Cyclic Groups in Cryptography

Palash Sarkar

Indian Statistical Institute

Structure of Presentation

- Exponentiation in General Cyclic Groups.
- Cyclic Groups from Finite Fields.
- Cyclic Groups from Elliptic Curves.
- Bilinear Pairings in Cryptography.

Exponentiation in General Cyclic Groups

Exponentiation

Let $G=\langle g\rangle$ be a cyclic group of order $|G|=q$. Basic Problem:
Input: $a \in \mathbb{Z}_{q}$.
Task: Compute $h=g^{a}$.

$$
\begin{aligned}
& \text { Let } a=a_{n-1} \ldots a_{0} \\
& \text { - } n=\left\lceil\log _{2} q\right\rceil \\
& \text { - each } a_{i} \text { is a bit. }
\end{aligned}
$$

Two simple methods.

- Right-to-left.
- Left-to-right.

Right-to-Left

$$
\begin{aligned}
& n=1: h=g^{a_{0}} \\
& n=2: h=g^{2 a_{1}+a_{0}}=\left(g^{2}\right)^{a_{1}} \times g^{a_{0}} \\
& t=g ; r=g^{a_{0}} \\
& t=t^{2} ; r=t^{a_{1}} \times r ; h=r
\end{aligned}
$$

$$
\text { - } n=3: h=g^{2^{2} a_{2}+2 a_{1}+a_{0}}=\left(g^{2^{2}}\right)^{a_{2}} \times\left(g^{2}\right)^{a_{1}} \times g^{a_{0}}
$$

$$
t=g ; r=g^{a_{0}}
$$

$$
t=t^{2} ; r=t^{a_{1}} \times r
$$

$$
t=t^{2} ; r=t^{a_{2}} \times r ; h=r
$$

- At i th step: square t; multiply t to r if $a_{i}=1$.

Left-to-Right

$$
\text { - } \begin{aligned}
n & =1: h=g^{a_{0}} \\
\text { - } n & =2: h=g^{2 a_{1}+a_{0}}=\left(g^{a_{1}}\right)^{2} \times g^{a_{0}} \\
r & =g^{a_{1}} \\
r & =r^{2} \times g^{a_{0}} ; h=r . \\
\text { - } n & =3: h=g^{2^{2} a_{2}+2 a_{1}+a_{0}}=\left(\left(g^{a_{2}}\right)^{2} \times g^{a_{1}}\right)^{2} \times g^{a_{0}} . \\
r & =g^{a_{2}} \\
r & =r^{2} \times g^{a_{1}} \\
r & =r^{2} \times g^{a_{0}} ; h=r .
\end{aligned}
$$

- At i th step: square r; multiply r by g if $a_{n-i}=1$.
- Important: always multiply by g.

Also called square-and-multiply algorithm.

Addition Chains

An addition chain of length ℓ is a sequence of $\ell+1$ integers such that

- the first integer is 1 ;
- each subsequent integer is a sum of two previous integers.
Example: 1,2,3,5,7,14,28,56,63. Addition chains can be used to compute powers. Consider the set of $\left(n_{1}, \ldots, n_{p}, \ell\right)$ such that there is an addition chain of length ℓ containing n_{1}, \ldots, n_{p}.
- Downey, Leong and Sethi (1981) proved this set to be NP-complete.

Exponentiation Algorithms

A survey by Bernstein with the title
Pippenger's Exponentiation Algorithm
Brauer (1939): "the left-to-right 2^{k}-ary method".
Straus (1964): computes a product of p powers with possibly different bases.
Yao (1976): computes a sequence of p powers of a single base.
Pippenger (1976): improves on both Straus's and Yao's algorithm.

Cyclic Groups from Finite Fields

Structure of Finite Fields

Let $(\mathbb{F},+, *)$ be a finite field with $q=|\mathbb{F}|$.

- $q=p^{m}$, where p is a prime and $m \geq 1$; p is called the characteristic of the field.
- $(\mathbb{F},+)$ is a commutative group.
- $\left(\mathbb{F}^{*}=\mathbb{F} \backslash\{0\}, *\right)$ is a cyclic group.

Basic Operations:

- addition and subtraction;
- multiplication;
- inversion (and division).

Useful Fields

We are interested in "large" fields: $p^{m} \approx 2^{256}$.

Commonly used fields.

- Large characteristics: $m=1$ and p is "large".
- Characteristics 2: $p=2$.
- Characteristics 3: $p=3$, relevant for pairing based cryptography.
- Other composite fields: Optimal extension fields.

Criteria for choosing a field: security/efficiency trade-off.

Large Characteristics

Use of multi-precision arithmetic;

- p is stored as several 32-bit words;
- each field element is stored as several 32-bit words;
- all computations done modulo p;
- combination of Karatsuba-Ofman and table look-up used for multiplication;
- Inversion using Itoh-Tsuji algorithm;
- [I] ≈ 30 to $50[\mathrm{M}]$.

Characteristics Two

Polynomial Basis Representation.

- Let $\tau(x)$ be an irreducible polynomial of degree n over $G F(2)$.
- \mathbb{F} consists of all polynomials of degree at most $n-1$ over $G F(2)$.
- Addition and multiplication done modulo $\tau(x)$.
- Multiplication: Karatsuba-Ofman, table look-up.
- Inversion: extended Euclidean algorithm. [I] ≈ 8 to $10[\mathrm{M}]$ (or lesser).

Normal Basis Representation: squaring is "free" but multiplication is costlier.

Choice of Cyclic Group

The whole of $\mathbb{I F}^{*}$ is not used.

- Let r be a prime dividing $q=p^{m}$.
- Then \mathbb{F}_{q}^{*} has a subgroup G of order r.
- Being of prime order, this subgroup is cyclic, i.e., $G=\langle g\rangle$.
- Cryptography is done over G.

Necessary Criteria:
The discrete \log problem should be hard over G.

Discrete Log Algorithms

Generic algorithms: $O(\sqrt{|G|})$.

- Pollard's rho algorithm.
- Pohlig-Hellman algorithm.

Index calculus algorithm: $O\left(e^{(1+o(1)) \sqrt{\ln p \ln \ln p}}\right)$. Works over \mathbb{Z}_{p}^{*}.
Number field sieve: $O\left(e^{\left.(1.92+o(1))(\ln q)^{1 / 3}(\ln \ln q)^{2 / 3}\right)}\right)$; sub-exponential algorithm.

Security Versus Efficiency

- Size of G and \mathbb{F} has to be chosen so that all known discrete log algorithms have a minimum run time.
- Size of IF determines the efficiency of multiplication and inversion.
- For 80-bit security:
$|G|$ is at least $2^{160} ;|\mathbb{F}|$ is at least 2^{512};
- Existence of sub-exponential algorithms necessitates larger size fields.
- Detailed study of feasible parameters by Lenstra and Verheul.

Cyclic Groups from Elliptic Curves

Weierstraß Form

Weierstraß equation: elliptic curve over a field K.

$$
E / K: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6},
$$

$a_{i} \in K$; there are no "singular points".
L-rational points on E : $(L \supseteq K)$,

$$
E(L)=\{(x, y) \in L \times L: C(x, y)=0\} \cup\{\mathcal{O}\} .
$$

$C(x, y)=y^{2}+a_{1} x y+a_{3} y-\left(x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right)$. If $L \supseteq K$, then $E(L) \supseteq E(K)$.
\bar{K} : algebraic closure of E; denote $E(\bar{K})$ by E.

Simplifying Weierstraß Form

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

replacing y by $\frac{1}{2}\left(y-a_{1} x-a_{3}\right)$ gives

$$
y^{2}=4 x^{3}+b_{2} x^{2}+2 b_{4} x+b_{6}
$$

where

$$
b_{2}=a_{1}^{2}+4 a_{2}, b_{4}=2 a_{4}+a_{1} a_{3}, b_{6}=a_{3}^{2}+4 a_{6}
$$

If characteristics $\neq 2,3$, then replacing (x, y) by $\left(\left(x-3 b_{2}\right) / 36, y / 108\right)$ gives

$$
y^{2}=x^{3}-27 c_{4} x-54 c_{6} .
$$

Simplifying Weierstraß Form

Define

$$
\begin{aligned}
b_{8}= & a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2} \\
c_{4}= & b_{2}^{2}-24 b_{4} \\
c_{6}= & -b_{2}^{3}+36 b_{2} b_{4}-216 b_{6} \\
\Delta= & -b_{2}^{2} b_{8}-8 b_{4}^{3}-27 b_{6}^{2}+9 b_{2} b_{4} b_{6} \\
& \text { (discriminant) } \\
j= & c_{4}^{3} / \Delta(j \text {-invariant }) \\
\omega= & d x /\left(2 y+a_{1} x+a_{3}\right) \\
= & d y /\left(3 x^{2}+2 a_{2} x+a_{4}-a_{1} y\right) \\
& \text { (invariant differential) }
\end{aligned}
$$

Relations: $4 b_{8}=b_{2} b_{6}-b_{4}^{2}, 1728 \Delta=c_{4}^{3}-c_{6}^{2}$.

Simplified Weierstraß Form

 $\operatorname{char}(K) \neq 2,3$: the equation simplifies to$$
\begin{aligned}
& y^{2}=x^{3}+a x+b \\
& a, b \in K \text { and } 4 a^{3}+27 b^{2} \neq 0 .
\end{aligned}
$$

- ensures $x^{3}+a x+b$ does not have repeated roots;
- $x^{3}+a x+b$ has repeated roots iff

$$
x^{3}+a x+b \text { and } \frac{d}{d x}\left(x^{3}+a x+b\right)=3 x^{2}+a
$$ have a common root;

- eliminating x from these two relations gives the condition $4 a^{3}+27 b^{2}=0$;
- this corresponds to $\Delta=0$.

Simplified Weierstraß Form

 $\operatorname{char}(K)=2$: the equation simplifies to- $y^{2}+x y=x^{3}+a x^{2}+b$, $a, b \in K, b \neq 0$, non-supersingular, or
- $y^{2}+c y=x^{3}+a x+b$, $a, b, c \in K, c \neq 0$, supersingular.

Group Law

- $E(L)$: L-rational points on E is an abelian group;
- addition is done using the "chord-and-tangent law";
- \mathcal{O} acts as the identity element.

Consider $E / K: y^{2}=x^{3}+a x+b$. Addition formulae are as follows:

- $P+\mathcal{O}=\mathcal{O}+P=P$, for all $P \in E(L)$.
- $-\mathcal{O}=\mathcal{O}$.
- If $P=(x, y) \in E(L)$, then $-P=(x,-y)$.
- If $Q=-P$, then $P+Q=\mathcal{O}$.

Group Law (contd.)

- If $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right)$,
with $P \neq-Q$, then
$P+Q=\left(x_{3}, y_{3}\right)$, where

$$
\begin{aligned}
& x_{3}=\lambda^{2}-x_{1}-x_{2} \\
& y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
\lambda & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { if } P \neq Q \\
& =\frac{3 x_{1}^{2}+a}{2 y_{1}} \text { if } P=Q .
\end{aligned}
$$

Deriving Addition Law

$$
\text { Let } P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right) \text { and } P \neq-Q \text {. }
$$

- If $P \neq Q$, then the line $\ell(x, y): y=\lambda x+\nu$ through P and Q intersects the curve $E(x, y)$ at a third point R; the reflection of R on the x-axis is defined to be the point $P+Q$ given by $\left(x_{3}, y_{3}\right)$;
- If $P=Q$, then the tangent $\ell(x, y): y=\lambda x+\nu$ intersects the curve at a point R; the reflection of R on the x-axis is defined to be the point $2 P$ given by $\left(x_{3}, y_{3}\right)$;

Deriving Addition Law

Let $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right)$ and $P \neq Q,-Q$. So $\lambda=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right), \nu=y_{1}-\lambda x_{1}=y_{2}-\lambda x_{2}$.
Putting $\ell(x, y)$ into $E(x, y)$ we get
$(\lambda x+\nu)^{2}=x^{3}+a x+b$
which is the same as
$x^{3}-\lambda^{2} x^{2}+(a-2 \nu \lambda) x+b-\nu^{2}=0$.
This equation has three roots and x_{1}, x_{2} are two of the roots.
So the third root is $x_{3}=\lambda^{2}-x_{1}-x_{2}$.
Also, $-y_{3}=\lambda x_{3}+\nu$ and $y_{1}=\lambda x_{1}+\nu$ gives $y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}$.
(Note: the line through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ passes through $\left(x_{3},-y_{3}\right)$.)

Deriving Addition Law

Let $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right)$ and $P=Q$.
$E: y^{2}=x^{3}+a x+b$ and so
$2 y \frac{d y}{d x}=3 x^{2}+a$.
Slope λ at $\left(x_{1}, y_{1}\right)$ is $\frac{3 x_{1}^{2}+a}{2 y_{1}}$.
Rest of the analysis same as the previous case.
Obtained formula for $\left(x_{3}, y_{3}\right)$ same except for the changed value of λ.

Elliptic Curve Group

- \mathcal{O} is the additive identity;
- for any point $P, P+(-P)=\mathcal{O}$;
- for any points P, Q and R,

$$
P+(Q+R)=(P+Q)+R .
$$

associative property; this is difficult to verify directly; follows easily from the notion of divisors.

Frobenius Map

$$
\tau_{p}: E\left(\overline{\mathbb{F}}_{p}\right) \rightarrow E\left(\overline{\mathbb{F}}_{p}\right), \quad \tau_{p}(x, y)=\left(x^{p}, y^{p}\right) .
$$

τ_{p} is a group homomorphism.
Trace of Frobenius: $t_{p}=p+1-\# E\left(\mathbb{F}_{p}\right)$.
Theorem (Hasse): $\# E\left(\mathbb{F}_{p}\right)=p+1-t_{p}$, where $\left|t_{p}\right| \leq 2 \sqrt{p}$. Consequently, $\# E\left(\mathbb{F}_{p}\right) \approx p$.

Theorem (Birch):
$\#\left\{E / \mathbb{F}_{p}: \alpha \leq t_{p} \leq \beta\right\} \approx \frac{1}{\pi} \int_{\alpha}^{\beta} \sqrt{4 p-x^{2}} d x$.

Number of Points

Let $K=\mathbb{F}_{q}$ and $\bar{K}=\cup_{m \geq 1} \mathbb{F}_{q^{m}}$.

- Schoof's Algorithm.
- Compute t modulo small primes and then use CRT.
- Improvement by Elkies and Atkin.
$\# E\left(\mathbb{F}_{p}\right)$ can be computed in time $O\left((\log p)^{6}\right)$ by SEA algorithm.
- Subsequent work for computing points on EC on different fields.
- Weil's Theorem: Let $t=q+1-\# E\left(\mathbb{F}_{q}\right)$.

Let α, β be complex roots of $T^{2}-t T+q$.
Then $\# E\left(\mathbb{F}_{q}\right)=q^{k}+1-\alpha^{k}-\beta^{k}$ for all $k \geq 1$.

Koblitz Curves

Characteristics 2, $q=2^{k}$.

$$
E: y^{2}+x y=x^{3}+a x^{2}+1, \quad a \in\{0,1\} .
$$

- Chosen for reasons of efficiency.
- For security reasons k is taken to be a prime.

$$
\# E\left(\mathbb{F}_{q}\right)=2^{k}-\left(\frac{-1+\sqrt{-7}}{2}\right)^{k}-\left(\frac{-1-\sqrt{-7}}{2}\right)^{k}+1
$$

Structure Theorem

Let E be an elliptic curve defined over \mathbb{F}_{q}.

- $E\left(\mathbb{F}_{q}\right) \cong \mathbb{Z}_{n_{1}} \oplus \mathbb{Z}_{n_{2}}$, where $n_{2} \mid n_{1}$ and $n_{2} \mid(q-1)$.
- $E\left(\mathbb{F}_{q}\right)$ is cyclic if and only if $n_{2}=1$.
$P \in E$ is an n-torsion point if $n P=\mathcal{O}$;
$E[n]$ is the set of all n-torsion points.
Theorem : If $\operatorname{gcd}(n, q)=1$, then $E[n] \cong Z_{n} \oplus Z_{n}$.

Supersingular Elliptic Curves

An elliptic curve E / \mathbb{F}_{q} is supersingular if $p \mid t$ where $t=q+1-\# E\left(\mathbb{F}_{q}\right)$.

Theorem (Waterhouse): $\quad E / \mathbb{F}_{q}$ is supersingular if and only if $t^{2}=0, q, 2 q, 3 q$ or $4 q$.

Supersingular Elliptic Curves

Theorem (Schoof): Let E / \mathbb{F}_{q} be supersingular with $t=q+1-\# E\left(\mathbb{F}_{q}\right)$. Then

- If $t^{2}=q, 2 q$ or $3 q$, then $E\left(\mathbb{F}_{q}\right)$ is cyclic.
- If $t^{2}=4 q$ and $t=2 \sqrt{q}$, then $E\left(\mathbb{F}_{q}\right) \cong Z_{\sqrt{q}-1} \oplus Z_{\sqrt{q}-1}$.
- If $t^{2}=4 q$ and $t=-2 \sqrt{q}$, then $E\left(\mathbb{F}_{q}\right) \cong Z_{\sqrt{q}+1} \oplus Z_{\sqrt{q}+1}$.
- If $t=0$ and $q \not \equiv 3 \bmod 4$, then $E\left(\mathbb{F}_{q}\right)$ is cyclic.
- If $t=0$ and $q \equiv 3 \bmod 4$, then $E\left(\mathbb{F}_{q}\right)$ is cyclic or $E\left(\mathbb{F}_{q}\right) \cong Z_{\frac{q+1}{2}} \oplus Z_{2}$.

Summary

- Elliptic curves over finite fields provide rich examples of abelian groups.
- Let r be a prime such that $r \mid \# E(L)$ where $L \supseteq \mathbb{F}_{q}$. Then there is a cyclic subgroup $G=\langle P\rangle$ of $E(L)$.
- It is possible to do cryptography over G.
- Advantage: no sub-exponential algorithm for solving discrete log is known for G. (We will qualify this statement later.)
- Consequently, one can work over relatively small fields.

Jacobian Coordinates

- Affine coordinates: $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$.
- Slope computation: $\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ or $\frac{3 x_{1}^{2}+a}{2 y_{1}}$.
- One inversion required.
- Jacobian coordinates: (X, Y, Z) represents $\left(X / Z^{2}, Y / Z^{3}\right)$.
- Addition using Jacobian coordinates avoids inversions.

Doubling in Jacobian

Curve: $y^{2}=x^{3}+a x+b$. $\left(X_{1}, Y_{1}, Z_{1}\right)$ is doubled to obtain $\left(X_{3}, Y_{3}, Z_{3}\right)$.

$$
\begin{aligned}
x_{3} & =\frac{\left(3 X_{1}^{2}+a Z_{1}^{4}\right)^{2}-8 X_{1} Y_{1}^{2}}{4 Y_{1}^{2} Z_{1}^{2}} \\
y_{3} & =\frac{3 X_{1}^{2}+a Z_{1}^{4}}{2 Y_{1} Z_{1}}\left(\frac{X_{1}}{Z_{1}^{2}}-X_{3}^{\prime}\right)-\frac{Y_{1}}{Z_{1}^{3}} \\
X_{3} & =\left(3 X_{1}^{2}+a Z_{1}^{4}\right)^{2}-8 X_{1} Y_{1}^{2} \\
Y_{3} & =\left(3 X_{1}^{2}+a Z_{1}^{4}\right)\left(4 X_{1} Y_{1}^{2}-X_{3}\right)-8 Y_{1}^{4} \\
Z_{3} & =2 Y_{1} Z_{1} .
\end{aligned}
$$

Mixed Addition

Curve: $y^{2}=x^{3}+a x+b$.
$\left(X_{1}, Y_{1}, Z_{1}\right)$ and $P=(X, Y, 1)$ are added to obtain $\left(X_{3}, Y_{3}, Z_{3}\right)$ as follows.

$$
\begin{aligned}
& x_{3}=\left(\frac{Y-\frac{Y_{1}}{Z_{3}^{3}}}{X-\frac{X_{1}}{Z_{1}^{2}}}\right)^{2}-\frac{X_{1}}{Z_{1}^{2}}-X \\
& y_{3}=\left(\frac{Y Z_{1}^{3}-Y_{1}}{\left(X Z_{1}^{2}-X_{1}\right) Z_{1}}\right)\left(\frac{X_{1}}{Z_{1}^{2}}-X_{3}^{\prime}\right)-\frac{Y_{1}}{Z_{1}^{3}}
\end{aligned}
$$

Mixed Addition (contd.)

$$
\begin{aligned}
X_{3}= & x_{3} Z_{3} \\
= & \left(Y Z_{1}^{3}-Y_{1}\right)^{2}-X_{1}\left(X Z_{1}^{2}-X_{1}\right)^{2} \\
& -X\left(X Z_{1}^{2}-X_{1}\right)^{2} Z_{1}^{2} \\
= & \left(Y Z_{1}^{3}-Y_{1}\right)^{2}-\left(X Z_{1}^{2}-X_{1}\right)^{2}\left(X_{1}+X Z_{1}^{2}\right) \\
Y_{3}= & y_{3} Z_{3} \\
= & \left(Y Z_{1}^{3}-Y_{1}\right)\left(\left(X Z_{1}^{2}-X_{1}\right)^{2} X_{1}-X_{3}\right) \\
& -Y_{1}\left(X Z_{1}^{2}-X_{1}\right)^{3} \\
Z_{3}= & \left(X Z_{1}^{2}-X_{1}\right) Z_{1}
\end{aligned}
$$

Scalar Multiplication

Let $G=\langle P\rangle$ be a subgroup of $E(L)$ of prime order r.
Instance: P and $a \in \mathbb{Z}_{r}$.
Task: Compute $a P$.

- a is usually a secret.
- Basic algorithm: left-to-right "double and add" algorithm; addition is always by P; underlines the importance of mixed addition.

Side Channel Information

Let $a=a_{n-1} a_{n-2} \ldots a_{0}$.

- At the i th step:
- a doubling takes place;
- if $a_{n-i}=1$, then an addition takes place.

Suppose it is possible to measure the time required for the i th step.

- Then a_{n-i} can be uniquely determined.
- Instead of time, it may be possible to measure the power consumption at each step.
- The attack actually works and has been demonstrated.
Countermeasures: several are known; ongoing research.

Scalar Multiplication Issues

Representation of scalars.

- Expansion using $\{0, \pm 1\}$ instead of $\{0,1\}$; negation of a point is "free"; not good for finite fields.
- Non-adjacent form: "no two non-zero adjacent digits"; example: 100101; known results on length of representation and density of non-zero digits; left-to-right "online" algorithm to obtain NAF.

Scalar Multiplication Issues

- Window method.
- Base- ϕ representation of the scalar; ϕ is the Frobenius map.
- Double base chain expansion; use bases $\{2,3\}$ or $\{2,3,5\}$ instead of base 2 ; optimal length and density of non-zero digits not yet known.
- Parallelism, memory requirement.

Other Curve Forms

- Montgomery form: x-coordinate only scalar multiplication. $a y^{2}=x^{3}+b x+x, a \neq 0 ;$
- (Twisted) Edwards form: complete (and hence unified) formulae for addition and doubling. $a x^{2}+y^{2}=1+d x^{2} y^{2} ; a, d \neq 0, a \neq d$.
- Jacobi-Quartic form.

Bilinear Pairings in Cryptography.

Divisors

Let E / \mathbb{F}_{q} be given by $C(x, y)=0$.
The group of divisors of $E\left(\mathbb{F}_{q^{n}}\right)$ is the free abelian group generated by the points of $E\left(\mathbb{F}_{q^{n}}\right)$. Thus any divisor D is of the form

$$
D=\sum_{P \in E\left(\mathbb{F}_{q^{n}}\right)} n_{P}\langle P\rangle .
$$

- $n_{P} \in Z$,
- $n_{P}=0$ except for finitely many P 's.
- Zero divisors: $\sum n_{P}=0$.

Rational Functions

A rational function f on E is an element of the field of fractions of the ring $\mathbb{F}_{q^{n}}[x, y] /(C(x, y))$. The divisor of a rational function f is defined by

$$
\operatorname{div}(f)=\sum_{P \in E\left(\mathbb{F}_{q^{n}}\right)} \operatorname{ord}_{P}(f)\langle P\rangle
$$

where $^{\operatorname{ord}}{ }_{P}(f)$ is the order of the zero/pole that f has at P.
A divisor D is said to be principal if $D=\operatorname{div}(f)$, for a rational function f.

Rational Functions (contd.)

Theorem: A divisor $D=\sum_{P \in E\left(\mathbb{F}_{\left.q^{n}\right)}\right.} n_{P}\langle P\rangle$ is principal if and only if

- $\sum n_{P}=0$ and
- $\sum n_{P} P=\mathcal{O}$.

Definition. Two divisors D_{1} and D_{2} are said to be equivalent $\left(D_{1} \sim D_{2}\right)$ if $D_{1}-D_{2}$ is principal.

Rational Functions (contd.)

Theorem : Any zero divisor $D=\sum n_{P}\langle P\rangle$ is equivalent to a (unique) divisor of the form $\langle Q\rangle-\langle\mathcal{O}\rangle$ for some $Q \in E\left(\mathbb{F}_{q^{n}}\right)$.

If $P=(x, y)$, then by $f(P)$ we mean $f(x, y)$.
Definition. Given a rational function f and a zero divisor $D=\sum n_{P}\langle P\rangle$, define

$$
f(D)=\prod_{P \in E\left(\mathbb{F}_{q^{n}}\right)} f(P)^{n_{P}} .
$$

Tate Pairing (Preliminaries)

- Embedding Degree: Let r be co-prime to q and $r \mid \# E\left(\mathbb{F}_{q}\right)$. The least positive integer k such that $r \mid\left(q^{k}-1\right)$ is called the embedding degree.
- n-Torsion Points: Let E / \mathbb{F}_{q} be an elliptic curve. Then

$$
E\left(\mathbb{F}_{q^{k}}\right)[n]=\left\{P \in E\left(\mathbb{F}_{q^{k}}\right): n P=\mathcal{O}\right\} .
$$

- $\mu_{r}\left(\mathbb{F}_{q^{k}}\right)$: cyclic subgroup of $\mathbb{F}_{q^{k}}$ of order r. Here r is prime and $r \mid\left(q^{k}-1\right)$.

Tate Pairing (Preliminaries)

- $E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right)$: collection of all cosets of $r E\left(\mathbb{F}_{q^{k}}\right)$.
- $f_{s, P}$: an $\mathbb{F}_{q^{k}}$-rational function $f_{s, P}$ with divisor

$$
\left\langle f_{s, P}\right\rangle=s\langle P\rangle-\langle[s] P\rangle-(s-1)\langle\mathcal{O}\rangle .
$$

Tate Pairing Definition

Tate pairing $e(\cdot, \cdot)$:
(modified: reduced and normalised)

$$
E\left(\mathbb{F}_{q}\right)[r] \times E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right) \rightarrow \mu_{r}\left(\mathbb{F}_{q^{k}}\right)
$$

is given by

$$
e(P, Q)=f_{r, P}(Q)^{\left(q^{k}-1\right) / r} .
$$

- P is an r-torsion point from $E\left(\mathbb{F}_{q^{k}}\right)$;
- Q is any point in a coset of $r E\left(\mathbb{F}_{q^{k}}\right)$;
- the result is an element of $\mathbb{F}_{q^{k}}$ of order r.

Computing Tate Pairing

Note: $\quad P$ is from $E\left(\mathbb{F}_{q}\right)$ while Q is from $E\left(\mathbb{F}_{q^{k}}\right)$.

$$
\begin{aligned}
\left\langle f_{r, P}\right\rangle & =r\langle P\rangle-\langle[r] P\rangle-(r-1)\langle\mathcal{O}\rangle \\
& =r\langle P\rangle-r\langle\mathcal{O}\rangle .
\end{aligned}
$$

The computation of $f_{s, P}$ is using a double-and-add algorithm similar to that of scalar multiplication.

Some Simple Facts

Assume that E is given in Weierstraß form. Let P and R be points on E.
$\ell_{P, R}, R \neq P$: line passing through P, R and

$$
-(P+R)
$$

$\ell_{R, R}$: line passing through R and $-2 R$.
$\ell_{R,-R}$: line passing through R and $-R$.

$$
\begin{aligned}
\left\langle\ell_{P, R}\right\rangle & =\langle P\rangle+\langle R\rangle+\langle-(P+R)\rangle-3\langle\mathcal{O}\rangle \\
\left\langle\ell_{R, R}\right\rangle & =2\langle R\rangle+\langle-2 R\rangle-3\langle\mathcal{O}\rangle \\
\left\langle\ell_{R,-R}\right\rangle & =\langle R\rangle+\langle-R\rangle-2\langle\mathcal{O}\rangle
\end{aligned}
$$

Some Simple Facts

$h_{P, R}, R \neq P:$

$$
h_{P, R}=\ell_{P, R} / \ell_{T,-T} ; T=P+R .
$$

$h_{R, R}$:
$h_{R, R}=\ell_{R, R} / \ell_{T,-T} ; T=2 R$.
$\left\langle h_{P, R}\right\rangle=\left\langle\ell_{P, R}\right\rangle-\left\langle\ell_{T,-T}\right\rangle$
$\left\langle h_{P, R}\right\rangle=\left\langle\ell_{R, R}\right\rangle-\left\langle\ell_{T,-T}\right\rangle$
$\left\langle f_{1, P}\right\rangle=\langle P\rangle-\langle P\rangle=0:$ So, $f_{1, P}=1$.

Recurrence for $f_{s, P}$

$$
\begin{aligned}
\left\langle f_{2 m, P}\right\rangle= & 2 m\langle P\rangle-\langle 2 m P\rangle-(2 m-1)\langle\mathcal{O}\rangle \\
= & 2(m\langle P\rangle-\langle m P\rangle-(m-1)\langle\mathcal{O}\rangle) \\
& +2\langle m P\rangle-\langle 2 m P\rangle-\langle\mathcal{O}\rangle \\
= & 2\left\langle f_{m, P}\right\rangle+2\langle m P\rangle+\langle-2 m P\rangle-3\langle\mathcal{O}\rangle \\
& -(\langle 2 m P\rangle+\langle-2 m P\rangle-2\langle\mathcal{O}\rangle) \\
= & 2\left\langle f_{m, P}\right\rangle+\left\langle\ell_{m P, m P}\right\rangle-\left\langle\ell_{2 m P,-2 m P\rangle}=\right. \\
= & 2\left\langle f_{m, P}\right\rangle+\left\langle h_{m P, m P}\right\rangle .
\end{aligned}
$$

Recurrence for $f_{s, P}$

$$
\begin{aligned}
\left\langle f_{2 m+1, P}\right\rangle= & (2 m+1)\langle P\rangle-\langle(2 m+1) P\rangle \\
& -2 m\langle\mathcal{O}\rangle \\
= & 2 m\langle P\rangle-\langle 2 m P\rangle-(2 m-1)\langle\mathcal{O}\rangle \\
& +\langle P\rangle+\langle 2 m P\rangle-\langle(2 m+1) P\rangle-\langle\mathcal{O}\rangle \\
= & \left\langle f_{2 m, P}\right\rangle+\langle P\rangle+\langle 2 m P\rangle \\
& +\langle-(2 m+1) P\rangle-3\langle\mathcal{O}\rangle \\
& -(\langle(2 m+1) P\rangle+\langle-(2 m+1) P\rangle \\
& -2\langle\mathcal{O}\rangle) \\
= & \left\langle f_{2 m, P}\right\rangle+\left\langle\ell_{2 m P, P}\right\rangle \\
& -\left\langle\ell_{(2 m+1) P,-(2 m+1) P\rangle}\right\rangle \\
= & \left\langle f_{2 m, P\rangle}\right\rangle\left\langle h_{P, 2 m P}\right\rangle .
\end{aligned}
$$

Recurrence for $f_{s, P}$

$$
\left\langle f_{2 m, P}\right\rangle=2\left\langle f_{m, P}\right\rangle+\left\langle h_{m P, m P}\right\rangle .
$$

So,

$$
\begin{aligned}
f_{2 m, P} & =f_{m, P}^{2} \times h_{m P, m P} . \\
\left\langle f_{2 m+1, P}\right\rangle & =2\left\langle f_{m, P}\right\rangle+\left\langle h_{P, 2 m P}\right\rangle .
\end{aligned}
$$

So,

$$
f_{2 m+1, P}=f_{2 m, P} \times h_{P, 2 m P} .
$$

Miller's Algorithm

Given $P \in E\left(\mathbb{F}_{q}\right)$ and $Q \in E\left(\mathbb{F}_{q^{k}}\right)$
to compute $f_{r, P}(Q)$.
Let $r_{t-1} r_{t-2} \ldots r_{0}$ be the binary expansion of r.

- Set $f \leftarrow 1$.
- Compute $r P$ from left-to-right using "double and add".
- Let R be the input before the i th iteration.
- $f \leftarrow f^{2} \times h_{R, R}(Q) ; R \leftarrow 2 R$;
- if $r_{n-i}=1$

$$
f \leftarrow f \times h_{R, P}(Q) ;
$$

$$
R \leftarrow R+P .
$$

Effect of Bilinear Map

Recall

$$
\begin{gathered}
e: E\left(\mathbb{F}_{q}\right)[r] \times E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right) \rightarrow \mu_{r}\left(\mathbb{F}_{q^{k}}\right) \\
e(a P, Q)=e(P, Q)^{a}
\end{gathered}
$$

- reduces discrete \log over $E\left(\mathbb{F}_{q}\right)$ to that over $\mu_{r}\left(\mathbb{F}_{q^{k}}\right)$;
- security depends on k;
- for supersingular curves $k \leq 6$;
- for general elliptic curves k is large.

Effect of Bilinear Map

- Symmetric bilinear map: The second argument Q of $e(P, Q)$ is an element $E\left(\mathbb{F}_{q^{k}}\right)$.
Using a distortion map, one can consider Q to be an element of $E\left(\mathbb{F}_{q}\right)$.
- Solution to DDH: given $(P, a P, b P, Q)$ determine if $Q=a b P$; verify $e(a P, b P)=e(P, Q)$.
- Gap DH-groups: groups where CDH is hard but DDH is easy.

Joux's Key Agreement Protocol

 3 -party, single-round.- Three users U_{1}, U_{2} and U_{3};
- U_{i} chooses a uniform random r_{i} and broadcasts $X_{i}=r_{i} P$;
- U_{i} computes $K=e\left(X_{j}, X_{k}\right)^{r_{i}}$, where $\{j, k\}=\{1,2,3\} \backslash\{i\} ;$

$$
K=e(P, P)^{r_{1} r_{2} r_{3}} .
$$

Efficiency Improvements

- Irrelevant denominators: the denominator of $h_{P, R}$ need not be evaluated.
- Point tripling: the line through P and $2 P$ passes through $-3 P$; instead of doubling, use tripling; applicable for characteristics three curves.
- Variants: Ate and Eta pairings; the aim is to reduce the number of Miller iterations.
- Pairings on other forms of elliptic curves.
- Other implementation issues.

Pairing Friendly Curves

- Supersingular curves have embedding degree at most 6 .
- Obtain non-supersingular curves with low embedding degree k; typically $k \leq 12$;
involves a lot of computation with computer algebra packages;
only a few examples are known.
- Embedding degree and group size determines the security level of the target protocol.

Thank you for your kind attention!

