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Structure of Presentation
• Exponentiation in General Cyclic Groups.
• Cyclic Groups from Finite Fields.
• Cyclic Groups from Elliptic Curves.
• Bilinear Pairings in Cryptography.
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Exponentiation in General
Cyclic Groups

Cyclic Groups in Cryptography – p. 3/65



Exponentiation
Let G = 〈g〉 be a cyclic group of order|G| = q.
Basic Problem:
Input: a ∈ Zq.
Task: Computeh = ga.

Let a = an−1 . . . a0,
• n = ⌈log2 q⌉;
• eachai is a bit.

Two simple methods.
• Right-to-left.
• Left-to-right.
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Right-to-Left
• n = 1: h = ga0.

• n = 2: h = g2a1+a0 = (g2)a1 × ga0.
t = g; r = ga0;
t = t2; r = ta1 × r; h = r.

• n = 3: h = g22a2+2a1+a0 = (g22

)a2 × (g2)a1 × ga0.
t = g; r = ga0;
t = t2; r = ta1 × r;
t = t2; r = ta2 × r; h = r.

• At ith step: squaret; multiply t to r if ai = 1.
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Left-to-Right
• n = 1: h = ga0.

• n = 2: h = g2a1+a0 = (ga1)2 × ga0.
r = ga1;
r = r2 × ga0; h = r.

• n = 3: h = g22a2+2a1+a0 = ((ga2)2 × ga1)2 × ga0.
r = ga2;
r = r2 × ga1;
r = r2 × ga0; h = r.

• At ith step: squarer; multiply r by g if an−i = 1.
• Important: always multiply byg.

Also called square-and-multiply algorithm.
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Addition Chains
An addition chain of lengthℓ is a sequence ofℓ + 1
integers such that
• the first integer is1;
• each subsequent integer is a sum of two previous

integers.

Example: 1,2,3,5,7,14,28,56,63.
Addition chains can be used to compute powers.
Consider the set of(n1, . . . , np, ℓ) such that there is an
addition chain of lengthℓ containingn1, . . . , np.
• Downey, Leong and Sethi (1981) proved this set

to be NP-complete.
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Exponentiation Algorithms
A survey by Bernstein with the title

Pippenger’s Exponentiation Algorithm

Brauer (1939):“the left-to-right2k-ary method”.

Straus (1964):computes a product ofp powers with
possibly different bases.

Yao (1976):computes a sequence ofp powers of a
single base.

Pippenger (1976):improves on both Straus’s and
Yao’s algorithm.
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Cyclic Groups from Finite
Fields

Cyclic Groups in Cryptography – p. 9/65



Structure of Finite Fields
Let (IF,+, ∗) be a finite field withq = |IF|.
• q = pm, wherep is a prime andm ≥ 1;

p is called the characteristic of the field.
• (IF,+) is a commutative group.
• (IF∗ = IF \ {0}, ∗) is a cyclic group.

Basic Operations:
• addition and subtraction;
• multiplication;
• inversion (and division).
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Useful Fields
We are interested in “large” fields:pm ≈ 2256.

Commonly used fields.
• Large characteristics:m = 1 andp is “large”.
• Characteristics 2:p = 2.
• Characteristics 3:p = 3, relevant for pairing

based cryptography.
• Other composite fields:Optimal extension fields.

Criteria for choosing a field:
security/efficiency trade-off.
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Large Characteristics
Use of multi-precision arithmetic;
• p is stored as several32-bit words;
• each field element is stored as several 32-bit

words;
• all computations done modulop;
• combination of Karatsuba-Ofman and table

look-up used for multiplication;
• Inversion using Itoh-Tsuji algorithm;
• [I]≈ 30 to 50 [M].
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Characteristics Two
Polynomial Basis Representation.
• Let τ(x) be an irreducible polynomial of degree

n overGF (2).
• IF consists of all polynomials of degree at most

n− 1 overGF (2).
• Addition and multiplication done moduloτ(x).
• Multiplication: Karatsuba-Ofman, table look-up.
• Inversion: extended Euclidean algorithm.

[I] ≈ 8 to 10 [M] (or lesser).

Normal Basis Representation: squaring is “free”
but multiplication is costlier.
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Choice of Cyclic Group
The whole ofIF∗ is not used.
• Let r be a prime dividingq = pm.
• ThenIF∗q has a subgroupG of orderr.

• Being of prime order, this subgroup is cyclic, i.e.,
G = 〈g〉.

• Cryptography is done overG.

Necessary Criteria:
The discrete log problem should be hard overG.
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Discrete Log Algorithms
Generic algorithms:O(

√

|G|).
• Pollard’s rho algorithm.
• Pohlig-Hellman algorithm.

Index calculus algorithm:O
(

e(1+o(1))
√

ln p ln ln p
)

.

Works overZ∗p.

Number field sieve:O
(

e(1.92+o(1))(ln q)1/3(ln ln q)2/3)
)

;

sub-exponential algorithm.
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Security Versus Efficiency
• Size ofG andIF has to be chosen so that all

known discrete log algorithms have a minimum
run time.

• Size ofIF determines the efficiency of
multiplication and inversion.

• For80-bit security:
|G| is at least2160; |IF| is at least2512;

• Existence of sub-exponential algorithms
necessitates larger size fields.

• Detailed study of feasible parameters by Lenstra
and Verheul.
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Cyclic Groups from Elliptic
Curves

Cyclic Groups in Cryptography – p. 17/65



Weierstraß Form
Weierstraß equation: elliptic curve over a fieldK.

E/K : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

ai ∈ K; there are no “singular points”.
L-rational points onE: (L ⊇ K),

E(L) = {(x, y) ∈ L× L : C(x, y) = 0} ∪ {O}.

C(x, y) = y2 + a1xy + a3y − (x3 + a2x
2 + a4x + a6).

If L ⊇ K, thenE(L) ⊇ E(K).
K: algebraic closure ofE; denoteE(K) by E.
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Simplifying Weierstraß Form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

replacingy by 1
2(y − a1x− a3) gives

y2 = 4x3 + b2x
2 + 2b4x + b6

where

b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6.

If characteristics6= 2, 3, then replacing(x, y) by
((x− 3b2)/36, y/108) gives

y2 = x3 − 27c4x− 54c6.
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Simplifying Weierstraß Form
Define

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

c4 = b2
2 − 24b4

c6 = −b3
2 + 36b2b4 − 216b6

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6

(discriminant)

j = c3
4/∆(j-invariant)

ω = dx/(2y + a1x + a3)

= dy/(3x2 + 2a2x + a4 − a1y)

(invariant differential)

Relations:4b8 = b2b6 − b2
4, 1728∆ = c3

4 − c2
6.
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Simplified Weierstraß Form
char(K) 6= 2, 3: the equation simplifies to

y2 = x3 + ax + b

a, b ∈ K and4a3 + 27b2 6= 0.

• ensuresx3 + ax + b does not have repeated roots;

• x3 + ax + b has repeated roots iff
x3 + ax + b and d

dx(x3 + ax + b) = 3x2 + a
have a common root;

• eliminatingx from these two relations gives the
condition4a3 + 27b2 = 0;

• this corresponds to∆ = 0.
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Simplified Weierstraß Form
char(K) = 2: the equation simplifies to

• y2 + xy = x3 + ax2 + b,
a, b ∈ K, b 6= 0, non-supersingular,or

• y2 + cy = x3 + ax + b,
a, b, c ∈ K, c 6= 0, supersingular.
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Group Law
• E(L): L-rational points onE is an abelian group;
• addition is done using the “chord-and-tangent

law”;
• O acts as the identity element.

ConsiderE/K : y2 = x3 + ax + b.
Addition formulae are as follows:
• P +O = O + P = P , for all P ∈ E(L).
• −O = O.
• If P = (x, y) ∈ E(L), then−P = (x,−y).
• If Q = −P , thenP + Q = O.
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Group Law (contd.)
• If P = (x1, y1), Q = (x2, y2),

with P 6= −Q, then
P + Q = (x3, y3), where

x3 = λ2 − x1 − x2,

y3 = λ(x1 − x3)− y1,

and

λ = y2−y1

x2−x1
if P 6= Q;

= 3x2
1+a

2y1
if P = Q.

Cyclic Groups in Cryptography – p. 24/65



Deriving Addition Law
Let P = (x1, y1), Q = (x2, y2) andP 6= −Q.
• If P 6= Q, then the lineℓ(x, y) : y = λx + ν

throughP andQ intersects the curveE(x, y) at a
third pointR; the reflection ofR on thex-axis is
defined to be the pointP + Q given by(x3, y3);

• If P = Q, then the tangentℓ(x, y) : y = λx + ν
intersects the curve at a pointR; the reflection of
R on thex-axis is defined to be the point2P
given by(x3, y3);
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Deriving Addition Law
Let P = (x1, y1), Q = (x2, y2) andP 6= Q,−Q. So
λ = (y2 − y1)/(x2 − x1), ν = y1 − λx1 = y2 − λx2.
Puttingℓ(x, y) into E(x, y) we get
(λx + ν)2 = x3 + ax + b
which is the same as
x3 − λ2x2 + (a− 2νλ)x + b− ν2 = 0.
This equation has three roots andx1, x2 are two of the
roots.
So the third root isx3 = λ2 − x1 − x2.
Also,−y3 = λx3 + ν andy1 = λx1 + ν gives
y3 = λ(x1 − x3)− y1.
(Note: the line through(x1, y1) and(x2, y2) passes
through(x3,−y3).)
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Deriving Addition Law
Let P = (x1, y1), Q = (x2, y2) andP = Q.
E : y2 = x3 + ax + b and so
2y dy

dx = 3x2 + a.

Slopeλ at (x1, y1) is 3x2
1+a

2y1
.

Rest of the analysis same as the previous case.
Obtained formula for(x3, y3) same except for the
changed value ofλ.
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Elliptic Curve Group
• O is the additive identity;
• for any pointP , P + (−P ) = O;
• for any pointsP,Q andR,

P + (Q + R) = (P + Q) + R.

associative property;
this is difficult to verify directly;
follows easily from the notion of divisors.
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Frobenius Map

τp : E(IFp)→ E(IFp), τp(x, y) = (xp, yp).

τp is a group homomorphism.
Trace of Frobenius:tp = p + 1−#E(IFp).

Theorem (Hasse):#E(IFp) = p + 1− tp, where
|tp| ≤ 2

√
p. Consequently,#E(IFp) ≈ p.

Theorem (Birch):
#{E/Fp : α ≤ tp ≤ β} ≈ 1

π

∫ β

α

√

4p− x2 dx.
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Number of Points
Let K = IFq andK = ∪m≥1IFqm.

• Schoof’s Algorithm.
• Computet modulo small primes and then use

CRT.
• Improvement by Elkies and Atkin.

#E(IFp) can be computed in timeO((log p)6)
by SEA algorithm.

• Subsequent work for computing points on EC
on different fields.

• Weil’s Theorem: Let t = q + 1−#E(IFq).
Let α, β be complex roots ofT 2 − tT + q.
Then#E(IFq) = qk + 1− αk − βk for all k ≥ 1.
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Koblitz Curves
Characteristics2, q = 2k.

E : y2 + xy = x3 + ax2 + 1, a ∈ {0, 1}.
• Chosen for reasons of efficiency.
• For security reasonsk is taken to be a prime.

#E(IFq) = 2k−
(−1 +

√
−7

2

)k

−
(−1−

√
−7

2

)k

+1.
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Structure Theorem
Let E be an elliptic curve defined overIFq.

• E(IFq) ∼= Zn1
⊕ Zn2

,
wheren2|n1 andn2|(q − 1).

• E(IFq) is cyclic if and only ifn2 = 1.

P ∈ E is ann-torsion point ifnP = O;
E[n] is the set of alln-torsion points.

Theorem : If gcd(n, q) = 1, thenE[n] ∼= Zn ⊕ Zn.
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Supersingular Elliptic Curves
An elliptic curveE/IFq is supersingular ifp|t where
t = q + 1−#E(IFq).

Theorem (Waterhouse): E/IFq is supersingular if
and only ift2 = 0, q, 2q, 3q or 4q.
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Supersingular Elliptic Curves
Theorem (Schoof): Let E/IFq be supersingular
with t = q + 1−#E(IFq). Then
• If t2 = q, 2q or 3q, thenE(IFq) is cyclic.

• If t2 = 4q andt = 2
√

q, then
E(IFq) ∼= Z√q−1 ⊕ Z√q−1.

• If t2 = 4q andt = −2
√

q, then
E(IFq) ∼= Z√q+1 ⊕ Z√q+1.

• If t = 0 andq 6≡ 3 mod 4, thenE(IFq) is cyclic.

• If t = 0 andq ≡ 3 mod 4, thenE(IFq) is cyclic
or E(IFq) ∼= Z q+1

2

⊕ Z2.
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Summary
• Elliptic curves over finite fields provide rich

examples of abelian groups.
• Let r be a prime such that

r|#E(L) whereL ⊇ IFq. Then
there is a cyclic subgroupG = 〈P 〉 of E(L).

• It is possible to do cryptography overG.
• Advantage: no sub-exponential algorithm for

solving discrete log is known forG.
(We will qualify this statement later.)

• Consequently, one can work over relatively small
fields.
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Jacobian Coordinates
• Affine coordinates:P = (x1, y1) and

Q = (x2, y2).

• Slope computation:λ = y2−y1

x2−x1
or 3x2

1+a
2y1

.

• One inversion required.
• Jacobian coordinates:(X,Y, Z) represents

(X/Z2, Y/Z3).
• Addition using Jacobian coordinates avoids

inversions.
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Doubling in Jacobian
Curve: y2 = x3 + ax + b.
(X1, Y1, Z1) is doubled to obtain(X3, Y3, Z3).

x3 =
(3X2

1 + aZ4
1)

2 − 8X1Y
2
1

4Y 2
1 Z2

1

y3 =
3X2

1 + aZ4
1

2Y1Z1

(

X1

Z2
1

−X ′3

)

− Y1

Z3
1

X3 = (3X2
1 + aZ4

1)
2 − 8X1Y

2
1

Y3 = (3X2
1 + aZ4

1)(4X1Y
2
1 −X3)− 8Y 4

1

Z3 = 2Y1Z1.
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Mixed Addition
Curve: y2 = x3 + ax + b.
(X1, Y1, Z1) andP = (X,Y, 1) are added to obtain
(X3, Y3, Z3) as follows.

x3 =

(

Y − Y1

Z3
1

X − X1

Z2
1

)2

− X1

Z2
1

−X

y3 =

(

Y Z3
1 − Y1

(XZ2
1 −X1)Z1

)(

X1

Z2
1

−X ′3

)

− Y1

Z3
1
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Mixed Addition (contd.)

X3 = x3Z3

= (Y Z3
1 − Y1)

2 −X1(XZ2
1 −X1)

2

−X(XZ2
1 −X1)

2Z2
1

= (Y Z3
1 − Y1)

2 − (XZ2
1 −X1)

2(X1 + XZ2
1)

Y3 = y3Z3

= (Y Z3
1 − Y1)((XZ2

1 −X1)
2X1 −X3)

−Y1(XZ2
1 −X1)

3

Z3 = (XZ2
1 −X1)Z1
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Scalar Multiplication
Let G = 〈P 〉 be a subgroup ofE(L) of prime orderr.

Instance: P anda ∈ Zr.
Task: ComputeaP .

• a is usually a secret.
• Basic algorithm:

left-to-right “double and add” algorithm;
addition is always byP ;
underlines the importance of mixed addition.
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Side Channel Information
Let a = an−1an−2 . . . a0.
• At the ith step:

• a doubling takes place;
• if an−i = 1, then an addition takes place.

Suppose it is possible to measure the time required
for the ith step.
• Thenan−i can be uniquely determined.
• Instead of time, it may be possible to measure the

power consumption at each step.
• The attack actually works and has been

demonstrated.

Countermeasures: several are known; ongoing
research.
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Scalar Multiplication Issues
Representation of scalars.
• Expansion using{0,±1} instead of{0, 1};

negation of a point is “free”;
not good for finite fields.

• Non-adjacent form: “no two non-zero adjacent
digits”; example:1001̄01;
known results on length of representation and
density of non-zero digits;
left-to-right “online” algorithm to obtain NAF.
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Scalar Multiplication Issues
• Window method.
• Base-φ representation of the scalar;φ is the

Frobenius map.
• Double base chain expansion;

use bases{2, 3} or {2, 3, 5} instead of base2;
optimal length and density of non-zero digits not
yet known.

• Parallelism, memory requirement.
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Other Curve Forms
• Montgomery form: x-coordinate only scalar

multiplication.
ay2 = x3 + bx + x, a 6= 0;

• (Twisted) Edwards form: complete (and hence
unified) formulae for addition and doubling.
ax2 + y2 = 1 + dx2y2; a, d 6= 0, a 6= d.

• Jacobi-Quartic form.
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Bilinear Pairings in
Cryptography.
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Divisors
Let E/IFq be given byC(x, y) = 0.
The group of divisors ofE(IFqn) is the free abelian
group generated by the points ofE(IFqn).
Thus any divisorD is of the form

D =
∑

P∈E(IFqn)

nP 〈P 〉.

• nP ∈ Z,
• nP = 0 except for finitely manyP ’s.
• Zero divisors:

∑

nP = 0.
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Rational Functions
A rational functionf onE is an element of the field
of fractions of the ringIFqn[x, y]/(C(x, y)).
The divisor of a rational functionf is defined by

div(f) =
∑

P∈E(IFqn)

ordP (f)〈P 〉

where ordP (f) is the order of the zero/pole thatf has
atP .
A divisor D is said to beprincipal if D = div(f), for
a rational functionf .
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Rational Functions (contd.)
Theorem: A divisor D =

∑

P∈E(IFqn) nP 〈P 〉 is
principal if and only if
•
∑

nP = 0 and
•
∑

nPP = O.

Definition. Two divisorsD1 andD2 are said to be
equivalent (D1 ∼ D2) if D1 −D2 is principal.
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Rational Functions (contd.)
Theorem : Any zero divisorD =

∑

nP 〈P 〉 is
equivalent to a (unique) divisor of the form〈Q〉 − 〈O〉
for someQ ∈ E(IFqn).

If P = (x, y), then byf(P ) we meanf(x, y).
Definition. Given a rational functionf and a zero
divisorD =

∑

nP 〈P 〉, define

f(D) =
∏

P∈E(IFqn)

f(P )nP .
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Tate Pairing (Preliminaries)
• Embedding Degree:Let r be co-prime toq and

r|#E(IFq). The least positive integerk such that
r|(qk − 1) is called the embedding degree.

• n-Torsion Points:Let E/IFq be an elliptic curve.
Then

E(IFqk)[n] = {P ∈ E(IFqk) : nP = O}.

• µr(IFqk): cyclic subgroup ofIFqk of orderr. Here
r is prime andr|(qk − 1).
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Tate Pairing (Preliminaries)
• E(IFqk)/rE(IFqk): collection of all cosets of

rE(IFqk).

• fs,P : anIFqk-rational functionfs,P with divisor

〈fs,P 〉 = s〈P 〉 − 〈[s]P 〉 − (s− 1)〈O〉.
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Tate Pairing Definition
Tate pairing e(·, ·):
(modified: reduced and normalised)

E(IFq)[r]× E(IFqk)/rE(IFqk)→ µr(IFqk)

is given by

e(P,Q) = fr,P (Q)(qk−1)/r.

• P is anr-torsion point fromE(IFqk);

• Q is any point in a coset ofrE(IFqk);

• the result is an element ofIFqk of orderr.
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Computing Tate Pairing
Note: P is fromE(IFq) while Q is fromE(IFqk).

〈fr,P 〉 = r〈P 〉 − 〈[r]P 〉 − (r − 1)〈O〉
= r〈P 〉 − r〈O〉.

The computation offs,P is using a double-and-add
algorithm similar to that of scalar multiplication.
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Some Simple Facts
Assume thatE is given in Weierstraß form.
Let P andR be points onE.

ℓP,R, R 6= P : line passing throughP , R and
−(P + R).

ℓR,R: line passing throughR and−2R.

ℓR,−R: line passing throughR and−R.

〈ℓP,R〉 = 〈P 〉+ 〈R〉+ 〈−(P + R)〉 − 3〈O〉
〈ℓR,R〉 = 2〈R〉+ 〈−2R〉 − 3〈O〉
〈ℓR,−R〉 = 〈R〉+ 〈−R〉 − 2〈O〉
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Some Simple Facts
hP,R, R 6= P :

hP,R = ℓP,R/ℓT,−T ; T = P + R.

hR,R:
hR,R = ℓR,R/ℓT,−T ; T = 2R.

〈hP,R〉 = 〈ℓP,R〉 − 〈ℓT,−T 〉
〈hP,R〉 = 〈ℓR,R〉 − 〈ℓT,−T 〉

〈f1,P 〉 = 〈P 〉 − 〈P 〉 = 0: So,f1,P = 1.
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Recurrence forfs,P

〈f2m,P 〉 = 2m〈P 〉 − 〈2mP 〉 − (2m− 1)〈O〉
= 2(m〈P 〉 − 〈mP 〉 − (m− 1)〈O〉)

+2〈mP 〉 − 〈2mP 〉 − 〈O〉
= 2〈fm,P 〉+ 2〈mP 〉+ 〈−2mP 〉 − 3〈O〉
−(〈2mP 〉+ 〈−2mP 〉 − 2〈O〉)

= 2〈fm,P 〉+ 〈ℓmP,mP 〉 − 〈ℓ2mP,−2mP 〉
= 2〈fm,P 〉+ 〈hmP,mP 〉.
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Recurrence forfs,P

〈f2m+1,P 〉 = (2m + 1)〈P 〉 − 〈(2m + 1)P 〉
−2m〈O〉

= 2m〈P 〉 − 〈2mP 〉 − (2m− 1)〈O〉
+〈P 〉+ 〈2mP 〉 − 〈(2m + 1)P 〉 − 〈O〉

= 〈f2m,P 〉+ 〈P 〉+ 〈2mP 〉
+〈−(2m + 1)P 〉 − 3〈O〉
−(〈(2m + 1)P 〉+ 〈−(2m + 1)P 〉
−2〈O〉)

= 〈f2m,P 〉+ 〈ℓ2mP,P 〉
−〈ℓ(2m+1)P,−(2m+1)P 〉

= 〈f2m,P 〉+ 〈hP,2mP 〉.
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Recurrence forfs,P

〈f2m,P 〉 = 2〈fm,P 〉+ 〈hmP,mP 〉.
So,

f2m,P = f 2
m,P × hmP,mP .

〈f2m+1,P 〉 = 2〈fm,P 〉+ 〈hP,2mP 〉.
So,

f2m+1,P = f2m,P × hP,2mP .
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Miller’s Algorithm
GivenP ∈ E(IFq) andQ ∈ E(IFqk)
to computefr,P (Q).
Let rt−1rt−2 . . . r0 be the binary expansion ofr.

• Setf ← 1.
• ComputerP from left-to-right using “double and

add”.
• Let R be the input before theith iteration.

• f ← f 2 × hR,R(Q); R← 2R;
• if rn−i = 1

f ← f × hR,P (Q);
R← R + P .
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Effect of Bilinear Map
Recall

e : E(IFq)[r]× E(IFqk)/rE(IFqk)→ µr(IFqk)

e(aP,Q) = e(P,Q)a

• reduces discrete log overE(IFq) to that over
µr(IFqk);

• security depends onk;
• for supersingular curvesk ≤ 6;
• for general elliptic curvesk is large.
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Effect of Bilinear Map
• Symmetric bilinear map:The second argumentQ

of e(P,Q) is an elementE(IFqk).
Using a distortion map, one can considerQ to be
an element ofE(IFq).

• Solution to DDH:
given(P, aP, bP,Q) determine ifQ = abP ;
verify e(aP, bP ) = e(P,Q).

• Gap DH-groups: groups where CDH is hard but
DDH is easy.
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Joux’s Key Agreement Protocol
3-party, single-round.

• Three usersU1, U2 andU3;
• Ui chooses a uniform randomri and broadcasts

Xi = riP ;
• Ui computesK = e(Xj, Xk)

ri, where
{j, k} = {1, 2, 3} \ {i};

K = e(P, P )r1r2r3.
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Efficiency Improvements
• Irrelevant denominators: the denominator ofhP,R

need not be evaluated.
• Point tripling: the line throughP and2P passes

through−3P ;
instead of doubling, use tripling;
applicable for characteristics three curves.

• Variants: Ate and Eta pairings;
the aim is to reduce the number of Miller
iterations.

• Pairings on other forms of elliptic curves.
• Other implementation issues.
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Pairing Friendly Curves
• Supersingular curves have embedding degree at

most6.
• Obtain non-supersingular curves with low

embedding degreek;
typically k ≤ 12;
involves a lot of computation with computer
algebra packages;
only a few examples are known.

• Embedding degree and group size determines the
security level of the target protocol.
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Thank you for your kind attention!
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