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Abstract— We present the delta-gesture biometrics quan-
tification assessment (DGBQA) framework which estimates
the biometric characteristics of hand gestures. The proposed
framework is aimed at learning generic motion-representations
of gestures instead of subject-specific details from a large
number of identities. It also enables the biometric scores to
be estimated for a set of gestures at a time instead of having to
estimate these one at a time. In the first step, it formulates
a feature space which is identity and gesture aware, and
in the second step, it proceeds to compute biometric scores
using inter-subject and intra-subject distance measures in the
feature space. However, due to the inclusion of identity-aware
objective, the identity details tend to be shared across gestures.
We refer to this as identity sharing and this can lead to the
score for different gestures being dependent on each other. To
address this issue, we introduce an identity-level cross-gesture
disentanglement loss (LICGD) which encourages the different
gestures belonging to the same identity to be orthogonal in
the feature space. We demonstrate the efficacy of the proposed
biometric quantification framework and the disentanglement
loss function through extensive experiments on four datasets
and using standard as well as proposed novel evaluation
metrics. Our analysis indicates that gestures involving multiple
coarse movements are better for biometrics.

I. INTRODUCTION

Video hand gestures are an emerging biometric modal-
ity [13], [20] which has application in personalized human-
computer interaction [8], [6]. Improving authentication per-
formance has been a key objective in this domain. To
achieve this, research thrust has been on: (i) developing
domain-specific architectures for extracting richer biometric-
features [14], [15], [16], and (ii) authentication using differ-
ent gesture acquisition modalities such as depth [20] and
egocentric RGB videos [18]. Although performance gains
have been achieved, there is no standard protocol that is
followed while building the gesture sets due to which the
datasets mostly consist of disparate gestures [7], [20]. This
leads us to the question: which hand gestures are best suited
for biometric authentication? It has been found that some
gestures tend to accentuate identity details and are character-
ized by lower error rates during authentication [7]. Gestures
involving intricate but coarse motion patterns have been
found to perform well in biometric applications [13], [20].
However, there are no comprehensive qualitative guidelines
or quantitative measures for identifying gestures that are
suitable for biometrics. In this work, we aim to address

the need for a quantitative ‘biometric goodness’ measure for
hand gestures. Such a quantitative measure will simplify the
design decisions, such as which gestures are to be used for
personalized embedded devices. In addition, these measures
would help in understanding which features and motion
patterns are important for biometrics.

In order to quantify biometric goodness, one approach
would be to perform biometric verification experiments for
each gesture across different models, and use the average
error rate as a quantitative measure. However, this approach
has several limitations. This process is time-consuming and
has to be followed for each gesture at a time. For this
evaluation to be generic, experiments should be conducted
over a large number of identities. In spite of this, the measure
may still be estimated from a feature space conditioned
on the identities rather than only on the gesture motion
descriptions. Thus, we need a measure or method that is
based on gesture and identity-aware representations.

There have been attempts in the literature to quantify
biometrics in other domains. In [10], a biometric score
for online signature templates is presented on the basis of
distinctiveness, repeatability, and complexity of the signature
templates. This method relies on explicit matching and a
large number of identities. In [17], biometric capacity of
face representations were estimated based on inter-subject
matching thresholds and dimensionality of feature embed-
dings. In [2], the biometric capacity estimation of faces
was posed as a sphere-packing problem. This is based on
the assumption that all the samples cover the representation
space uniformly. However, regions with higher and lower
clustering are generally evident. In [21], a personalization
score for gestures is presented on the basis of intra-subject
distances. However this formulation does not consider intra-
gesture distances across subjects. From [4], [10], we know
that biometric goodness of an individual can be characterized
in terms of uniqueness and variability. We adapt these to the
hand gesture setting by defining uniqueness to refer to the
separation between a gesture performed by different subjects,
and variability as the variation across the gesture instances
performed by a subject. We will quantify these properties
and fuse them to arrive at a quantitative biometric score for
each gesture.

We propose the delta-gesture biometric quantification as-
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sessment (DGBQA) framework for quantification of biomet-
ric characteristics. This framework follows a two-step pro-
cedure where in the first step, a feature space for biometric
scoring is formulated. From this feature-space, uniqueness
and variability parameters are estimated using distance be-
tween the feature embeddings. Finally, using these parame-
ters, we propose the DGBQA score which estimates the bio-
metric characteristics. The term ‘delta’ is used to refer to the
fact that the proposed scoring formulation involves pairwise
differences between the embeddings. Please note that we will
use the terms biometric goodness, biometric characteristics,
and biometric score interchangeably. Similarly, the terms
subject and identity will be used interchangeably.

From the above discussion, we identify three desirable
characteristics for the feature space as: (i) gesture-aware: the
feature space should capture generic representation of the
gestures, (ii) identity-aware: the feature space must preserve
identity details so as to facilitate robust biometric scoring,
and (iii) the feature space should allow biometric scoring of
multiple gestures at a time. In order to formulate the feature
space, the DGBQA framework performs joint learning of
the gesture classes and subject identities. Specifically, we
formulate a multi-task optimization with the objective of
hand gesture and identity recognition. However, it is possible
that the identity details are shared across gestures. We refer
to this as identity sharing and it can be attributed to the
identity recognition objective which allows the model to
learn identities irrespective of the gesture. A consequence
of identity sharing would be that the biometric score for
different gestures will be dependent on each other. To address
this, we introduce an identity-level cross-gesture disentangle-
ment loss (LICGD) as part of the optimization objective. The
LICGD term encourages the different gesture representations
belonging to a given identity to be disentangled or separated
in the feature space. Once the DGBQA scores are computed,
they must evaluated. We propose several performance metrics
to evaluate effectiveness of the DGBQA scores. These per-
formance metrics can be applied to other biometric scoring
frameworks as well.

In summary, the key contributions of this work are:
• We propose the DGBQA framework for estimation

of biometric characteristics of hand gestures. This is
achieved by formulating a gesture and identity-aware
feature space while allowing estimation of biometric
characteristics of multiple gestures at a time. To the best
of our knowledge, this is the first work which quantifies
biometric characteristics for hand gestures.

• We uncover identity sharing which induces biometric
characteristics of one gesture into another gesture.

• To address identity sharing we propose the identity-level
cross-gesture disentanglement loss (LICGD) which en-
courages representations of different gestures belonging
to a given identity to be separated in the gesture space.

• We propose the DGBQA score for estimating the bio-
metric characteristics of hand gestures by capturing both
uniqueness and variability parameters.

• We propose several performance metrics for evaluat-

ing the proposed DGBQA framework. We demonstrate
efficacy of the proposed framework through extensive
experiments on four benchmark datasets.

II. PROPOSED DGBQA FRAMEWORK

The proposed DGBQA framework for quantification of
biometric characteristics of hand gestures is a two-step
procedure. In the first step, an appropriate feature space is
constructed, while in the second step, biometric scores are
computed. The proposed overall framework is illustrated in
Fig. 1. We next describe the proposed framework and the
evaluation metrics.

A. Gesture and Identity-Aware Representation

Gesture-Aware Representation: The feature space must
capture natural representations such as motion patterns of
gestures. This will result in similar gestures being placed
closer in the feature space resulting in gesture clusters. Since
hand gestures also contain identity details [13], [7], we
expect the formation of identity clusters within the gesture
clusters. Hand gesture recognition (HGR) task requires the
ability to learn motion representations and can serve as a
proxy for natural representation modeling of gestures. Hence,
at a preliminary level, we rely on hand gesture recognition
for the feature space formulation. We use the cross-entropy
loss and refer it as LHGR. However, LHGR will attempt to
cluster all the instances of a given gesture irrespective of
their identity. This can result in loss of the identity-aware
characteristics in the feature space.
Joint Gesture and Identity-Aware Representation: To
avoid loss of the identity details, we introduce the identity
recognition loss (LID) along with LHGR. Thus, for feature
space construction, we consider a multi-task objective com-
prising identity recognition (ID) and HGR. This will allow
the feature space to capture gesture understanding as well
as identity details. Since, the ID task is relatively more fine-
grained, identity details are more challenging to extract. This
would allow formation of gesture clusters along with identity
clusters within each gesture cluster. Similar to LHGR, LID
also uses the cross-entropy loss.

Let LOb j denote the optimization objective function and
Xi ∈ RT×H×W×C be the input to a network fθ (.). Here, T
represents the number of frames, H and W represent the
spatial dimensions, and C represents the channel dimensions.
Let fi ∈ Rd represent fθ (Xi), where d is the dimensionality
of the output embeddings.

LOb j = LHGR + λIDLID (1)

LOb j =
1
N

N

∑
i=1

exp(W T
HGRyi

fi)

∑
G
j=1 exp(W T

HGR j
fi)

+λID
1
N

N

∑
i=1

exp(W T
IDyi

fi)

∑
I
j=1 exp(W T

ID j
fi)

(2)
Here, λID is the weighting factor for LID, and N, G, and
I represent the number of samples, gestures, and identities,
respectively. Furthermore, WHGR ∈ RG×d and WID ∈ RI×d

are weight matrices of the task-specific fully-connected lay-
ers. It must be noted that LID will try to cluster identities
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Fig. 1. Proposed DGBQA framework: The first step is feature space construction which is illustrated in part (1) of the figure. This step consists of
two stages: (1.1) Multi-objective optimization and (1.2) Feature-space generation. In (1.1), the feature extractor fθ is trained for hand gesture and identity
recognition. To address identity sharing, we introduce the LICGD term in the objective function. After training fθ , in (1.2), embeddings are extracted which
constitute the feature space. In the second step, referred to as feature space probing and illustrated as part (2) of the figure, the DGBQA score (∆GBQA) is
computed using uniqueness and variability parameters to capture the biometric characteristics.

Fig. 2. Identity sharing: Correlation maps of feature embeddings for
different values of λID. The data is arranged gesture-wise, and within
each gesture, embeddings belonging to each subject are placed together.
The diagonal elements within the off-diagonal blocks represent correlation
between different gestures of the same subject. Higher the correlation values
greater is the sharing of identity details across gestures and indicates identity
sharing. As λID increases, identity sharing becomes more prominent.

irrespective of the gestures. Thus, using λID we can control
the trade-off between gesture and identity understanding.

B. Identity Sharing

Since we aim to learn the feature space representation
for multiple gestures at a time during optimization, for

any subject, fθ will also learn the subject’s identity details
across these gestures. Thus, identity details in the output
embedding will not belong to an individual gesture. Rather,
it is composed of identity details captured across gestures
of that subject. We know that an identity cluster within a
gesture cluster is composed of embeddings of a given sub-
ject. However, these embeddings are influenced by identity
details from other gestures. As a result, subject clusters as
a whole exhibit some feature-level intermingling with the
corresponding subject cluster within other gesture clusters.
We refer to this as identity sharing and biometric scores for
gestures derived based on such a feature space representation
would be dependent on other gestures in the set. To illustrate
the presence of identity sharing, in Fig. 2, we show the
correlation maps of the embeddings for different values of
λID. It is seen that as we increase λID, the correlation values
between embeddings for a given subject across different
gestures increases. This indicates sharing of identity de-
tails across gestures. LHGR enables gesture understanding,
however these empirical results indicate that it is unable to
restrain the learning of identity details to a given gesture.

C. Identity-Level Cross-Gesture Disentanglement

Identity sharing results in embeddings belonging to a given
subject but from different gestures to have some feature-
level intermingling. If these embeddings are decorrelated,
then we can constrain these cross-gesture interactions. To



this end, we propose identity-level cross-gesture disentan-
glement (LICGD) loss. The principle behind this loss term
is illustrated in Fig. 1 (refer the box in top-right corner).
The primary objective is to penalize those embeddings which
result in significant correlation between different gesture
embeddings of a given subject.

Let XTrain ∈RN×T×H×W×C represent a training batch with
N being the batch size. Also, f̄ = fθ (XTrain) ∈ RN×d , where
f̄ is the embedding matrix corresponding to the training
batch. Each of the embeddings are l2-normalized. Let fm ∈
Rd represent the normalized embedding corresponding to
the mth sample such that ∥ fm∥2 = 1. Using the normalized
embeddings f̄ , the Gram matrix Ḡ is obtained as Ḡ = f̄ f̄ T .
Let Ḡmn = fm

T fn represent the (m,n)th element of the Gram
matrix Ḡ and the correlation between the embeddings fm and
fn. Thus, Ḡ contains the correlation values between any two
embeddings of the training batch. Since the embeddings are
normalized Ḡmn = cos(φmn) where φmn is the angle between
the embeddings fm and fn. If the correlation value is higher
then it indicates that φmn → 0, and if the correlation is lower,
then the embeddings would tend to be orthogonal.

After Ḡ is computed, suitable mask can be applied to it to
extract the elements of Ḡ which are composed of the desired
embeddings. For each subject i (∀i = 1, . . . , I) considered in
the training batch, we define a mask Mi ∈ RN×N as,

Mi = Γ⊙L⊙δ
G ⊙δi

ID; (3)

where ⊙ represents the Hadamard product, and Γ, L, δ G, δ ID
i

represents the negative mask, lower-triangular mask, gesture
mask, and identity mask, respectively. Since Ḡ is a symmetric
matrix, to remove the redundant values we use L to mask
the lower-triangular elements to zero. We use Γ to mask the
negative correlation values.

Γmn =

{
1, if Ḡmn ≥ 0
0, otherwise

(4)

δ G and δ ID
i are defined as:

δ
G
mn =

{
1, if yHGRm ̸= yHGRn and m ̸= n
0, otherwise

(5)

δ
ID
i,mn =

{
1, if yIDm = yIDn = i and m ̸= n
0, otherwise

(6)

yHGRm and yIDm represent the gesture and subject labels of
the mth sample, respectively. δ G is employed for masking
elements corresponding to other gestures, and δi

ID is em-
ployed to mask elements corresponding to subjects other than
subject i.

We define the LICGD loss as:

LICGD =
1
I

I

∑
i=1


N

∑
m=1

N

∑
n=1

(Ḡ⊙Mi)mn

N

∑
m=1

N

∑
n=1

Mi,mn +1

 (7)

From (7), we note that for a subject i with mask Mi,
LICGD uses those elements of Ḡ which have: (i) positive
correlation values, (ii) reside in the upper-triangular matrix,
and (iii) originate from embeddings of subject i for different
gestures. Then, LICGD minimizes the sum over the elements
of the masked Gram matrix Ḡ ⊙ Mi. The denominator is
a normalization factor representing the number of elements
selected by the mask Mi. A one is added to the denominator
so as to prevent it from becoming zero. This is computed
for each subject and loss value is the averaged value over all
the subjects. The overall LICGD loss formulation encourages
the model fθ to construct embeddings which can decorrelate
the different gesture embeddings of any given subject. This
is equivalent to trying to make the angle between the
selected embedding pairs closer to 90◦, and thus making
them orthogonal.
Final Loss Function: The final loss function is formulated
as:

LOb j = LHGR +λIDLID +λICGDLICGD (8)

where λICGD is the weighting factor for the LICGD term.

D. Feature Space Probing and Delta-GBQA Score

After fθ has been trained using LOb j, we extract embed-
dings of XTest ∈ RN̂×T×H×W×C where N̂ is the number
of samples in the test set, i.e., fTest = fθ (XTest) ∈ RN̂×d .
As illustrated in Fig. 1, we expect the feature space to be
composed of gesture clusters which in turn would comprise
of subject clusters. For each gesture cluster, we measure
distances between the embeddings. We refer to this step as
feature probing and which is expected to estimate the biomet-
ric characteristics of the gesture set. The estimation step is
based on uniqueness and variability parameters. For a given
gesture, the uniqueness parameter is expected to have higher
value when different subjects have larger distances between
their embeddings. The variability parameter is expected to
have a higher value when a subject has tight clustering across
its embeddings. We define f m

g,i as the mth embedding for
gesture g of subject i.
Uniqueness Parameter (dUNQ): To quantify uniqueness
for a gesture, we first compute the subject centroids ( f̂g,i
represents the centroid of gesture g and subject i) for all the
subjects in the test set. These centroids are averaged over all
the embeddings of a given subject. Let P be the number of
embeddings of a subject i for a gesture g, then:

f̂g,i =
1
P

P

∑
m=1

f m
g,i (9)

Distance between two subject centroids signifies the aver-
age distance between the two subjects for a given gesture.
Thus, we compute the average of these distances over all
the subject pairs. This will quantify, on an average, how
uniquely the subjects perform this gesture. We define this
as the uniqueness parameter dUNQg . Higher the uniqueness
parameter value, better are the biometric characteristics of



the gesture.

dUNQg =
1[

I(I−1)
2

] I−1

∑
m=1

I

∑
n=m+1

∥ f̂g,m − f̂g,n∥2 (10)

Variability Parameter (dV RB): For a gesture, variability
measures the amount of variance in the embeddings within a
subject cluster. To quantify this, we compute the maximum
variance for each subject and then average it over all the
subjects. Lower is the variance value, better are the biometric
characteristics of the gesture. Maximum variance is measured
as maximum distance between the embeddings of a particular
subject. Let Q be the number of embeddings per subject for
a given gesture. The variability parameter is computed as:

dV RBg =
1
I

I

∑
i=1

max
m={1,...,Q−1},n={(m+1),...,Q}

∥ f m
g,i − f n

g,i∥2 (11)

DGBQA Score (∆GBQA): We propose the DGBQA score for
estimation of biometric characteristics using the uniqueness
and variability parameters. The DGBQA score for any ges-
ture g is given as

∆GBQAg = exp(dUNQg −dV RBg)−
(

dV RBg

dUNQg

)
(12)

We use the term ‘delta’ in DGBQA to refer to the fact that the
proposed scoring formulation involves pairwise differences
between the embeddings. Higher the ∆GBQA score value,
better are the biometric characteristics of the gesture. The
first term contributes significantly to the score if the unique-
ness parameter is higher while the variability is minimal.
We use an exponential form for this term so as to assign
significant value to the difference between the uniqueness
and variability parameters. The second term is a penalty term
that penalizes the score if dV RBg is relatively compared to
dUNQg . The ∆GBQA score can also take negative values. Since
the scores are derived for a set of gestures at a time, they
provide a relative measure of the biometric characteristics of
the gestures in the set. To compare these scores beyond the
gesture set, we perform z-score normalization followed by
l2-normalization. This ensures that the DGBQA score values
are in the range [−1,1].

E. Evaluation Metrics

Next, we describe the proposed evaluation measures and
strategies for validating the proposed DGBQA biometric
score formulation. As the biometric score estimation involves
formulation of a feature space and then the score computa-
tion, we need to evaluate the effectiveness of both steps.

1) Preliminaries: In general, biometric goodness is mea-
sured in terms of equal error rate (EER) computed from
verification experiments. Lower EER values indicate better
biometric characteristics. On the other hand, in the proposed
framework, higher DGBQA scores indicate better biometric
characteristics. Thus, we use (100− EER) along with the
normalized DGBQA scores. To facilitate comparison, we
consider e ∈ RG as the vector of EER values (in %). Then,

let ē = (100 · 1̄)−e, where 1̄ ∈ RG represents the vector of
all ones. We perform z-score normalization, followed by l2-
normalization over ē to obtain ê ∈ RG which is considered
as the ground truth biometric score.

2) Evaluation Metrics: Apart from considering the test set
recognition accuracy for the HGR and ID tasks, we propose
the following evaluation metrics.
Rank Deviation (r̂): This measure quantifies the average
difference between the biometric goodness ranks of gestures
in the set, where the ranks are arrived at using ∆DGBQA and
ê. Let r∆

g and rê
g represent the ranks of gth gesture based on

the DGBQA score and the ground truth biometric scores,
respectively. Lower rank values indicate better biometric
characteristics. Thus, we define the rank deviation r̂ as:

r̂ =
1
G

 G

∑
g=1

∥r∆
g − rê

g∥1

 (13)

Rank deviation will be the key measure for comparing
different biometric scoring frameworks.
ICGD Score (CD): The ICGD score measures the residual
identity sharing and is defined as:

CD =
1
I

I

∑
i=1


N

∑
m=1

N

∑
n=1

(Γ⊙L⊙δ G ⊙δi
ID ⊙ Ḡ)mn

N

∑
m=1

N

∑
n=1

(Γ⊙L⊙δ G ⊙δi
ID)mn

 (14)

where N, G and I represent the number of test samples,
gestures, and subjects, respectively. It can be seen that CD
measures the average correlation value between the embed-
dings that contribute to identity sharing. Lower the CD value,
less is the extent of identity sharing across gestures. We use
this measure to compare the different feature spaces.
Acceptance and Normalized Acceptance Values (Ar,nAr):
For the proposed DGBQA framework to perform effectively,
we require higher DGBQA scores for better ranks and the
rank deviation to be minimal. To this end, we propose the
acceptance value Ar. Let ∆ [k] represent the DGBQA score
of the kth gesture. Then,

Ar(∆)=
G

∑
j=1

2
λ

(
γ

(
G−rê

j+1

G

)
∆[rê

j]+
rê

j
G (1−∆[rê

j])

)

exp(∥r∆
j − rê

j∥1)
(15)

where λ and γ are scaling factors and we set them to 2.
The proposed acceptance value consists of two key terms:
(i) relevance term (numerator): this quantifies if the DGBQA
score is higher for better ranks, and (ii) rank deviation term
(denominator): this quantifies the amount of rank deviation
for a gesture. The second term is relatively more important
than the first as we would like the relative orders to match
as far as possible. To account for this, we use an exponential
term for the rank deviation. Higher the acceptance value
Ar, better is the biometric scoring. This measure allows for
comparing scores generated from different feature spaces. In



order to compare different feature extractors, we propose a
normalized acceptance value as:

nAr(∆) =
Ar(∆)

Ar(ê)
(16)

III. EXPERIMENTAL ANALYSIS

In this section, we evaluate efficacy of the proposed
DGBQA biometric quantification framework through exten-
sive experiments on four datasets and using the proposed
evaluation metrics.

A. Experimental Protocol

1) Model Architecture: For feature space construction,
we employ two architectures: Res3D-ViViT and Res3D-
MF. Both architectures have a residually connected 3D-CNN
backbone [5]. Following the backbone, these networks have
several transformer encoder layers. Res3D-ViViT utilizes
the ViViT-based encoder [1], while Res3D-MF utilizes the
MotionFormer encoder [9]. We use these models as they have
been used in the literature for temporal modeling. However,
we would like to clarify that model architecture is not the
focus of this work.

2) Datasets and Protocol: For all the experiments, we
use a 60 : 40 training-test split. We use following publicly
available datasets for the performance evaluation.
Soli [19]: This dataset contains range-Doppler image se-
quences of hand gestures collected from 10 subjects and
11 gestures. It contains a total of 2750 gesture in-
stances/samples. We obtain ground truth biometric scores
by performing biometric verification experiments for each
gesture. We employ 5-fold cross-validation and averaged
the results obtained from three feature-extractors namely,
TDSNet [13], ESNet [3], and Res3D-ViViT.
TinyRadar [11]: This is a large-scale range-Doppler HGR
dataset with 11 gestures (same gesture set as Soli dataset)
from 26 subjects. It contains a total of 30,300 samples.
The ground truth scores were computed using 3-fold cross-
validation and averaging the results from TDSNet and
Res3D-ViViT models. Note that this dataset is based on a
different radar sensor type than the one used for Soli dataset.
HandLogin [20]: This dataset comprises of depth-maps for 4
gestures with 15 subjects. Since some hand-geometry details
are explicitly present in the depth-maps, we obtain first-
temporal difference map for the sequences [12]. We consider
this pre-processing in order to generate the feature space
using only the motion details of the gestures. This ensures
that the biometric scores are derived only from motion details
and do not consider any physiological details. This step is
taken as other modalities such as range-Doppler sequences
do not contain physiological details. For the ground truth
scores, we use the values reported in [20].
SCUT-DHGA [7]: This is a large-scale RGB-based hand
gesture authentication dataset. It comprises of 6 gestures with
143 subjects. Similar to that with the HandLogin dataset, we
obtain temporal-difference maps of the sequences. For the
ground truth scores, we average over the results of different
models considered in the cross-session scenario in [7].

TABLE I
ABLATION STUDY ON THE FEATURE SPACE. WITH THE INTRODUCTION

OF LICGD , r̂ AND CD VALUES (TO BE MINIMIZED) TEND TO DECREASE

WHILE nAr VALUES (TO BE MAXIMIZED) INCREASE COMPARED TO THE

CASE WITHOUT LICGD . THIS INDICATES MITIGATION OF IDENTITY

SHARING AND IMPROVEMENT IN BIOMETRIC CHARACTERIZATION OF

HAND GESTURES.

Model λID λICGD HGR Acc. ID Acc. r̂ CD Ar nAr
Soli

Res3D-
ViViT

0.0 0.0 95.64 − 4.09 0.375 3.12 0.08
0.0 89.90 75.27 1.54 0.386 10.81 0.30

1.0 0.5 95.27 74.54 1.54 0.309 11.32 0.31
1.5 74.18 76.00 1.90 0.218 15.21 0.42
0.0 89.53 76.18 0.81 0.387 23.99 0.67

1.5 0.5 93.45 72.90 0.45 0.351 27.66 0.77
1.5 92.63 75.36 1.36 0.239 18.32 0.51

Res3D-
MF

0.0 0.0 95.00 − 2.27 0.287 11.85 0.32
0.0 92.63 76.81 1.0 0.406 25.01 0.69

1.0 0.5 90.54 72.63 1.0 0.361 15.39 0.42
1.5 90.36 76.18 1.0 0.229 19.49 0.54
0.0 90.18 76.54 0.27 0.432 34.06 0.94

1.5 0.5 89.18 75.00 0.45 0.340 24.11 0.66
1.5 90.00 72.36 1.54 0.284 14.62 0.40

HandLogin

Res3D-
ViViT

0.0 0.0 94.53 − 1.0 0.371 6.16 0.36
0.0 87.89 44.53 0.0 0.365 19.46 1.14

0.5 1.0 90.23 46.48 1.0 0.265 9.12 0.53
1.5 88.67 46.09 1.0 0.248 13.12 0.77
0.0 84.76 56.74 1.0 0.385 6.28 0.36

1.0 1.0 83.20 50.00 1.0 0.350 12.19 0.71
1.5 89.94 49.65 1.0 0.284 8.78 0.51

Res3D-
MF

0.0 0.0 91.02 − 1.0 0.317 9.50 0.55
0.0 85.55 41.80 1.5 0.382 2.41 0.14

1.0 1.0 85.93 57.81 0.5 0.296 13.77 0.81
2.5 85.54 46.09 1.0 0.226 7.10 0.41
0.0 76.56 49.21 1.0 0.377 7.90 0.46

1.5 1.0 83.98 58.59 1.0 0.324 9.79 0.57
1.5 78.51 63.67 1.0 0.284 12.40 0.72

TinyRadar

Res3D-
ViViT

0.0 0.0 90.19 − 2.72 0.357 15.20 0.41
0.0 87.62 64.39 0.90 0.540 21.15 0.57

1.0 1.0 86.29 57.55 1.27 0.515 21.97 0.60
1.5 86.42 58.23 1.27 0.496 21.64 0.59
2.5 85.30 57.13 1.45 0.541 18.93 0.51

SCUT-DHGA

Res3D-
ViViT

0.0 0.0 99.59 − 2.33 0.196 5.14 0.23
0.0 98.27 28.14 1.33 0.576 11.05 0.51

1.5 1.0 93.85 25.93 0.66 0.566 15.20 0.70
1.5 95.44 9.60 1.33 0.533 6.81 0.31
2.5 96.47 18.82 1.66 0.523 6.38 0.29

B. Results, Analysis, and Discussion:

1) Ablation Study on Feature Space: First, we validate
robustness of the proposed feature space formulation. We
experiment with different values of λID and λICGD and the
results are reported in Table I. When only LHGR is employed,
the rank deviation is relatively higher. By augmenting the
objective with LID, there is a sharp reduction in r̂ (and
increase in Ar), but we observe a significant increase in the
ICGD score (CD). This highlights the existence of identity
sharing. Furthermore, as λID is increased, there is a greater
intermingling of identity details across gestures resulting in
increased CD values. After introducing LICGD, we observe a
significant reduction in CD values along with an increase in
the acceptance values. This clearly indicates that: (i) LICGD
is key in reducing the identity sharing, and (ii) once the
gesture embeddings focus on identity details only within
their motion patterns, we obtain improved estimation of their
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Fig. 3. Comparative study on feature space formulation: The t-SNE plots for three loss function objectives: (i) Only LHGR (1st column), (ii) LHGR and LID
(2nd column), (iii) LHGR, LID, and LICGD (3rd column). The proposed multi-objective optimization (3rd column) enables formulation of gesture-clusters
consisting of smaller subject-clusters.With LHGR and LID (2nd column) identity details are highly shared across gestures. However, the inclusion of LICGD
is seen to mitigate identity sharing.

Fig. 4. DGBQA scores using two different models. This shows that the
DGBQA scores using the two models are similar and statistically not very
different. This indicates that the computed DGBQA scores are generic.

biometric characteristics.
To further validate our claims, in Fig. 3 we show the t-

SNE plots for three different loss functions. It is clearly seen
that using the proposed complete loss function formulation
results in the most-suited feature space (refer Fig. 3, 3rd

column). Using the other two loss function settings, either the
identity details are shared across multiple gestures (Fig. 3,
2nd column), or the identity details are not preserved (Fig. 3,
1st column). Using larger values of λICGD, even lower CD
values are achieved, however this also leads to disruption of
the identity details. As fθ is now further encouraged to make
the embeddings orthogonal, rather than extracting gesture
and identity-aware representations.

It is observed that models trained on TinyRadar and
SCUT-DHGA datasets exhibit a smaller reduction in the
ICGD score. This can be attributed to fewer embedding pairs
being available for orthogonalization in a training batch.

Specifically, these two datasets contain a higher number
of identities, which reduces the possibility of a training
batch containing embeddings from the same identity but with
different gestures. In Fig. 4, we compare the DGBQA scores
obtained by Res3D-ViViT and Res3D-MF models. It is seen
that the scores obtained using the two models are similar and
statistically not very different. This shows that the proposed
DGBQA scores are generic and are only loosely dependent
on the choice of the feature extractor.

2) Biometric Scoring Performance: We compare the DG-
BQA score values with the ground truth scores (ê). In
Fig. 5, we show the ∆GBQA and ê scores for all the four
datasets. DGBQA scores reported are based on the model
that achieved the best performance in terms of nAr while
using the complete loss function (8). It is seen that the
DGBQA scores are quite similar to the ground truth scores.
Furthermore, relative rank positions of the gestures based on
the DGBQA scores and ê scores are also similar.

Comparison with State-of-the-Art Scoring Frameworks:
To further validate the robustness of the proposed DG-
BQA framework, we compare with state-of-the-art scoring
frameworks from other domains [21], [17], [2]. This com-
parison is on the basis of r̂, while the biometric scores
were computed using the same feature space from which
DGBQA scores are derived. The results are listed in Table II
and it is seen that the DGBQA framework achieves the
lowest rank deviation in almost all the cases. This superior
performance can be attributed to the uniqueness (10) and
variability parameters (11) that have been captured in the
proposed DGBQA scoring function (12). In contrast, the
other frameworks either do not capture these parameters or



Fig. 5. Comparison of ground truth biometric scores (ê) and DGBQA scores (∆GBQA).

TABLE II
BIOMETRIC SCORING PERFORMANCE COMPARISON IN TERMS OF RANK

DEVIATION (r̂).

Model ∆ [21] MasterFace [17] Generative capacity [2] ∆GBQA
SOLI

Res3D-ViViT 2.09 1.72 0.81 0.45
Res3D-MF 1.36 1.73 0.81 0.45

HandLogin
Res3D-ViViT 1.00 1.00 1.00 1.00

Res3D-MF 0.50 0.50 0.00 0.50
TinyRadar

Res3D-ViViT 3.63 1.45 1.27 1.27
SCUT-DHGA

Res3D-ViViT 1.33 1.66 1.33 0.66

are based on certain assumptions which may not always
hold. Nevertheless, these frameworks also attain significantly
lower rank deviation. This indicates the robustness of the
feature space formulation.

3) Gestures Good for Biometrics: From Fig. 5, we find
that in the Soli and TinyRadar datasets, the swipe-based
gestures (slow-swipe, fast-swipe) and the ‘Circle’ gesture
achieve high DGBQA scores. While in the SCUT-DHGA
and HandLogin datasets, gestures with the highest DGBQA
scores were ‘Catch and Release’ and ‘Compass’, respec-
tively. It is noted that all these gestures involve coarse but
significant motion. Furthermore, they require the use of palm
or fist. Thus, gestures involving coarse motions of palm or
fist are more suitable for biometric applications.

IV. CONCLUSION

In this work, we developed the DGBQA framework for
scoring the biometric characteristics of hand gestures. First,
the proposed framework constructs a feature space suitable
for biometric scoring. Next, this feature space is used to
quantify the uniqueness and variability parameters of the
gestures in order to estimate their biometric characteristics.
We also presented several metrics for evaluating such scoring
frameworks. Based on extensive experiments on four diverse
datasets, the DGBQA scoring framework and formulation
were found to perform very well. As part of our future work,
we will work towards developing scoring formulations that

are subject-agnostic. Furthermore, we will work on develop-
ing a universal feature extractor for biometric scoring.

REFERENCES

[1] A. Arnab et al. ViViT: A Video Vision Transformer. In Proc.
International Conference on Computer Vision (ICCV), pages 6836–
6846, 2021.

[2] V. N. Boddeti, G. Sreekumar, and A. Ross. On the Biometric Capacity
of Generative Face Models. arXiv preprint arXiv:2308.02065, 2023.

[3] T. Huang et al. Enhanced Spatial-Temporal Salience for Cross-View
Gait Recognition. IEEE Transactions on Circuits and Systems for
Video Technology, 32(10):6967–6980, 2022.

[4] A. K. Jain, D. Deb, and J. J. Engelsma. Biometrics: Trust, but Verify.
IEEE Transactions on Biometrics, Behavior, and Identity Science,
4(3):303–323, 2021.

[5] G. Jaswal, S. Srirangarajan, and S. Dutta Roy. Range-Doppler Hand
Gesture Recognition using Deep Residual-3D Transformer Network.
In Pattern Recognition. ICPR International Workshops and Chal-
lenges, pages 311–315, 2021.

[6] H. Kong et al. Continuous Authentication through Finger Gesture
Interaction for Smart Homes using WiFi. IEEE Transactions on
Mobile Computing, 20(11):3148–3162, 2020.

[7] C. Liu et al. Dynamic-Hand-Gesture Authentication Dataset and
Benchmark. IEEE Transactions on Information Forensics and Se-
curity, 16:1550–1562, 2020.

[8] O. Mendels, H. Stern, and S. Berma. User Identification for Home En-
tertainment based on Free-Air Hand Motion Signatures. IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, 44(11):1461–
1473, 2014.

[9] M. Patrick et al. Keeping Your Eye on the Ball: Trajectory Attention in
Video Transformers. Proc. Advances in Neural Information Processing
Systems (NeurIPS), pages 12493–12506, 2021.

[10] N. Sae-Bae, N. Memon, and P. Sooraksa. Distinctiveness, Complexity,
and Repeatability of Online Signature Templates. Pattern Recognition,
84:332–344, 2018.

[11] M. Scherer et al. TinyRadarNN: Combining Spatial and Temporal
Convolutional Neural Networks for Embedded Gesture Recognition
with Short Range Radars. IEEE Internet Things J., 8(13):10336–
10346, 2021.

[12] X. Sheng et al. A Progressive Difference Method for Capturing Visual
Tempos on Action Recognition. IEEE Transactions on Circuits and
Systems for Video Technology, 33(3):977–987, 2022.

[13] W. Song et al. TDS-Net: Towards Fast Dynamic Random Hand
Gesture Authentication via Temporal Difference Symbiotic Neural
Network. In Proc. IEEE International Joint Conference on Biometrics
(IJCB), pages 1–8, 2021.

[14] W. Song and W. Kang. Depthwise Temporal Non-Local Network
for Faster and Better Dynamic Hand Gesture Authentication. IEEE
Transactions on Information Forensics and Security, 18:1870–1883,
2023.

[15] W. Song, W. Kang, and L. Lin. Hand Gesture Authentication
by Discovering Fine-Grained Spatiotemporal Identity Characteristics.
IEEE Transactions on Circuits and Systems for Video Technology,
2023.



[16] W. Song, W. Kang, and Y. Zhang. Understanding Physiological and
Behavioral Characteristics Separately for High-Performance Video-
based Hand Gesture Authentication. IEEE Transactions on Instru-
mentation and Measurement, 2023.

[17] P. Terhörst et al. On the (limited) Generalization of Masterface Attacks
and its relation to the Capacity of Face Representations. In Proc. IEEE
International Joint Conference on Biometrics (IJCB), pages 1–9, 2022.

[18] D. Thapar, A. Nigam, and C. Arora. Recognizing Camera Wearer
from Hand Gestures in Egocentric Videos. In Proc. ACM International
Conference on Multimedia, pages 2095–2103, 2020.

[19] S. Wang et al. Interacting with Soli: Exploring Fine-Grained Dynamic
Gesture Recognition in the Radio-Frequency Spectrum. In Proc.
Symposium on User Interface Software and Technology, pages 851–
860, 2016.

[20] J. Wu et al. Leveraging Shape and Depth in User Authentication from
In-Air Hand Gestures. In Proc. IEEE International Conference on
Image Processing (ICIP), pages 3195–3199, 2015.

[21] A. Zunino, J. Cavazza, and V. Murino. Revisiting Human Action
Recognition: Personalization vs. Generalization. In Proc. International
Conference on Image Analysis and Processing, pages 469–480, 2017.


