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Conceptual Overview and
Motivation
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Science of Encryption
Evolution
• Classical cryptosystems.

• encryption and decryption keys are same.
• both are secret.
• Problems:key distribution and management.

• Public key cryptosystems. A paradigm shift.
• encryption and decryption keys are different.
• encryption key is public; decryption key is

secret.
• Problems:Operational issues.
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Public Key Encryption (PKE)
• Alice has two keys

• pkA : Available in a public directory.
• skA : Kept secret by Alice.

• Bob encrypts a message usingpkA.
• Alice decrypts the ciphertext usingskA.
• Problem:(Wo)man in the middle.

• Eve impersonates Alice.
• Puts a public keypkE in Alice’s name.
• Eve decrypts any message encrypted using

pkE.

PKE Developments – p. 5/42



Digital Signature Protocol
• Consists of algorithms(Setup, Sign, Verify).
• Setup generates(pkC , skC) for Charles.
• pkC is made public (placed in a public directory).
• Charles signs messageM usingskC to obtain

signatureσ.
• Anybody can verify the validity of(M,σ) using

pkC .
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Certifying Authority (CA)
• Consider Charles to be CA.
• Alice obtains certificate.

• Alice generates(pkA, skA); sendspkA to CA.
• CA signs (Alice,pkA) usingskC to obtainσ;

Alice’s certificate: (Alice,pkA, σ).
• Bob sends messageM to Alice.

• Verifies (Alice,pkA, σ) usingpkC .
• EncryptsM usingpkA.
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CA: Operational Issues
• How long will Alice’s certificate be valid?

• CA publishes certificate status information.
• This information has to be fresh (to a day, for

example).
• Bob has to verify that Alice’s certificate has

not been revoked.
• Does Bob trust Alice’s CA?

• Alice and Bob may have different CAs.
• This may lead to a chain (or tree) of CAs.
• CAs have to certify each other.
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Public Key Infrastructure
• Consists of certifying authorities and users.
• Certificate status information.

• Certificate revocation list (CRL).
• Online certificate status protocol (OCSP).
• One-way hash chains.

• A major stumbling block forwidespread
adoption of PKE.
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Basic Construction
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Setting
Discrete Log Problem:
Instance: (g, h)
• G = 〈g〉 is a cyclic group.
• h is a random element ofG.

Task: Computea = logg(h), i.e.,a such thath = ga.

Examples. A prime order subgroup of
• the multiplicative group of a finite field.
• the group of points of an elliptic curve over a

finite field.
• the Jacobian of a hyperelliptic curve over a finite

field.
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Criteria
SupposeG is a subgroup ofH.
Security:
• DLP should be computationally intractable.
• Possibly other problems should also be

computationally intractable.
• The above determines|G| and|H|.

Efficiency: Depends on
• |G| and|H|.
• the time for one group operation inH;
• the time required to performga.
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Diffie-Hellman Problems
Computational Diffie-Hellman (CDH) problem:
Instance: (g, ga, gb)
• G = 〈g〉 is a cyclic group of orderq;
• a, b are random elements ofZq.

Task: Computegab.

Decision Diffie-Hellman (DDH) problem:
Instance: (g, ga, gb, h).
Task: Determine whetherh = gab or whetherh is a
random element ofG.
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Advantage
LetA be a probabilistic algorithm, which takes as
input a tuple(g, g1, g2, g3) and outputs a bit.
AdvDDH(A)

= |Pr[A ⇒ 1|(g, g1, g2, g3) is real]
−Pr[A ⇒ 1|(g, g1, g2, g3) is random]|.

(g, g1, g2, g3) is real:g1 = ga, g2 = gb andg3 = gab,
i.e., a proper DDH tuple.
(g, g1, g2, g3) is random:g1, g2 andg3 are random
elements ofG.

DDH is (t, ǫ)-hard: if for all A with run time at
mostt, AdvDDH(A) ≤ ǫ.
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DH Key Agreement
Set-Up: G = 〈g〉 is a cyclic group andq = |G|.

Alice Bob

rA
$
← Zq rB

$
← Zq

computehA = grA computehB = grB

sendhA to Bob sendhB to Alice
computeKAB = hrB

A computeKAB = hrA

B

Public information: g, grA, grB .
Key: grArB .
This protocol gives the CDH problem its name.
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ElGamal Encryption
Set-Up: G = 〈g〉; q = |G|;

secret keyrA
$
← Zq; public key(g, hA = grA).

Encryption. Input: messageM .

t
$
← Zq.

Computeh = gt andK = ht
A.

“Mask” M usingK to obtainC.
Send(h,C).

Decryption. Input: (h,C).
ComputeK = hrA.
“Unmask”C usingK to obtainM .

Comment: An implicit DH key agreement.
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PKE and Security Definitions
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PKE Definition
Consists of three probabilistic algorithms.
Set-Up. Input: a security parameter.
• ReturnspkA andskA of Alice.

Encrypt. messageM ; pkA.
• ReturnsC to be the encryption ofM underpkA.

Encrypt. ciphertextC; pkA; skA.
• Returns either

• ⊥ signifying thatC is mal-formed; or
• M .
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Adversary Does What?
Intuitive goals of an adversary.
• Get the secret key of Alice.
• Try to decipher a ciphertext intended for Alice.
• Indistinguishability of ciphertexts.

• Ask Alice to decrypt a few other (possibly
mal-formed) ciphertexts.
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Modelling Paranoid Security
• Adversarial goal:Weak.

Two equal length messagesM0 andM1 are
produced by the adversary; a bitb is chosen and
the adversary is given an encryption ofMb;
adversary has to determineb.
• Allowed to ask Alice for decryption of other

ciphertexts.
• Adversarial resources:maximum practicable.

Probabilistic algorithm.
• Asymptotic setting:polynomial time (in the

security parameter) computation.
Concrete setting:relate success probability to
running time.
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Security Definition
Game between adversary and simulator.
Set-Up: simulator

• Generates (pk, sk).
• Providespk to the adversary.
• Keepssk secret.

Phase 1:adversarial queries.
• Decryption oracle:ask for the decryption of

any ciphertext.
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Security Definition (contd.)
Challenge:

• Adversary outputs two equal length messages
M0 andM1.

• Simulator chooses a random bitb;
encryptsMb usingpk to obtainC∗;
givesC∗ to the adversary.

Phase 2:adversarial queries.
• Restriction:

cannot ask for the decryption ofC∗.
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Security Definition (contd.)
Guess:

• adversary outputs a bitb′;
• adversary wins ifb = b′.

Advantage:

ǫ = |Pr[b = b′]− 1/2|.

(ǫ, t)-adversary: running timet; advantageǫ.
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Security Definition (contd.)
• Strongest definition:

security against adaptive chosen ciphertext
attacks.
CCA-secure (CCA2-secure).

• Weaker definition:
Adversary not provided with the decryption
oracle.
security against chosen plaintext attacks.
CPA-secure.
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ElGamal is not CCA-Secure
Adversarial Steps.
• Set-Up:obtainpk = gr from the simulator.
• Phase 1:makes no queries.
• Challenge:

provides two distinct group elementsm0 andm1;
obtains(h = gt, y = mb × grt) in response.

• Phase 2:asks for decryption of(h, yz);
receivesmbz in response.

• Guess:computesmb = mbz × z−1;
determinesb with probability one.

Malleable.Convert a valid ciphertext into another
valid ciphertext without knowing the secret key.
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Hybrid Encryption
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Some Efficiency Issues
SupposeG is a group of points obtained from a
“suitable” elliptic curve.
• Encryption and decryption require several scalar

multiplications.
• Each scalar multiplication requires several

multiplications over the underlying finite field.
• Assuming encryption to be done block by block

(which does not satisfy security definition), the
time required will be large.
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Symmetric Versus Asymmetric
• Most asymmetric encryption primitives require

either a field exponentiation or a scalar
multiplication.
asymptotic complexity:O(k3), wherek is a
security parameter.

• Symmetric encryption primitives (block and
stream ciphers) do not (usually) require field
exponentiation or scalar multiplication.

• Consequence: symmetric encryption is much
faster than asymmetric encryption.

Combine symmetric and asymmetric encryption to
obtain the best of both worlds.
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Hybrid Encryption – Basic Idea
Components.
Data Encapsulation Mechanism (DEM):
Sym.EncK() andSym.DecK().
Key Encapsulation Mechanism (KEM):
KEM.SetUp(), KEM.Enc() andKEM.Dec().
PKE Construction.
PKE.SetUp(): (pk, sk) = Asym.SetUp().
PKE.Enc(pk,M):

(A,K) = KEM.Enc(pk); B = Sym.EncK(M);
returnC = (A,B).

PKE.Dec(pk, sk, C = (A,B)):
K = KEM.Dec(pk, sk,A);
M = Sym.DecK(B).
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Hybrid Encryption Issues
• Many details have been glossed over.
• Security.

• CCA-secure KEM:definition similar to that
of CCA-secure PKE.

• CCA-secure DEM:definition based on the
definition of security of symmetric encryption
(not discussed here).

• Generic security of hybrid PKE.
CCA-secure KEM + CCA-secure DEM⇒
CCA-secure PKE.

• In special cases, the security conditions on either
KEM or DEM can be relaxed.
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Provable Constructions
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What do we mean?
Construct a PKE such that one canprove that it

satisfies the security definition.
Qualifiers.
• Proofs usually require an assumption.

• Generic: (trapdoor) one-way functions exist.
• Specific: the DDH problem is

computationally intractable.
• Security statement:Advpke ≤ f(AdvΠ) whereΠ

is a computationally hard problem.
• Proofs are reductions. Transform a “successful”

adversary for breakingPKE to a “good”
algorithm for solvingΠ.
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Constructions
• Cramer-Shoup (1998): based on hardness of

DDH andno other assumption.
• Kurosawa-Desmedt (2004): A variant of

Cramer-Shoup which performs more efficient
hybrid encryption.

• Hofheinz-Kiltz (2007): based on hardness of a
(possibly) weaker problem than DDH.

• Cash-Kiltz-Shoup (2008): based on twin
Diffie-Hellman problem.

• Other constructions: require more assumptions.
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Cramer-Shoup (1998)
Components.
• A cyclic groupG = 〈g〉 of orderq.
• A universal one-way hash family (UOWHF)
{H}s∈S , where eachHs : G3 → G.
The following game should be computationally
hard.
• Adversary outputsa.

• Adversary is givens
$
← S.

• Adversary has to outputa′ 6= a such that
H(a) = H(a′).
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Cramer-Shoup (contd.)
SetUp.
• Chooseg1, g2

$
← G.

• Choosex1, x2, y1, y2, z
$
← Zq.

• Computec = gx1

1 gx2

2 , d = gy1

1 gy2

2 , h = gz
1.

• Chooses
$
← S as key forHs.

• Public key:(g1, g2, c, d, h,H).
• Secret key:(x1, x2, y1, y2, z).
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Cramer-Shoup (contd.)
Encryption: messagem ∈ G.

• Chooser
$
← G.

• Computeu1 = gr
1, u2 = gr

2, e = hrm.
• Computeα = H(u1, u2, e), v = crdrα.
• Ciphertext is(u1, u2, e, v).

Decryption: ciphertext(u1, u2, e, v).
• Computeα = H(u1, u2, e, v).

• Verify ux1+y1α
1 ux2+y2α

2

?
= v.

• If “not equal” output⊥ (reject).
• Else, outputm/uz

1.
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Cramer-Shoup (contd.)
An alternative formulation of DDH.
Instance: (g1, g2, u1, u2).

Task: logg1
u1

?
= logg2

u2, i.e., whether there is anr
such thatu1 = gr

1 andu2 = gr.

Equivalence to DDH.
• g1 → g, g2 → gx, u1 → gy, u2 → gxy.
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Security of Cramer-Shoup PKE
Simulator SetUp.
• Input to simulator:(g1, g2, u1, u2).
• Simulator choosesx1, x2, y1, y2, z1, z2 ∈ Zq.

• Computesc = gx1

1 gx2

2 , d = gy1

1 gy2

2 , h = gz1

1 gz2

2 .

• Choosess
$
← S.

• Outputs(g1, g2, c, d, h,H) as public key.
• Knows(x1, x2, y1, y2, z1, z2).
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Security of Cramer-Shoup PKE
Simulation of decryption oracle:
• As in the original protocol except for the

following point.
• Computesm = e/(uz1

1 uz2

2 ).

Simulation of challenge: inputm0,m1

• b
$
← {0, 1}.

• Computese = uz1

1 uz2

2 mb, α = H(u1, u2, e).

• Computesv = ux1+y1α
1 ux2+y2α

2 .

• Outputs(u1, u2, e, v).
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Security of Cramer-Shoup PKE
• If the simulator’s input is a random 4-tuple, then

the bitb is statistically hidden from the adversary.
• If the simulator’s input is a proper DH-tuple (as

per the alternative formulation), then the
simulation is perfect.

• A simple linear algebra argument is used to show
that any invalid ciphertext is rejected by the
simulator with overwhelming probability.
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Summary
• An overview of PKE protocols.
• Framework in which they are used.
• Formal security model.
• A few constructions.
• A sketch of security proof of the Cramer-Shoup

protocol.
• Pointers to more recent constructions.
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Thank you for your kind attention!
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