduces in PD. 

b) Aspect ratio and eccentricity decreases in PD, becoming 

close to 1 and 0, respectively. Roundness increases, 

becoming close to 1 in PD. This indicates that the uptake 

region becomes more 'circular' or 'dot' shaped in PD. 

c) Orientation decreases in degenerative PS. Its value of 

49.46 ± 7.89 degrees for healthy normal or 50.75 ± 7 

degrees for SWEDD indicate normal uptake in both 

posterior and anterior striatum. However, during PD, its 

value decreases to 29.66 ± 17.34 degrees due to the loss of 

activity that proceeds from posterior to anterior striatum. 

This is consistent with the clinical perspective of PD.  
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Fig.2. Slice averaging, image segmentation and surface fitting for healthy normal (a, b, c, d), SWEDD (e, f, g, h), and early PD (i, j, k, l). The shape of the uptake 

region undergoes a change from a 'comma' shaped to more 'circular' or 'dot' shaped during PD as compared to normal or SWEDD. The fitted surfaces also show 

variation during PD as compared to the other groups. No substantial difference is observed between normal and SWEDD groups visually. The figures 2(c, d, g, h, 
k, l) show the fitted surfaces with positive (peaks) and negative (valleys) curvatures based on the intensity values. It is a 3D representation of the intensity values 

with x and y axis representing the image coordinates. The rectangle (or the cuboid in 3D) represents the bounding box of the segmented region. Cubic surfaces 

are fitted separately for the two segmented regions (left and right striatum). The left side is kept as the reference for the fitting process. Therefore, before carrying 
out the fitting process for the right side, the image is flipped right to left. This is carried out so that the coordinates for the left and right are in same scale. The top 

left corner of the image is (0,0) and the bottom right is (91,109). The pixel size is 2 mm × 2 mm.  

d) Coefficients corresponding to linear terms (𝑝10  and 𝑝01) 

and quadratic terms (𝑝11 ,  𝑝20  and 𝑝02) in the cubic model 

are higher, and coefficients corresponding to cubic terms 

(𝑝30 ,  𝑝21 ,  𝑝12  and 𝑝03 ) are lower in PD as compared to the 

other groups. This indicates that the surface corresponding 

to PD is close to quadratic in nature. The constant term 

(𝑝00 ) showed little or no difference between the three 

groups. This is because 𝑝00  essentially reflects the height 

of the curve from the ground (or base surface), and the 

height which is dependent on the overall intensity 

distribution is similar between the groups as it is 

normalized. 𝑝00  has no effect on the curvature of the 

surfaces. The goodness-of-fit measures showing higher 𝑅2 

or 𝑅2
𝑎𝑑𝑗 , and lower 𝑆𝐸 or 𝑅𝑀𝑆𝐸 implies that there is 

higher degree of fitting in early PD as compared to other 

groups.  

Table I also shows the results of statistical testing of these 

features, for healthy normal vs. SWEDD comparison and PD 

vs. Healthy Normal/SWEDD group comparison. None of the 

features showed statistical significance (p-value>0.05) while 

comparing healthy normal with SWEDD.  

The basic aim of the study is in discriminating degenerative 

PS from the non-degenerative scans through shape and surface 

fitting in SPECT imaging. As there is no substantial difference 
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between the healthy normal and SWEDD groups, as observed 

from the box plots and statistical analysis (Table I), we 

consider the two groups to form a single Normal/SWEDD 

group for classification modeling process. While comparing 

the early PD group and this combined Normal/SWEDD group, 

we observed that all features, except the model coefficient 𝑝00 , 

showed high statistical significance (p-value<0.05) indicating 

their usefulness in discriminating degenerative PS. 

B. Classification modeling 

Of all the features, 29 features (all features except the model 

coefficient 𝑝00) that are statistically significant are used for 

subsequent classification modeling. Table II shows the 

performance measures obtained for the various classifiers 

used. It is observed that all classifiers performed with a high 

accuracy. SVM classifier (using Radial Basis Function (RBF) 

kernel) gave the highest accuracy (slightly higher than other 

classifiers) and area under the ROC curve (AUC) of 97.29% 

and 99.26%, respectively. The parameters 𝐶 and 𝛾 for SVM 

were obtained using 10-fold cross validation (CV) as 1 and 

0.0625, respectively. 

In our previous work [24], we had showed that SVM 

classifier using SBR features produced an accuracy of 96.14% 

that was higher than the state-of-the-art studies. In this work, 

we observe that SVM classifier (or any other classifier used in 

the study) using shape- and surface fitting-based features gives 

higher accuracy than our previous work. A more detailed 

comparison is given in Sec III.E. 

In the boosted trees model, the minimum size of parent 

node and leaf node is specified as 10 and 5, respectively. The 

number of trees in the model is chosen as 70 based on the 

observation that at this point the 10-fold CV error was 

smallest and the error was almost same after this point. The 

number of trees in the Random forests model is chosen as 65 

based on lower 10-fold CV and out-of-bag errors. 
TABLE II 

PERFORMANCE MEASURES OBTAINED FOR THE CLASSIFIER USED. 

Performance 
measures 

SVM Boosted 
Trees 

Random 
Forests 

Naïve Bayes 

Accuracy  97.29 ± 0.11 96.76 ± 0.23 96.90 ± 0.17 96.88 ± 0.09 

Sensitivity  97.37 ± 0.10 97.09 ± 0.25 97.18 ± 0.23 96.43 ± 0.14 

Specificity  97.18 ± 0.22 96.29 ± 0.42 96.49 ± 0.32 96.47 ± 0.16 

AUC 99.26 ± 0.06 99.16 ± 0.12 99.08 ± 0.11 98.99 ± 0.07 

C. Estimation of importance of features 

Feature importance is carried out to observe the relative 

importance of the features, and to compare the shape-based 

and surface fitting-based features as computed in our study, 

with the standard SBR-based features (computed from SBR 

values that are calculated by experts at PPMI and obtained 

from the PPMI database). Fig. 3 shows the plot of feature 

importance scores for each feature. 

The number of trees in the Random forest model is chosen 

as 75 based on lower 10-fold CV error and out-of-bag error. 

Major axis length, model coefficient 𝑝11  and mean putamen 

SBR are observed to be features of higher importance. Our 

observation of mean putamen SBR being an important feature 

is consistent with previous studies [30, 31] which show that, 

during PD, greater reduction occurs in the putamen than in the 

caudate. Major axis length, which is a feature that reflects the 

spread of the dopaminergic activity, decreases in PD. This is 

consistent with the observation by Staff et al.[15] that, as the 

deterioration progresses, deficit in activity proceeds from 

posterior to anterior striatum which results in a decrease of the 

region of activity. Model coefficient 𝑝11  reflects the curvature 

of the surfaces. Higher the absolute value of this coefficient, 

more negative the surface curvature. Its value is close to 0 

indicating less negative curvature or more positive curvature 

in PD. The loss of curvature in PD is due to the loss of activity 

in the posterior striatum (or the putamen) which is consistent 

with the Staff et al.[15] study. 

 
Fig. 3. Plot of feature importance scores for all features: shape-based (features 

from 1 to 16), surface fitting-based (features from 17 to 30) and SBR-based 
features (features from 31 to 34). x-axis represents features indicated by their 

corresponding numbers as given in Table I. Major axis length (feature number 

2), model coefficient 𝑝11 (feature number 21) and mean putamen SBR (feature 
number 32) are observed to be the most important features. This observation 

is consistent with the clinical perspective of the deterioration process in 
degenerative PS such as in PD. The bold dashed line in the figure corresponds 

to the score of the mean caudate SBR which has the second highest feature 

importance score among the SBR-based features. 10 shape-based and 10 
surface fitting-based features show higher scores than the mean caudate SBR. 

Random forests, which was used for studying variable importance, also 

computes the predictive power using the out-of-bag observations. They are as 
follows: Accuracy=97.07%, Sensitivity = 97.32% and Specificity = 96.69%. 

Mean caudate SBR (feature 31 in Fig. 3) has the second 

highest score among the SBR-based features. To compare 

shape- and surface fitting-based features with SBR-based 

features, we see the relative importance of both with the mean 

caudate SBR. Nine among the 16 shape-based features and 

nine among the 14 surface fitting-based features have higher 

scores than the mean caudate SBR. It indicates that the shape- 

and surface fitting-based features show higher discriminatory 

power and has the potential in distinguishing scans with deficit 

from scans without deficit. 

Along with estimating the feature importance, Random 

forests technique also provides an average out-of-bag error 

which is an unbiased estimator of the true ensemble error and 

an estimate of the predictive power. We observe that using 

SBR-based features along with shape-based and surface 

fitting-based features did not substantially improve the 

classification performances (Accuracy difference = 0.17%). 

This indicates that the shape- and surface fitting-based 

features contained enough information essential for 

classification, and hence, these features have the potential to 

be useful in a clinical setting for the diagnostics of PD.  

In the limitations, the present approach does not involve 
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another main clinical scenario, the differentiation of other 

neurodegenerative parkinsonisms (differential diagnosis), or 

address issues of vascular change affecting dopamine 

transporters. 

D. Note on slice selection and threshold selection 

Our slice selection is based on the Society of Nuclear 

Medicine (SNM) recommendations which mention that at 

least 3 consecutive slices in the target region are to be used—

those with the highest activity [16], and within the same 

center, the number of slices chosen should be kept consistent. 

For illustration, we computed the uptake areas for slices from 

35 to 48 (rest of the slices did not show significant striatal 

activity) as shown in Fig. 4. For our study, we selected slices 

numbered from 35 to 48 and taken their average for further 

analysis. This number was selected based on careful empirical 

experiments making it very less machine dependent.  

 
Fig. 4. Plot of the areas (in pixels) of the segmented striatal regions from 

slices 33 to 50 (from the total 91 slices).  

Our method is not fully automatic, like the classifiers, with 

regard to the threshold selection. Although a threshold is 

applied to the images for segmentation, it is not totally 

subjective as well. This is due to the normalization process 

that is carried out before segmentation. The segmented regions 

are carefully assessed by expert investigator. The means ±SD 

values of the thresholds used for healthy normal, SWEDD and 

early PD are 0.63±0.04, 0.63±0.03 and 0.69±0.05, 

respectively. The plot of histograms of thresholds used for the 

three groups are shown in Figs. 5 (a, b & c), respectively. It is 

important to note that the variability of the thresholds used for 

each group is very low as observed from the very low standard 

deviations, 0.04 (6.34 %), 0.03 (4.76%) and 0.05 (7.24%) for 

healthy, SWEDD and early PD groups, respectively.  

The thresholds used for the PD case is higher due to the 

following. During PD, dopamine transporters (DATs) are first 

lost in the putamen (lower portion of the segmented regions or 

striatum) which correspond to the lower range of intensities in 

the high activity striatal region, then in the caudate (upper 

portion of the segmented regions or the striatum), or in other 

words, it proceeds from the posterior to anterior striatum. Due 

to this, there is loss of the negative curvature regions which 

correspond to the posterior striatum.  

A similar study by Staff et al.[15], where they carry out 

segmentation of the striatal regions using a threshold and then 

quantify its shape using a shape feature. They analyzed the 

reproducibility in terms of inter- and intra-observer variability, 

and observed a good inter- and intra-observer reproducibility. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 3. Histogram of the thresholds used for segmenting the striatal region in 

(a) healthy normal, (b) SWEDD and (c) Early PD subjects. The thresholds 
used for healthy normal, SWEDD and early PD were 0.63±0.04, 0.63±0.03 

and 0.69±0.05, respectively. 
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E. Comparison with related works 

We discuss the difference in performance and approaches 

between the method used in this study and related works with 

the help of a table as shown below (Table III). 
TABLE III 

PERFORMANCE COMPARISON WITH RELATED WORKS 

Study Sample 

size 

Method Accuracy/

AUC 

Segovia et 
al. [11] 

95 PS, 
94 N 

Extracted voxels from the striatum and 
performed data decomposition using partial 

least squares, followed by classification 

using SVM. 

94.7% 

Illan et al. 

[12] 

100 PS, 

108 N 

Used voxels of the complete brain as 

features and then performed classification 

using a SVM with linear kernel. 

96.81% 

Rojas et al. 
[13] 

41 PS, 
39 N 

Obtained best performance with the 
Principal Component Analysis derived 

features from the high intensity voxels of 

the striatum and classification using SVM 

95% 

Towey et 

al. [14] 

79  PS, 

37 

control 

Used Singular Value Decomposition (SVD) 

to extract significant voxels, followed by 

classification using Naïve Bayes  

94.8% 

Prashanth 
et al. [24] 

369 PD, 
179 N 

Used striatal binding ratio values as 
features, followed by classification using 

SVM  

96.14% 

Staff et al. 
[15] 

27 PS, 
25 

control 

Segmented high uptake areas of striatum, 
and quantified its shape via the aspect ratio 

of the ellipse that was fitted to the region 

94% 

Oliveira et 

al. [32] 

445 PD, 

209 N 

Used voxels from the striatum as features 

and then performed classification using a 
SVM classifier  

97.86% 

Martinez-

Murcia et 

al. [33]* 

158 PD, 

111 N 

Computed Haralick texture features via a 

gray level co-occurrence matrix from the 
brain voxels and used SVM classifier with 

linear kernel. 

97.4% 

* study used three different databases and obtained different accuracies. The 

table shows the highest accuracy. 

Our results are highly competitive when compared to 

related works. It is to be noted that different databases have 

been used in different studies which may bias the comparison. 

The main take away from the present study is that the analysis 

gave high performance using a large database, the PPMI, 

which is one of the large-scale and standard databases publicly 

available for early PD. It is encouraging to observe high 

performance from other studies as well which implies the 

potential of quantification followed by machine learning in 

SPECT imaging for the diagnosis of PD. However, we would 

like to point out that the related works used leave-one-out 

cross validation (LOOCV), which is well known to suffer 

from high variances, for estimating the performance of the 

classifiers. In LOOCV where one sample is used for testing 

and the rest for training, tends to select models with higher 

variances, which may lead to overfitting. In our approach, we 

carry out repeated 10-fold cross validation, as recommended 

by [34], which has lower variance, and therefore tend to give 

more stable models. Also, most of the related works had a 

limitation of smaller database in their study. 

F. Future of DaTSCAN on SWEDD 

 Distinguishing SWEDD from PD is important as most of 

the SWEDD subjects receive unnecessary and inappropriate 

treatment, with huge side-effects, for many years. DaTSCAN 

has shown huge potential in detecting SWEDD. In a number 

of clinical trial studies in early PD, using SPECT imaging as 

the secondary outcome measure, has observed that about 10-

15% of subjects with the clinical diagnosis of PD had 

dopaminergic scans without evidence of dopaminergic deficit 

[2, 8, 35]. Substantial evidence in terms of long-term follow-

up of these subjects indicated poor response to levodopa and 

lack of progression on sequential dopaminergic imaging [6, 9]. 

These suggest that most of these patients do not have 

involvement in the nigrostriatal pathway and do not have PD, 

indicating that this is an issue of misdiagnosis rather than 

inadequate sensitivity of the scan.  

A study done by Schwingenschuh et al. [7] observed that 

adult-onset dystonia is a possible underlying diagnosis for 

SWEDD, rather than PD. Catafau et al. [4] performed a study 

to investigate the clinical impact of 
123

I-Ioflupane SPECT in 

patients with clinically uncertain PS. And they observed that 

after imaging, diagnosis was changed in 52% (61 out of a total 

118) of patients. All patients with a final diagnosis of 

presynaptic PS had an abnormal image, whereas 94% of 

patients with nonpresynaptic PS had a normal scan. Imaging 

increased confidence in diagnosis, leading to changes in 

clinical management in 72% of patients. They also examined 

the relationship between final diagnosis and imaging result, 
123

I-Ioflupane SPECT imaging had an important impact on the 

final diagnosis, by the finding that 100% of patients with a 

final diagnosis of presynaptic PS had an abnormal image 

result, whereas 94% of patients with a final diagnosis of 

nonpresynaptic PS had a normal image result. 
123

I-Ioflupane 

SPECT is therefore a recommended adjunct to the diagnosis of 

patients with uncertain parkinsonism (where there is 

diagnostic uncertainty), especially SWEDD. 

IV. CONCLUSION 

Accurate differential diagnosis of PD from the non-

degenerative PS, tremor disorders or SWEDD cases in their 

early stages is a challenging and important problem. As these 

conditions share many common symptoms, it is a source for 

misdiagnosis. Accurate identification of degenerative PS from 

other non-degenerative variants is crucial for effective patient 

management. In our work, we process SPECT images of 

healthy normal, early PD and SWEDD, and carry out shape 

analysis and surface fitting to compute discriminatory 

features. We observe that the computed shape-based and 

surface fitting-based features show significant variation 

between scans showing dopaminergic deficit from scans 

which did not. The classification models developed using 

these features performed with a high accuracy, sensitivity and 

specificity. It is inferred from the study that shape analysis and 

surface fitting are useful approaches to develop classification 

models that can aid a clinician in quantitatively observing the 

deterioration and thereby, aiding in the diagnostic process. 
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