
Number theoretic algorithms for cryptographic

applications

Sandeep Sen1

March 16, 2009

1Department of Computer Science and Engineering, IIT Delhi, New Delhi 110016, India.
E-mail:ssen@cse.iitd.ernet.in

Contents

1 Modular Arithmetic 3
1.1 Divisibility . 3
1.2 Congruences . 5

1.2.1 The totient function . 7
1.2.2 Quadratic residues and non-trivial square roots 7

2 Rabin-Miller test 8
2.1 Legendre symbol and computing Jacobi 10

3 Polynomial factorization 12
3.1 Quadratic polynomial . 12
3.2 Higher degree polynomials . 14
3.3 Factorising a square free polynomial 15

4 Fast Fourier Transform and Applications 17
4.1 Polynomial evaluation and interpolation 17
4.2 Cooley-Tukey algorithm . 18
4.3 The butterfly network . 20
4.4 Schonage and Strassen’s fast multiplication 21

1

Preface

The topics covered here are supplmentary material for a course in Cryptography
that I am co-teaching with Palash Sarkar. Much of the foundational basis of modern
cryptography requires understanding of computational aspects of algebra and number
theory and it is an attempt to cover some of the basics.

Sandeep Sen
January 2009

2

Chapter 1

Modular Arithmetic

In this chapter, we will discuss some useful properties of numbers when calculations
are done modulo n, where n > 0. In the context of computer science, n is usually a
power of 2 since representation is binary.

1.1 Divisibility

Definition 1.1 An integer b is divisible by an integer a (a 6= 0), if there is an integer
x such that b = ax. This will be denoted by a|b.

We begin by formalising some elementary observations about integer division.

Theorem 1.1 1. a|b implies a|bc for any integer c.

2. a|b and b|c implies a|c.

3. a|b and a|c implies a|bx + cy.

4. if m 6= 0 then a|b ≡ ma|mb.

Theorem 1.2 Given integers a and b with a > 0, there exist unique integers q and
r such that b = qa + r, 0 ≤ r < a.

The beginning of number theory goes back to Euclid’s algorithm that exploited
some of the properties of divisibility to compute the gcd of two integers. The gcd of
two numbers a and b is the largest among the common divisors of a and b. If this
is 1 then a, b are relatively prime. From property 3, it follows that for any common
divisor c, i.e. c|a and c|b, then c|(b − a) where b ≥ a. By repeatedly applying this,
i.e., by subtracting qa, till 0 ≤ b− qa < a, we must now find the gcd of a and b− qa.
If a|b, then clearly a is the gcd, so that can be used as a terminating case.

3

A more formal way of stating Euclid’s algorithm is writing out the following
equations

b = cq1 + r1 (1.1.1)

c = r1q2 + r2 (1.1.2)

r1 = r2q3 + r3 (1.1.3)

.. = (1.1.4)

rj−3 = rj−2qj−1 + rj−1 (1.1.5)

rj−2 = rj−1qj + rj−1 (1.1.6)

rj−1 = rjqj+1 + 0 (1.1.7)

(1.1.8)

Extended Euclid’s algorithm states that rj must be expressed as a linear combi-
nation of b and c, i.e. , bx+ cy = rj. By eliminating rj−2 from the last two equations,
we obtain

rj−2(1 + qj−1 − rj−3qj−1 = rj

Now a similar mechanism can be applied to eliminate rj−3 and express rj as a linear
combination of rj−3 and rj−4 until we have only b and c.

In the forward computation, numbers x and y such that gcd = ax + by. For this,
we maintain an invariant that axi + byi = ri where ri is the remainder in the i-th
iteration with initial values x0 = 1 and y0 = 0. The correctness of the algorithm
follows from induction.

The following properties of gcd(x, y) are known

Theorem 1.3 (i) If c is a common divisor of a, b, then c|gcd(a, b).
(ii) gcd(x, y) = min{ax + by} where x, y are integers, such that ax + by > 0.
(iii) m · gcd(a, b) = gcd(ma, mb).
(iv) If gcd(a, m) = gcd(b, m) = 1 then gcd(ab, m) = 1.
(v) If c|ab and gcd(b, c) = 1 then c|a.

Prime numbers (with no divisors other than 1 and the number itself) are extremely
important in the area of number theory. Every number n > 1 can be expressed as a
product of primes which may or may not be distinct. The fundamental theorem of
arithmetic or the unique factorization states that

Theorem 1.4 The factoring of any integer n > 1 is unique except for the order of
the prime factors.

Proof: We know that if p|q1q2 where p is prime then either p|a or p|b or both. 2

The fact that number of primes is infinite was given in an elegant proof of Euclid.

4

Extending his argument it can be shown that there are arbitrary gaps between two
primes. The prime number theorem says that among the first n integers there are
very nearly n

ln n
prime numbers.

1.2 Congruences

The notion of relatively prime is also very important, namely b and c are relatively
prime if they do not have any common factors other than 1. The set of numbers
relatively prime to a number n form a multiplicative group denoted by Z∗

n. This
implies that for any numbers x, y ∈ Z∗

n, the product x · y modulo n is unique. Table
?? shows Z∗

6 . Z∗
p , where p is prime have a nice structure and is useful in many

contexts.

Definition 1.2 If an integer m, not zero, divides the d divides the difference a − b,
we say that a is congruent to b modulo m and is denoted by a ≡ b(mod m).

(Since m|(a − b) is equivalent to −m|(a − b), we will always assume that m > 0.)
The following properties follow from the previous definition.

Theorem 1.5 1. a ≡ b(mod m) is the same as a − b ≡ 0(mod m).

2. a ≡ b(mod m) and b ≡ c(mod m) implies a ≡ c(mod m). (transitive -
infact ≡ (mod m) is an equivalence relation).

3. If a ≡ b(mod m) and c ≡ d(mod m) then ax + cy ≡ bx + dy(mod m)

4. If a ≡ b(mod m) and c ≡ d(mod m), then ac ≡ bd(mod m)

5. If a ≡ b(mod m) and d|m, d > 0, then a ≡ b(mod d).

The degree of a polynomial (with integral coefficients) depends on the modulus
over where it is computed. It is the highest power of x for which the coeffient is
non-zero modulo m. For f(x) = a0x

n + a1x
n−1 + . . . an, if f(u) ≡ 0(mod m) then

we say that u is a solution of the congruence f(x) ≡ 0(mod m). It is known that

Theorem 1.6 If a ≡ b(mod m), then f(a) ≡ f(b)(mod m)

An important problem is the solution of congruences and in particular linear (degree
1) congruence. Any such congruence has the form

ax ≡ b(mod m)

For the special case that gcd(a, m) = 1, we have a solution x1 = aφ(m)−1b, where φ(m)
is the totient function (defined by Euler). It is the number of integers less than m
that are relatively prime to m (if m is prime then φ(m) = m− 1). This follows from
the following theorem of Euler.

5

Theorem 1.7 If gcd(a, m) = 1, then aφ(m) ≡ 1(mod m).

Another way of viewing the solution is to multiply both sides by a number a−1 such
that a · a−1 ≡ 1(mod m). We have the following equivalent of cancellation laws

Theorem 1.8 1. If ax ≡ ay(mod m) and gcd(a, m) ≡ 1(mod m) then x ≡ y(
mod m).

2. ax ≡ ay(mod m) iff x ≡ y(mod m
gcd(a,m)

). (generalization)

The remaining solutions (when gcd(a, m) = 1) are of the form x1 +jm for any integer
j. In other words there is a unique solution modulo m. For the other case (when a
and m are not relatively prime), the solutions are described by the following theorem.

Theorem 1.9 Let g = gcd(a, m). Then ax ≡ b(mod m) has no solutions if g does
not divide b. If g|b, it has g solutions x ≡ (b/g)x0 + t(m/g), t = 0, 1 . . . g − 1, where
x0 is any solution of (a/g)x ≡ (mod (m/g).

Algorithmically, in both cases, we can use the (extended) Euclid’s algorithm to
compute x1 or x0. Let ax′ + my′ = g which implies that ax′ ≡ g(mod m). If g = 1,
then clearly x = x′ · b or a−1 ≡ x′(mod m). Moreover g|b for the equation to be
feasible. This follows from the observation that a solution exists for only those b that
belong to the cyclic subgroup of a. One can verify easily that the cyclic subgroup
< a >=< d >= {0, 1, 2 . . .m/d − 1}

An alternate method is to solve a set of simultaneous congruences by factorising
m =

∏k
i=1 pei

i =
∏k

i=1 mi where mi = pei
i . Since mi are relatively prime in pairs, it can

be shown that the solution of the equation ax ≡ b(mod m) is the same as solving
the congruences ax ≡ b(mod mi) simultaneously for all i. Suppose the individual
congruences have solutions

x ≡ ai(mod mi)

Then these can be combined using a result called Chinese Remaindering Theorem.

Theorem 1.10 The common solution is given by

x0 =
r

∑

j=1

m

mj

bjaj

where bj is given by solutions to (m/mj)bj ≡ (mod mj).

6

1.2.1 The totient function

The number of elements that relatively prime to n is called Euler’s totient function
and denoted by φ(n). It is known that

φ(n) = n ·
k

∏

i=1

(1 − 1/p1) · (1 − 1/p2) . . . 1 − pk)

where pi are distinct prime factors of n. Euler’s toient function has some nice prop-
erties that we state without complete proofs.

1.
∑

d:d|n φ(d) = n

2. If p is a prime, let Ok denote the set of elements in Z∗
p that have order k. Then

|Ok| equals φ(k). In particular |Op−1| = φ(k − 1).

3. φ(n) is Ω(n/ log n) that follows from the definition of the totient function and
minimising it.

Notice that the third one implies a Monte Carlo randomized algorithm for finding a
generator of Z∗

n.

1.2.2 Quadratic residues and non-trivial square roots

If x2 ≡ a mod n then a is a quadratic residue and x is a square root of a. When n is
prime there are exactly two square roots.

Theorem 1.11 (Euler’s criterion) If n is prime, then an−1/2 ≡ 1 iff a is a quadratic
residue.
Moreover, there are exactly (n − 1)/2 quadratic residues.

proof Suppose x2 ≡ a mod n. Then (x2)
(n−1)/2

= xn−1 ≡ 1 mod n.
For the other direction,let g be a generator (since n is prime there exists one) and

let a = gk. So (gk)
(n−1)/2 ≡ 1 mod n. Then k · (n − 1)/2 must be multiple of n − 1,

implying k is even and therefore gk/2 is a square-root of a.
The following result is stated without proof.

Theorem 1.12 In Z∗
p where p is a prime, the square root of a quadratic residue can

be found in randomized polynomial time, given a known non-residue.

A non-trivial square roots is an element y 6= {−1, 1} such that y2 ≡ 1. The
following observation is exploited in primality testiing.
Observation: If nontrivial square root exists in Z∗

n then n is prime.
Since x2 ≡ 1 mod n, (x + 1)(x − 1) ≡ 0 mod n. Given that x 6= {1,−1}, the

l.h.s. must be a multiple of n and therefore both gcd(x+1, n) and gcd(x−1, n) must
be greater than 1 and hence we have a factor of n.

7

Chapter 2

Rabin-Miller test

Fermat’s theorem is a 1-sided test, namely, if an−1 6≡ 1 mod n, then n is composite.
For the converse, it is not guaranteed to work and in some cases called Carmichael
numbers, for all 1 < a < n, an ≡ 1 mod n. Fortunately, there are very few (even
though infinite) such numbers in terms of density (fraction of all integers). But, if
we don’t want the test to be input-dependent, we cannot afford to err on Carmichael
numbers.

Here is some good news.
Observation If there exists at least one 1 < a < n such that an−1 6≡ 1 mod n, then
less than half the numbers will satisfy xn−1 ≡ 1 mod n.
Proof Consider an a such that an−1 6≡ 1 mod n, then for any b bn−1 ≡ 1 mod n,
we obtain c = a · b, such that cn−1 6≡ 1 mod n. So the fraction of elements of Z∗

n that
do not pass Fermat test is at least half. This can also be argued by observing that
{x|xn−1 ≡ 1 mod n} is a proper subgroup of Z∗

n.
Also note that for any element y 6∈ Z∗

n, yn−1 6≡ 1 mod n.

Rabin Miller primality testing
Let n − 1 = 2k · m where m is odd.

1. Choose an element a uniformly at random from [2, n − 1].

2. If b = am ≡ 1 mod n then n is prime

3. for i:= 0 to k − 1 do

If b ≡ −1 mod n then n is prime
b := b ∗ b mod n

4. Return n is composite

8

The intuition behind this approach is that we may find a non-trivial root of 1
which can be used to find a common factor if n is composite.

The running time of this algorithm is clearly polynomial - in fact O(log3 n) steps
for a log n bit integer.

Broadly, we will prove the following

Theorem 2.1 The primality testing algorithm of Rabin-Miller will satisfy the fol-
lowing property
(i) If the input is prime then it will output the right answer.
(ii) If the input is composite, it will answer correctly with probability at least 1/2
(irrespective of the input).

This kind of algorithm is called Monte Carlo randomized algorithm and the prob-
ability of error for a composite input can be reduced to 1/2k by running the test
independently k times.
Proof Let us denote the sequence of values assigned to b as the k tuple

B(a) = (b0 = am, a2m, a22m, . . . bk−1 = am·2k−1

)

Clearly once bj ≡ {−1, 1}, subsequently it is 1. Moreover, if the sequence ends with
1 without ever becoming -1, then we have discovered a non-trivial square root of 1
implying n is composite. The proof is by case analysis on the following
Case 1 n is prime: Since there is no non-trivial square root of 1, the tuple must have
an occurence of −1 since an−1 ≡ 1. Alternately, am ≡ 1, in which case it doesn’t
enter the loop and declares n to be prime in the first test. So, it always returns the
correct answer.

Case 2 n is a non-Carmichael composite: From the observation preceding the
algorithm, for at least half of the choices of a, an−1 6≡ 1. So, with probability at
least 1/2, the tuple will not contain −1 otherwise in the next step, we will get 1 and
therefore an−1 ≡ 1. Note that we are not even checking if an−1 ≡ 1 since in either
case n is composite.

Case 3 n is a Carmichael composite: This is the crux of the algorithm, since for all
a, an−1 ≡ 1. Therefore we have to analyse the tuple B more closely for Carmichael
numbers. So we want to find out the number of choices (witnesses) for which the
tuple does not contain −1, i.e., we obtain a non-trivial square root.
Claim If xn−1 ≡ 1 mod n then n cannot be a power of odd prime, i.e. n 6= pe.

Proof is ommitted from here and instead we make another claim which makes the
previous result somewhat redundant in the context of primality.
Claim There is a polynomial time algorithm to find out if n = xy for some integers
x, y ≥ 2.

Proof is left as an exercise. So from this point we can assume that n = n1 · n2

where n1 6= n2 (may not be unique) and relatively prime to eachother.

9

Consider the elements W = x ∈ Z∗
n : x2jm ≡ ±1 and for which j = j′ is as large

as possible (note that (−1)20m ≡ −1).
W is closed under multiplication and therefore it is a subgroup1 and therefore

if we can show that W is a proper subgroup of Z∗
ni, at least half of the elements

y /∈ W are such that y2j′m 6≡ ±1. Either yn−1 ≡ 1 implying that we have discovered
a non-trivial square root or yn−1 6≡ 1 again implying that n is composite.
Proof that W is a proper subgroup
Lect w ≡ −1 mod n1 and w ≡ 1 mod n2. Then w 6≡ ±1 mod n (prove by con-
tradiction - note that if w ≡ 1 mod n then w ≡ 1 mod n1 and w ≡ mod n2).
Moreover, w ∈ Z∗

n since w doesn’t have common factor with both n1 and n2.

2.1 Legendre symbol and computing Jacobi

The Legendre symbol of a ∈ Z∗
p is defined as

[

a

p

]

≡ a(p−1)/2 mod p

which is +1 if a is a quadratic residue and -1 otherwise (Euler criterion).
The generalization to arbitrary odd n is called Jacobi symbol and is defined for

a ∈ Z∗
n (i.e. a is relatively prime to n) as

[

a

n

]

=
t

∏

i=1

[

a

pi

]ki

where n = pk1
1 · pk2

2 . . . pkt
t is the prime factorization of n.

The Solovay-Strassen primality testing algorithm involves computation of Jacobi
without prime factorization of n. The following properties are known about Jacobi
symbol.

1.
[

ab
n

]

=
[

a
n

]

·
[

b
n

]

2. For a ≡ b mod n,
[

a
n

]

=
[

b
n

]

3. For odd co-prime a, n

[

a

n

]

= (−1)(a−1)/2·(n−1)/2 ·
[

n

a

]

1Any closed subset of a group is a subgroup

10

4.
[

1
n

]

= 1

5.
[

a
n

]

= −1 for n ≡ {3, 5} mod 8.
and is equal to 1 for n ≡ {1, 7} mod 8.

The last two properties can be thought of as base cases.
Exercise Design an efficient (polynomial time) algorithm for computing the Jacobi
symbol of a given number.

11

Chapter 3

Polynomial factorization

Polynomials can be thought of as an ordered sequence of coefficients ai 0 ≤ i ≤ n
where k is the degree of a polynomial if ak 6= 0 and ak+1, ak+2 . . . an = 0. The
coefficient ai is associated with xi which is an indeterminate or can be thought of as
a placeholder. The coefficients ai ∈ Z∗

p where p is a prime. We will actually use the
properties of the field Fp = {0, 1 . . . p − 1}.

3.1 Quadratic polynomial

Wlog, we can assume that the roots are not equal. Otherwise it is an easy case and can
be solved directly. Let P (x) = x2 +bx+c = 0 where b 6= 0. Let α, β α 6= β be the two
roots (if they exist). Suppose α, β are such that one is a quadratic indentExercise
Provide details of Step 4 and analyse. residue1 (modulo p) and the other is not.
Since every non-quadratic residue q satisfies qp−1/2 ≡ 1, it is a root of the polynomial
Xp−1/2 − 1. Therefore the gcd of (P (x), Xp−1/2 − 1) yields a non-trivial factor.
Note : If both roots are q.r., then the gcd is the polynomial itself.

To address the general case, we will try to do a random shift of the roots, say by
r. Let Pr(x) = (x − α − r)(x − β − r), clearly if we can find the roots of Pr(x), we
can find the roots of P (x). Also note that Pr(x) = Pr(x) − 2rx + r2 + br, i.e., the
coefficients can be easily computed. Let us now analyse the Legendre symbols of the
roots α + r and β + r for a randomly chosen r.

Lemma 3.1 For any α, β ∈ Z∗
p α 6= β, the probability that

[

α+r
p

]

=
[

β+r
n

]

is less than

1/2 for a randomly chosen r in Z∗
p − {α, β}.

Proof Let s ∈ Z∗
p , s 6= 0 be such that

(α + r) · s ≡p a and (β + r) · s ≡p b

1corresponding to Legendre symbol being +1 or -1

12

for some a, b ∈ Z∗
p . By Substituting t = r · s, we can solve the simultaneous equations

over the field in s and t, where s = (a − b) · (α − β)−1 and t = a − α · s. Note that
this gives a solution for r also provided s 6= 0 (r = t · s−1). If a 6= b, s 6= 0, and for
every pair (a, b), there is a soln (s, r). So there is an bijection between (r, s) pairs
and (a, b) pairs and uniform distribution on (r, s) implies uniform distribution in the
(a, b) pairs, conditioned on s 6= 0. It can be easily seen (from symmetry) that the
probability that

[

a
n

]

6=
[

b
n

]

is greater than 1/2. Therefore, given s 6= 0,

Pr

{[

(α + r)s

n

]

6=
[

(β + r)s

n

]}

= Pr

{[

a

n

]

6=
[

b

n

]}

>
1

2

Since
[

sy
n

]

=
[

s
n

]

·
[

y
n

]

for y ∈ Z∗
p ,

Pr

{[

(α + r)s

n

]

6=
[

(β + r)s

n

]}

= Pr

{[

(α + r)

n

]

6=
[

(β + r)

n

]}

>
1

2

For events A, B, Pr[A] = Pr[A ∩ B̄] + Pr[A ∩ B] ≥ Pr[A ∩ B] = Pr[A|B] · Pr[B]
There, we can uncondition the above calculation by defining event B to be s 6= 0 and
the event A as

[(α+r)
n

]

6=
[(β+r)

n

]

. Using Pr[s 6= 0] = 1− 1/p, we arrive at the required
result. The complete algorithm for factorization of a quadratic polynomial is given
below.

Quadpolyroot
Input: non-irreducible, monic , square-free degree 2 polynomial P (x) : x2 + αx + β

mod p
(Comment: the other cases can be handled directly)

Output: the distinct roots r1, r2 of the input polynomial

1. choose an r uniformly at random from {0, 1, . . . (p − 1)}

2. compute the shifted polynomial Pr(x) = x2 + α′x + β ′.

3. if β ′ = 0 then r1 = −r, r2 = −r − α′

4. Compute u(x) = gcd(Pr(x), x(p−1)/2 − 1) using repeated squaring inside
the Euclid’s algorithm.

5. If u(x) = Pr(x) or 1 (failed to find linear factors), go to step 1.

6. If u(x) = x − c then return r1 = c − r, r2 = −(α′ + c + r).

Exercise 3.1 Provide details of Step 4 and analyse.

13

Exercise 3.2 How would you handle the case of irreducible

polynomial ?

3.2 Higher degree polynomials

The previous algorithm works specifically for degree 2 polynomials and exploits the
fact. Before we take up the more general case, let us discuss some facts about poly-
nomials whose coeffients are from Fp.

Observation 3.1 If v(x) is a polynomial with coeffients modulo a prime p,

(v(x))p = v(xp)

First observe that

(v1(x) + v2(x))p = (v1(x))p +

(

p

1

)

(v1(x))p−1v2(x) + . . . (v2(x))p

= (v1(x))p + (v2(x))p all other terms are multiple of p

Let v(x) = vmxm + vm−1x
m−1 + . . . v0. Then

(v(x))p = (vmxm + vm−1x
m−1 + . . . v0)

p

= (vmxm)p + (vm−1x
m−1)

p
+ . . . (v0x

0)
p

= vp
mxmp + vp

m−1x
(m−1)p + . . . vm

0

= vmxmp + vm−1x
(m−1)p + . . . v0 (Fermat result)

= v(xp)

Like degree two polynomial, let us get rid of multiple roots, in fact, repeated
factors. Let u(x) = u)nxn + un−1x

n−1 + . . . u0. Suppose u(x) = (v(x))2w(x). Then,
by taking derivatives,

u′(x) = 2v(x)v′(x)w(x) + (v(x))2w′(x)

= = nunxn−1 + (n − 1)un−2x
n−2 + . . . u1

Note that both side of the equation are multiples of v(x). If d(x) = gcd(u(x), u′(x))
then we can claim the following

• d(x) = 1 Then u(x) is square-free.

• d(x) 6= 1 then we have found a factor and we can repeat the above step to make
it square-free.

14

If d(x) = u(x), then u′(x) = 0,so u(x) is a polynomial that has non-zero coefficients
only when the corresponding exponent is a multiple of p. In other words u(x) can be
written as t(xp) which equals (t(x))p. We can now proceed to apply the aove method
to t(x) and factorize t(x).

3.3 Factorising a square free polynomial

Let u(x) = p1(x) · p2(x) . . . pr(x) where pi ’s are distinct irreducible polynomials
(and therefore they do not have common factors pairwise). From Chinese Remainder
Theorem 2. there exists a unique v(x) mod u(x) such that

v(x) ≡ s1 mod p1(x)

v(x) ≡ s2 mod p2(x)

v(x) ≡ sr mod pr(x)

where si ∈ {0, 1, p − 1}. Note that

v(x)p ≡ sp
i ≡p si ≡ v(x) mod pi(x)

Since this holds for all i, it follows from CRT that v(x)p ≡ v(x) mod u(x). Recall
that v(x)p ≡p v(xp).

Observation 3.2 pi(x) divides v(x)(p−1)/2 − 1 iff s
(p−1)/2
i ≡p 1.

From v(x) ≡ si mod pi(x), it follows that v(x)(p−1)/2−1 ≡ s
(p−1)/2
i −1 mod pi(x).

Since pi(x) has degree at least 1, it can only happen if s
(p−1)/2
i − 1 ≡p 0.

It follows that if si is randomly chosen, with probability 1/2, pi(x) divides

v(x)(p−1)/2 − 1. So the gcd of u(x) and v(x) will be a multiple of pi(x) with
probability 1/2.

This is the basis of the factorization algorithm. The problem is that we do not know
v(x) and it is not clear how to compute it since it is related to pi(x) which is what
we have set out to compute.

We try to use the identity v(x)p ≡p v(xp) and consequently express xp·j in terms
of xj ’s. Let

xpi ≡ qj,n−1x
n−1 + qj,n−2x

n−2 + . . . qj,0 mod u(x)

2there exists a analogous version for polynomials

15

If Q =











q0,0 q0,1 . . . q0,n−1

q1,0 q1,1 . . . q1,n−1
...

qn−1,0 qn−1,0 . . . qn−1,0











then it can be verified that the following matrix equation holds

(v0v1 . . . vn−1)Q = (v0v1 . . . vn−1)

This can be seen as follows

v(x) =
∑

i

vix
i =

∑

i

∑

j

vjqj,ix
j =

∑

j

vj

∑

i

qj,ix
j =

∑

j

vjx
pj = v(xp) ≡ v(x)p mod u(x)

This can be solved as
v(Q − I) = 0

using something like Gauss-Jordan iterations which also yields the nullspace in terms
of an orthogonal basis v1, v2 . . . vt. Therefore all the solutions for v(x) can be expressed
as

a1 · v1 + a2 · v2 + . . . at · vt

where ai ∈ [1, 2, . . . p− 1]. Note that there are pt solutions and a random solution of

v(x) can be obtained by choosing ais randomly and then compute gcd(u(x), v(x)(p−1)/2−
1).

At this point we must relate the solutions obtained from nullspace vectors to the
original problem of the r irreducible factors. Clearly t ≥ r, but we need to prove t = r
to make our technique efficient. If t = r, then we can generate a random solution of
the original equations by choosing ai’s randomly. For this we need to show that every
solution to v(x)p ≡ v(x) mod u(x) must satisfy the original equations v(x) ≡ si

mod pi(x).
It can be shown (proof left as exercise) that

v(x)p − v(x) = (v(x) − 0)(v(x) − 1) . . . (v(x) − (p − 1))

where the terms on the RHS are relatively prime. So if u(x) divides the LHS, then
the irreducible factors must divide some term on the RHS, i.e., v(x) ≡ j mod pi(x)
for some j ∈ [0, 1, . . . (p − 1)] and some irredicible factor pi(x).

16

Chapter 4

Fast Fourier Transform and
Applications

4.1 Polynomial evaluation and interpolation

A polynomial P(x) of degree n−1 in indeterminate x is a power series with maximum
degree n − 1 and has the general form an−1x

n−1 + an−2x
n−2 + . . . a1x + a0, where ai

are coefficients over some field, typically the complex numbers C. Some of the most
common problems involving polynomials are

evaluation Given a value for the indeterminate x, say x′, we want to compute
∑n−1

i=0 ai · x′i.
By Horner’s rule, the most efficient way to evaluate a polynomial is given by
the formula

(((an−1x
′ + an−2)x

′ + an−3)x
′ + . . . a0

We are interested in the more general problem of evaluating a polynomial at
multiple (distinct) points, say x0, x1 . . . xn−1. If we apply Horner’s rule then it
will take Ω(n2) operations, but we will be able to do it much faster.

interpolation Given n values (not necessarily distinct), say y0, y1 . . . yn−1, there is a
unique polynomial of degree n − 1 such that P(xi) = yi xi are distinct.
This follows from the fundamental theorem of algebra which states that a poly-
nomial of degree d has at most d roots. Note that a polynomial is characterized
by its coefficients ai 0 ≤ i ≤ n − 1. A popular method for interpolation is the
Lagrange’s formula.

P(x) =

n−1
∑

k=0

yk ·
∏

j 6=i(x − xj)
∏

j 6=k(xk − xj)

17

Exercise 4.1 Show that Lagrange’s formula can be used to compute the coeffi-
cients ai’s in O(n2) operations.

One of the consequences of the interpolation is an alternate representation of
polynomials as {(x0, y0), (x1, y1) . . . (xn−1, yn−1)} from where the coefficients can
be computed. We will call this representation as the point-value representation.

multiplication The product of two polynomials can be easily computed in O(n2)
steps by clubbing the coefficients of the powers of x. This is assuming that the
polynomials are described by their coefficients. If the polynomials are given by
their point-value, then the problem is considerably simpler since

P (x) = P1(x) · P2(x) where P is the product of P1 and P2

A closely related problem is that of convolution where we have to perform
computations of the kind ci =

∑

l+p=i al · bp for 1 ≤ i ≤ n.

The efficiency of many polynomial related problems depends on how quickly we can
perform transformations between the two representations.

4.2 Cooley-Tukey algorithm

We will solve a restricted version of the evaluation problem where we will carefully
choose the points x0, x1 . . . xn−1 to reduce the total number of computations, Let n
be a power of 2 and let us choose xn/2 = −x0, xn/2+1 = −x1, . . . xn−1 = −xn/2−1. You
can verify that P(x) = PE(x2) + xPo(x

2) where

PE = a0 + a2x + . . . an−2x
n/2−1

P0 = a1 + a3x + . . . an−1x
n/2−1

corresponding to the even and odd coefficients and PE ,PO are polynomials of degree
n/2 − 1.

P(xn/2) = PE(x2
n/2) + xn/2PO(x2

n/2) = PE(x2
0) − x0PO(x2

0)

since xn/2 = −x0. More generally

P(xn/2+i) = PE(x2
n/2+i) + xn/2+iPO(x2

n/2+i) = PE(x2
i) − xiPO(x2

i), 0 ≤ 0 ≤ n/2 − 1

since xn/2+i = −xi. Therefore we have reduced the problem of evaluating a degree
n− 1 polynomial in n points to that of evaluating two degree n/2− 1 polynomials at
n/2 points x2

0, x
2
1 . . . x2

n/2−1. This will also involve O(n) multiplications and additions
to compute the values at the original points. To continue this reduction, we have
to choose points such that x2

0 = −x2
n/4 or equivalently xn/2 =

√
−1 = ω. This

involves complex numbers if we started with coefficients in R1. If we continue with

1Depending on our choice of the field F , we can define ω such that ω2 = −1.

18

this strategy of choosing points, at the j-th level of recursion, we require

x2j−1

i = −x2j−1
n

2j +i 0 ≤ i ≤ n

2j
− 1

This yields x2log n−1

1 = −x2log n−1

0 , i.e., if we choose ωn/2 = −1 then xi = ωxi−1. By
setting x0 = 1, the points of evaluation work out to be 1, ω, ω2 . . . ωn/2 . . . ωn−1 which
are usually referred to as the principal n-th roots of unity.

Analysis

Let P(x)z1,z2...zi

a0,a1...an−1
denote the evaluation of P(x) with coefficients a0, a1 . . . an−1 at

points z1, z2 . . . zi. Then we can write the recurrence

P(x)1,ω,ω2...ωn−1

a0,a1...an−1
= P(x)1,w...ωn/2−1

a0,a2...an/2−2
+P(x)1,w...ωn/2−1

a1,a3...an/2−1
+O(n) multiplications and additions

This immediately yields O(n log n) operations for the FFT computation.
For the inverse problem, i.e., interpolation of polynomials given the values at

1, ω, ω2 . . . ωn−1, let us view the process of evaluation as a matrix vector product.














1 1 1 . . . 1
1 ω2 ω4 . . . ω2(n−1)

1 ω3 ω6 . . . ω3(n−1)

...
1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)















·















a0

a1

a2
...

an−1















=















y0

y1

y2
...

yn−1















Let us denote this by the matrix equation A · a = y. In this setting, the interpolation
problem can be viewed as computing the a = A−1 · y. Even if we had A−1 available,
we still have to compute the product which could take Ω(n2) steps. However the good
news is that the inverse of A−1 is

1

n















1 1 1 . . . 1
1 1

ω2
1

ω4 . . . 1
ω2(n−1)

1 1
ω3

1
ω6 . . . 1

ω3(n−1)

...
1 1

ωn−1
1

ω2(n−1) . . . 1
ω(n−1)(n−1)















which can be verified by multiplication with A. Recall that

1 + ωi + ω2i + ω3i + . . . wi(n−1) = 0

(Use the identity
∑

j ωji = ωin−1
ωi−1

= 0 for ωi 6= 1.)

Moreover ω−1, ω−2, . . . w−(n−1) also satisfy the properties of n-th roots of unity. This
enables us to use the same algorithm as FFT itself that runs in O(n log n) operations.

19

4.3 The butterfly network

000

100

010

110

001

101

011

111

000

001

010

011

100

101

110

111

1 stage 2 stage 3 stage
a0

a4

a2

a6

a1

a5

a3

a7

A(ω0)

A(ω1)

A(ω2)

A(ω3)

A(ω4)

A(ω5)

A(ω6)

A(ω7)

ω4

ω4

ω4

ω4

ω4

ω2

ω6

Figure 4.1: Computing an eight point FFT using a butterfly network

If you unroll the recursion of an 8 point FFT, then it looks like the Figure 4.1.
Let us work through some successive recursive calls.

P0,1,..7(ω0) = P0,2,4,6(ω
2
0) + ω0P1,3,5,7(ω

2
0)

P0,1,..7(ω4) = P0,2,4,6(ω
2
0) − ω0P1,3,5,7(ω

2
0)

Subsequently, P0,2,4,6(ω
2
0) = P0,4(ω

4
0) + w2

0P2,6(ω
4
0) and

P0,2,4,6(ω
2
2) = P0,4(ω

4
0) − w2

0P2,6(ω
4
0)

To calculate P0,4(ω
4
0) and P0,4(ω

4
1) we compute P0,4(ω

4
0) = P0(ω

8
0) + ω4

0P4(ω
8
0) and

P0,4(ω
4
1) = P0(ω

8
0) − ω4

0P4(ω
8
0)

Since Pi denotes ai, we do not recurse any further. Notice that in the above figure
a0 and a4 are the multipliers on the left-hand side. Note that the indices of the ai

on the input side correspond to the mirror image of the binary representation of i. A
butterfly operation corresponds to the gadget ⊲⊳ that corresponds to a pair of recursive
calls. The black circles correspond to ”+” and ”-” operations and the appropriate
multipliers are indicated on the edges (to avoid cluttering only a couple of them are
indicated).

20

One advantage of using a network is that, the computation in each stage can
be carried out in parallel, leading to a total of log n parallel stages. Thus FFT is
inherently parallel and the butterfly network manages to capture the parallelism ina
natural manner.

4.4 Schonage and Strassen’s fast multiplication

In our analysis of the FFT algorithm, we obtained a time bound with respect to
multiplication and additions in the appropriate field - implicitly we assumed C, the
complex field. This is not consistent with the boolean model of computation and we
should be more careful in specifying the precision used in our computation. This is
a topic in itself and somewhat out of the scope of the discussion here. In reality, the
FFT computations are done using limited precision and operations like rounding that
inherently result in numerical errors.

In other kinds of applications, like integer multiplication, we choose an appro-
priate field where we can do exact arithmetic. However, we must ensure that the
field contains n-th roots of unity. Modular arithmetic, where computations are done
modulo a prime number is consistent with the arithmetic done in hardware.

Observation 4.1 In Zm where m = 2tn/2 + 1 and n is a power of 2, we can use
ω = 2t.

Since n and m are relatively prime, n has a unique inverse in Zm (recall extended
Euclid’s algorithm). Also

ωn = ωn/2·ωn/2 = (2t)
n/2·(2t)

n/2 ≡ (m−1)·(m−1) mod m ≡ (−1)·(−1) mod m ≡ 1 mod m

Claim 4.1 If the maximum size of a coefficient is b bits, the FFT and its inverse can
be computed in time proportional to O(bn log n).

Note that addition of two b bit numbers take O(b) steps and the multiplications
with powers of ω are multiplications by powers of two which can also be done in
O(b) steps. The basic idea of the algorithm is to extend the idea of polynomial
multiplication. Recall, that in Chapter ?? , we had divided each number into two parts
and subsequently recursively computed by computing product of smaller numbers. By
extending this strategy, we divide the numbers a and b into k parts ak−1, ak−2, . . . a0

and bk−1, bk−2, . . . b0.

a × b =
(

ak−1 · xk−1 + ak−2 · xk−2 + . . . a0

)

×
(

bk−1 · xk−1 + bk−2 · xk−2 + . . . b0

)

21

where x = 2n/k - for simplicity assume n is divisible by k. By multiplying the RHS,
and clubbing the coefficients of xi, we obtain

a × b = ak−1bk−1x
2(k−1) + (ak−2b1 + bk−2a1)x

2k−3 + . . . a0b0

Although in the final product, x = 2n/k, we can compute the coefficients using any
method and perform the necessary multiplcations by an appropriate power of two
(which is just adding trailing 0’s). This is polynomial multiplication and each term
is a convolution, so we can invoke FFT-based methods to compute the coefficients.
The following recurrence captures the running time

T (n) ≤ P (k, n/k) + O(n)

where P (k, n/k) is the time for polynomial multiplication of two degree k−1 polyno-
mials involving coefficients of size n/k. (In a model where the coefficients are not too
large, we could have used O(k log k) as the complexity of polynomial multiplication.)
We will have to do exact computations for the FFT and for that we can use modular
arithmetic. The modulo value must be chosen carefully so that
(i) It must be larger than the maximum value of the numbers involved, so that there
is no loss of information
(ii) Should not be too large, otherwise, operations will be expensive.

Moreover, the polynomial multiplication itself consists of three distinct phases

(i) Forward FFT transform. This takes O(bk log k) using b bits.
(ii) Paiwise product of the values of the polynomials at the roots of unity.
This will be done recursively with cost 2k · T (b) where b ≥ n/k.
The factor two accounts for the number of coefficients of the product of
two polynomials of degree k − 1.
(iii) Reverse FFT, to extract the actual coefficients. This step also takes
O(bk log k) where b is the number of bits in each operand.

So the previous recurrence can be expanded to

T (n) ≤ r · T (b) + O(bk log k)

where r · b ≥ n and we must choose an appropriate value of b. For coefficients of
size s, we can argue that the maximum size of numbers during the FFT computation
is 2s + log r bits (sum of r numbers of pairwise multiplication of s bit numbers).
If we choose r to be roughly

√

n/ log n, then b =
√

n log n and we can rewrite the
recurrence as

T (n) ≤ 2

√

n

log n
· T (2

√

n log n + log n) + O(n log n) (4.4.1)

22

Exercise 4.2 With appropriate teminating condition, say the O(nlog2 3) time multi-
plication algorithm, verify that T (n) ∈ O(n log2 n log log n).

An underlying assumption in writing the recurrence is that all the expressions are
integral. This can actually be ensured by choosing n = 2ℓ and carefully choosing√

n for even and odd values of ℓ. Using the technique of wrapped convolution, one
can save a factor of two in the degree of the polynomial, yielding the best known
O(n log n log log n) algorithm for multiplication.

23

