Cyclic Groups in Cryptography

Palash Sarkar

Indian Statistical Institute

Structure of Presentation

- Exponentiation in General Cyclic Groups.
- Cyclic Groups from Finite Fields.
- Cyclic Groups from Elliptic Curves.
- Bilinear Pairings in Cryptography.

Exponentiation in General Cyclic Groups

Exponentiation

Let $G = \langle g \rangle$ be a cyclic group of order |G| = q. **Basic Problem: Input:** $a \in \mathbb{Z}_q$. **Task:** Compute $h = g^a$.

Let $a = a_{n-1} \dots a_0$,

- $n = \lceil \log_2 q \rceil;$
- each a_i is a bit.

Two simple methods.

- Right-to-left.
- Left-to-right.

Right-to-Left

- $n = 1: h = g^{a_0}$.
- n = 2: $h = g^{2a_1 + a_0} = (g^2)^{a_1} \times g^{a_0}$. t = g; $r = g^{a_0}$; $t = t^2$; $r = t^{a_1} \times r$; h = r.
- n = 3: $h = g^{2^2 a_2 + 2a_1 + a_0} = (g^{2^2})^{a_2} \times (g^2)^{a_1} \times g^{a_0}$. t = g; $r = g^{a_0}$; $t = t^2$; $r = t^{a_1} \times r$; $t = t^2$; $r = t^{a_2} \times r$; h = r.
- At *i*th step: square *t*; multiply *t* to *r* if $a_i = 1$.

Left-to-Right

- $n = 1: h = g^{a_0}$.
- n = 2: $h = g^{2a_1 + a_0} = (g^{a_1})^2 \times g^{a_0}$. $r = g^{a_1}$; $r = r^2 \times g^{a_0}$; h = r.
- n = 3: $h = g^{2^2 a_2 + 2a_1 + a_0} = ((g^{a_2})^2 \times g^{a_1})^2 \times g^{a_0}$. $r = g^{a_2}$; $r = r^2 \times g^{a_1}$; $r = r^2 \times q^{a_0}$; h = r.
- At *i*th step: square r; multiply r by g if $a_{n-i} = 1$.
- Important: always multiply by g.

Also called square-and-multiply algorithm.

Addition Chains

An addition chain of length ℓ is a sequence of $\ell+1$ integers such that

- the first integer is 1;
- each subsequent integer is a sum of two previous integers.

Example: 1,2,3,5,7,14,28,56,63. Addition chains can be used to compute powers. Consider the set of (n_1, \ldots, n_p, ℓ) such that there is an addition chain of length ℓ containing n_1, \ldots, n_p .

• Downey, Leong and Sethi (1981) proved this set to be NP-complete.

Exponentiation Algorithms

A survey by Bernstein with the title Pippenger's Exponentiation Algorithm

Brauer (1939): "the left-to-right 2^k -ary method".

Straus (1964): computes a product of p powers with possibly different bases.

Yao (1976): computes a sequence of *p* powers of a single base.

Pippenger (1976): improves on both Straus's and Yao's algorithm.

Cyclic Groups from Finite Fields

Structure of Finite Fields

Let $(\mathrm{IF}, +, *)$ be a finite field with $q = |\mathrm{IF}|$.

- $q = p^m$, where p is a prime and $m \ge 1$; p is called the characteristic of the field.
- $(\mathbb{F}, +)$ is a commutative group.
- $(\mathbb{F}^* = \mathbb{F} \setminus \{0\}, *)$ is a cyclic group.

Basic Operations:

- addition and subtraction;
- multiplication;
- inversion (and division).

Useful Fields

We are interested in "large" fields: $p^m \approx 2^{256}$.

Commonly used fields.

- Large characteristics: m = 1 and p is "large".
- Characteristics 2: p = 2.
- Characteristics 3: p = 3, relevant for pairing based cryptography.

• Other composite fields: Optimal extension fields. Criteria for choosing a field: security/efficiency trade-off.

Large Characteristics

Use of multi-precision arithmetic;

- *p* is stored as several 32-bit words;
- each field element is stored as several 32-bit words;
- all computations done modulo *p*;
- combination of Karatsuba-Ofman and table look-up used for multiplication;
- Inversion using Itoh-Tsuji algorithm;
- [I]≈ 30 to 50 [M].

Characteristics Two

Polynomial Basis Representation.

- Let $\tau(x)$ be an irreducible polynomial of degree n over GF(2).
- IF consists of all polynomials of degree at most n-1 over GF(2).
- Addition and multiplication done modulo $\tau(x)$.
- Multiplication: Karatsuba-Ofman, table look-up.
- Inversion: extended Euclidean algorithm.
 [I] ≈ 8 to 10 [M] (or lesser).

Normal Basis Representation: squaring is "free" but multiplication is costlier.

Choice of Cyclic Group

The whole of \mathbb{F}^* is not used.

- Let r be a prime dividing $q = p^m$.
- Then \mathbb{F}_q^* has a subgroup G of order r.
- Being of prime order, this subgroup is cyclic, i.e., $G = \langle g \rangle$.
- Cryptography is done over G.

Necessary Criteria:

The discrete log problem should be hard over G.

Discrete Log Algorithms

Generic algorithms: $O(\sqrt{|G|})$.

- Pollard's rho algorithm.
- Pohlig-Hellman algorithm.

Index calculus algorithm: $O\left(e^{(1+o(1))\sqrt{\ln p \ln \ln p}}\right)$. Works over \mathbb{Z}_p^* .

Number field sieve: $O\left(e^{(1.92+o(1))(\ln q)^{1/3}(\ln \ln q)^{2/3})}\right);$ sub-exponential algorithm.

Security Versus Efficiency

- Size of G and IF has to be chosen so that all known discrete log algorithms have a minimum run time.
- Size of IF determines the efficiency of multiplication and inversion.
- For 80-bit security:
 |G| is at least 2¹⁶⁰; |IF| is at least 2⁵¹²;
- Existence of sub-exponential algorithms necessitates larger size fields.
- Detailed study of feasible parameters by Lenstra and Verheul.

Cyclic Groups from Elliptic Curves

Weierstraß Form

Weierstraß equation: elliptic curve over a field K.

 $E/K: y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6},$

 $a_i \in K$; there are no "singular points". *L*-rational points on E: $(L \supseteq K)$,

 $E(L) = \{(x, y) \in L \times L : C(x, y) = 0\} \cup \{\mathcal{O}\}.$

 $C(x,y) = y^2 + a_1 xy + a_3 y - (x^3 + a_2 x^2 + a_4 x + a_6).$ If $L \supseteq K$, then $E(L) \supseteq E(K)$. \overline{K} , algebraic alcours of \overline{E} , denote $\overline{E(\overline{K})}$ by \overline{E} .

K: algebraic closure of E; denote E(K) by E.

Simplifying Weierstraß Form

 $y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6}$ replacing y by $\frac{1}{2}(y - a_{1}x - a_{3})$ gives

$$y^2 = 4x^3 + b_2x^2 + 2b_4x + b_6$$

where

$$b_2 = a_1^2 + 4a_2, b_4 = 2a_4 + a_1a_3, b_6 = a_3^2 + 4a_6.$$

If characteristics $\neq 2, 3$, then replacing (x, y) by $((x - 3b_2)/36, y/108)$ gives

$$y^2 = x^3 - 27c_4x - 54c_6.$$

Simplifying Weierstraß Form

Define

 $b_8 = a_1^2 a_6 + 4a_2 a_6 - a_1 a_3 a_4 + a_2 a_3^2 - a_4^2$ $c_4 = b_2^2 - 24b_4$ $c_6 = -b_2^3 + 36b_2b_4 - 216\overline{b_6}$ $\Delta = -b_2^2 b_8 - 8b_4^3 - 27b_6^2 + 9b_2b_4b_6$ (discriminant) $j = c_4^3 / \Delta(j \text{-invariant})$ $\omega = dx/(2y + a_1x + a_3)$ $= dy/(3x^2 + 2a_2x + a_4 - a_1y)$ (invariant differential)

Relations: $4b_8 = b_2b_6 - b_4^2$, $1728\Delta = c_4^3 - c_6^2$.

Cyclic Groups in Cryptography – p. 20/

Simplified Weierstraß Form

 $char(K) \neq 2, 3$: the equation simplifies to

$$y^2 = x^3 + ax + b$$

 $a, b \in K$ and $4a^3 + 27b^2 \neq 0$.

- ensures $x^3 + ax + b$ does not have repeated roots;
- $x^3 + ax + b$ has repeated roots iff $x^3 + ax + b$ and $\frac{d}{dx}(x^3 + ax + b) = 3x^2 + a$ have a common root;
- eliminating x from these two relations gives the condition $4a^3 + 27b^2 = 0$;
- this corresponds to $\Delta = 0$.

Simplified Weierstraß Form

char(K) = 2: the equation simplifies to

• $y^2 + xy = x^3 + ax^2 + b$, $a, b \in K, b \neq 0$, non-supersingular, or

•
$$y^2 + cy = x^3 + ax + b$$
,
 $a, b, c \in K, c \neq 0$, supersingular.

Group Law

- E(L): L-rational points on E is an abelian group;
- addition is done using the "chord-and-tangent law";
- \mathcal{O} acts as the identity element.

Consider $E/K : y^2 = x^3 + ax + b$. Addition formulae are as follows:

• $P + \mathcal{O} = \mathcal{O} + P = P$, for all $P \in E(L)$.

• $-\mathcal{O}=\mathcal{O}.$

- If $P = (x, y) \in E(L)$, then -P = (x, -y).
- If Q = -P, then $P + Q = \mathcal{O}$.

Group Law (contd.)

• If $P = (x_1, y_1), Q = (x_2, y_2),$ with $P \neq -Q$, then $P + Q = (x_3, y_3)$, where

$$x_3 = \lambda^2 - x_1 - x_2,$$

 $y_3 = \lambda(x_1 - x_3) - y_1,$

and

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1} \quad \text{if } P \neq Q;$$

= $\frac{3x_1^2 + a}{2y_1} \quad \text{if } P = Q.$

Deriving Addition Law

Let $P = (x_1, y_1), Q = (x_2, y_2)$ and $P \neq -Q$.

- If P ≠ Q, then the line ℓ(x, y) : y = λx + ν through P and Q intersects the curve E(x, y) at a third point R; the reflection of R on the x-axis is defined to be the point P + Q given by (x₃, y₃);
- If P = Q, then the tangent l(x, y) : y = λx + ν intersects the curve at a point R; the reflection of R on the x-axis is defined to be the point 2P given by (x₃, y₃);

Deriving Addition Law

Let $P = (x_1, y_1), Q = (x_2, y_2)$ and $P \neq Q, -Q$. So $\lambda = (y_2 - y_1)/(x_2 - x_1), \nu = y_1 - \lambda x_1 = y_2 - \lambda x_2.$ Putting $\ell(x, y)$ into E(x, y) we get $(\lambda x + \nu)^2 = x^3 + ax + b$ which is the same as $x^{3} - \lambda^{2}x^{2} + (a - 2\nu\lambda)x + b - \nu^{2} = 0.$ This equation has three roots and x_1, x_2 are two of the roots. So the third root is $x_3 = \lambda^2 - x_1 - x_2$. Also, $-y_3 = \lambda x_3 + \nu$ and $y_1 = \lambda x_1 + \nu$ gives $y_3 = \lambda(x_1 - x_3) - y_1.$ (Note: the line through (x_1, y_1) and (x_2, y_2) passes through $(x_3, -y_3)$.)

Deriving Addition Law

Let $P = (x_1, y_1), Q = (x_2, y_2)$ and P = Q. $E : y^2 = x^3 + ax + b$ and so $2y \frac{dy}{dx} = 3x^2 + a$.

Slope λ at (x_1, y_1) is $\frac{3x_1^2 + a}{2y_1}$. Rest of the analysis same as the previous case. Obtained formula for (x_3, y_3) same except for the changed value of λ .

Elliptic Curve Group

- \mathcal{O} is the additive identity;
- for any point P, $P + (-P) = \mathcal{O}$;
- for any points P, Q and R,

P + (Q + R) = (P + Q) + R.

associative property; this is difficult to verify directly; follows easily from the notion of divisors.

Frobenius Map

 $\tau_p: E(\overline{\mathbf{IF}}_p) \to E(\overline{\mathbf{IF}}_p), \quad \tau_p(x,y) = (x^p, y^p).$

 τ_p is a group homomorphism. Trace of Frobenius: $t_p = p + 1 - \#E(\mathbb{F}_p)$.

Theorem (Hasse): $\#E(\mathbb{F}_p) = p + 1 - t_p$, where $|t_p| \le 2\sqrt{p}$. Consequently, $\#E(\mathbb{F}_p) \approx p$.

Theorem (Birch): # $\{E/\mathbb{F}_p : \alpha \le t_p \le \beta\} \approx \frac{1}{\pi} \int_{\alpha}^{\beta} \sqrt{4p - x^2} \, dx.$

Number of Points

Let $K = \mathbb{F}_q$ and $\overline{K} = \bigcup_{m \ge 1} \mathbb{F}_{q^m}$.

- Schoof's Algorithm.
 - Compute *t* modulo small primes and then use CRT.
 - Improvement by Elkies and Atkin.
 #E(IF_p) can be computed in time O((log p)⁶)
 by SEA algorithm.
 - Subsequent work for computing points on EC on different fields.
- Weil's Theorem: Let $t = q + 1 \#E(\mathbb{F}_q)$. Let α, β be complex roots of $T^2 - tT + q$. Then $\#E(\mathbb{F}_q) = q^k + 1 - \alpha^k - \beta^k$ for all $k \ge 1$.

Koblitz Curves

Characteristics 2, $q = 2^k$.

$$E: y^{2} + xy = x^{3} + ax^{2} + 1, \qquad a \in \{0, 1\}.$$

- Chosen for reasons of efficiency.
- For security reasons k is taken to be a prime.

$$\#E(\mathbb{F}_q) = 2^k - \left(\frac{-1 + \sqrt{-7}}{2}\right)^k - \left(\frac{-1 - \sqrt{-7}}{2}\right)^k + 1$$

Structure Theorem

Let *E* be an elliptic curve defined over \mathbb{F}_q .

- $E(\mathbb{I}_q) \cong \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2}$, where $n_2 | n_1$ and $n_2 | (q-1)$.
- $E(\mathbb{F}_q)$ is cyclic if and only if $n_2 = 1$.

 $P \in E$ is an *n*-torsion point if $nP = \mathcal{O}$; E[n] is the set of all *n*-torsion points.

Theorem : If gcd(n,q) = 1, then $E[n] \cong Z_n \oplus Z_n$.

Supersingular Elliptic Curves

An elliptic curve E/\mathbb{F}_q is supersingular if p|t where $t = q + 1 - \#E(\mathbb{F}_q)$.

Theorem (Waterhouse): E/\mathbb{F}_q is supersingular if and only if $t^2 = 0, q, 2q, 3q$ or 4q.

Supersingular Elliptic Curves

Theorem (Schoof): Let E/\mathbb{F}_q be supersingular with $t = q + 1 - \#E(\mathbb{F}_q)$. Then

- If $t^2 = q$, 2q or 3q, then $E(\mathbb{F}_q)$ is cyclic.
- If $t^2 = 4q$ and $t = 2\sqrt{q}$, then $E(\mathbb{F}_q) \cong Z_{\sqrt{q}-1} \oplus Z_{\sqrt{q}-1}$.
- If $t^2 = 4q$ and $t = -2\sqrt{q}$, then $E(\mathbb{I}_q) \cong Z_{\sqrt{q}+1} \oplus Z_{\sqrt{q}+1}$.
- If t = 0 and $q \not\equiv 3 \mod 4$, then $E(\mathbb{F}_q)$ is cyclic.
- If t = 0 and $q \equiv 3 \mod 4$, then $E(\mathbb{F}_q)$ is cyclic or $E(\mathbb{F}_q) \cong Z_{\frac{q+1}{2}} \oplus Z_2$.

Summary

- Elliptic curves over finite fields provide rich examples of abelian groups.
- Let r be a prime such that
 r|#E(L) where L ⊇ IF_q. Then
 there is a cyclic subgroup G = ⟨P⟩ of E(L).
- It is possible to do cryptography over G.
- Advantage: no sub-exponential algorithm for solving discrete log is known for *G*. (We will qualify this statement later.)
- Consequently, one can work over relatively small fields.

Jacobian Coordinates

- Affine coordinates: $P = (x_1, y_1)$ and $Q = (x_2, y_2)$.
- Slope computation: $\lambda = \frac{y_2 y_1}{x_2 x_1}$ or $\frac{3x_1^2 + a}{2y_1}$.
- One inversion required.
- Jacobian coordinates: (X, Y, Z) represents $(X/Z^2, Y/Z^3)$.
- Addition using Jacobian coordinates avoids inversions.

Doubling in Jacobian

Curve: $y^2 = x^3 + ax + b$. (X₁, Y₁, Z₁) is doubled to obtain (X₃, Y₃, Z₃).

$$x_{3} = \frac{(3X_{1}^{2} + aZ_{1}^{4})^{2} - 8X_{1}Y_{1}^{2}}{4Y_{1}^{2}Z_{1}^{2}}$$

$$y_{3} = \frac{3X_{1}^{2} + aZ_{1}^{4}}{2Y_{1}Z_{1}} \left(\frac{X_{1}}{Z_{1}^{2}} - X_{3}'\right) - \frac{Y_{1}}{Z_{1}^{3}}$$

$$X_{3} = (3X_{1}^{2} + aZ_{1}^{4})^{2} - 8X_{1}Y_{1}^{2}$$

$$Y_{3} = (3X_{1}^{2} + aZ_{1}^{4})(4X_{1}Y_{1}^{2} - X_{3}) - 8Y_{1}^{4}$$

$$Z_{3} = 2Y_{1}Z_{1}.$$

Mixed Addition

Curve: $y^2 = x^3 + ax + b$. (X_1, Y_1, Z_1) and P = (X, Y, 1) are added to obtain (X_3, Y_3, Z_3) as follows.

$$x_{3} = \left(\frac{Y - \frac{Y_{1}}{Z_{1}^{3}}}{X - \frac{X_{1}}{Z_{1}^{2}}}\right)^{2} - \frac{X_{1}}{Z_{1}^{2}} - X$$

$$y_{3} = \left(\frac{YZ_{1}^{3} - Y_{1}}{(XZ_{1}^{2} - X_{1})Z_{1}}\right) \left(\frac{X_{1}}{Z_{1}^{2}} - X_{3}'\right) - \frac{Y_{1}}{Z_{1}^{3}}$$

Mixed Addition (contd.)

 $X_3 = x_3 Z_3$ $= (YZ_1^3 - Y_1)^2 - X_1 (XZ_1^2 - X_1)^2$ $-X(XZ_1^2-X_1)^2Z_1^2$ $= (YZ_1^3 - Y_1)^2 - (XZ_1^2 - X_1)^2(X_1 + XZ_1^2)$ $Y_3 = y_3 Z_3$ $= (YZ_1^3 - Y_1)((XZ_1^2 - X_1)^2X_1 - X_3)$ $-Y_1(XZ_1^2-X_1)^3$ $|Z_3| = (XZ_1^2 - X_1)Z_1$

Scalar Multiplication

Let $G = \langle P \rangle$ be a subgroup of E(L) of prime order r.

Instance: P and $a \in \mathbb{Z}_r$. **Task:** Compute aP.

• *a* is usually a secret.

 Basic algorithm: left-to-right "double and add" algorithm; addition is always by P; underlines the importance of mixed addition.

Side Channel Information

Let $a = a_{n-1}a_{n-2} \dots a_0$.

- At the *i*th step:
 - a doubling takes place;
 - if $a_{n-i} = 1$, then an addition takes place.

Suppose it is possible to measure the time required for the *i*th step.

- Then a_{n-i} can be uniquely determined.
- Instead of time, it may be possible to measure the power consumption at each step.
- The attack actually works and has been demonstrated.

Countermeasures: several are known; ongoing research.

Scalar Multiplication Issues

Representation of scalars.

- Expansion using {0, ±1} instead of {0, 1}; negation of a point is "free"; not good for finite fields.
- Non-adjacent form: "no two non-zero adjacent digits"; example: 100101; known results on length of representation and density of non-zero digits; left-to-right "online" algorithm to obtain NAF.

Scalar Multiplication Issues

- Window method.
- Base- ϕ representation of the scalar; ϕ is the Frobenius map.
- Double base chain expansion; use bases {2,3} or {2,3,5} instead of base 2; optimal length and density of non-zero digits not yet known.
- Parallelism, memory requirement.

Other Curve Forms

• Montgomery form: x-coordinate only scalar multiplication.

 $ay^2 = x^3 + bx + x, a \neq 0;$

- (Twisted) Edwards form: complete (and hence unified) formulae for addition and doubling. $ax^2 + y^2 = 1 + dx^2y^2$; $a, d \neq 0, a \neq d$.
- Jacobi-Quartic form.

Bilinear Pairings in Cryptography.

Divisors

Let E/\mathbb{F}_q be given by C(x, y) = 0. The group of divisors of $E(\mathbb{F}_{q^n})$ is the free abelian group generated by the points of $E(\mathbb{F}_{q^n})$. Thus any divisor D is of the form

$$D = \sum_{P \in E(\mathbf{I} \mathbf{F}_{q^n})} n_P \langle P \rangle.$$

• $n_P \in Z$,

- $n_P = 0$ except for finitely many *P*'s.
- Zero divisors: $\sum n_P = 0$.

Rational Functions

A rational function f on E is an element of the field of fractions of the ring $\mathbb{F}_{q^n}[x, y]/(C(x, y))$. The divisor of a rational function f is defined by

$$\operatorname{div}(f) = \sum_{P \in E(\operatorname{IF}_{q^n})} \operatorname{ord}_P(f) \langle P \rangle$$

where $\operatorname{ord}_P(f)$ is the order of the zero/pole that f has at P. A divisor D is said to be *principal* if $D = \operatorname{div}(f)$, for a rational function f.

Rational Functions (contd.)

Theorem: A divisor $D = \sum_{P \in E(\mathbf{I} \mathbf{F}_{q^n})} n_P \langle P \rangle$ is principal if and only if

- $\sum n_P = 0$ and
- $\sum n_P P = \mathcal{O}.$

Definition. Two divisors D_1 and D_2 are said to be *equivalent* $(D_1 \sim D_2)$ if $D_1 - D_2$ is principal.

Rational Functions (contd.)

Theorem : Any zero divisor $D = \sum n_P \langle P \rangle$ is equivalent to a (unique) divisor of the form $\langle Q \rangle - \langle O \rangle$ for some $Q \in E(\mathbb{IF}_{q^n})$.

If P = (x, y), then by $f(\overline{P})$ we mean f(x, y). **Definition.** Given a rational function f and a zero divisor $D = \sum n_P \langle P \rangle$, define

$$f(D) = \prod_{P \in E(\mathbf{I} \mathbf{F}_{q^n})} f(P)^{n_P}.$$

- Embedding Degree: Let r be co-prime to q and $r|\#E(\mathbb{F}_q)$. The least positive integer k such that $r|(q^k 1)$ is called the embedding degree.
- *n*-Torsion Points: Let E/\mathbb{F}_q be an elliptic curve. Then

$$E(\mathbb{F}_{q^k})[n] = \{ P \in E(\mathbb{F}_{q^k}) : nP = \mathcal{O} \}.$$

• $\mu_r(\mathbb{F}_{q^k})$: cyclic subgroup of \mathbb{F}_{q^k} of order r. Here r is prime and $r|(q^k-1)$.

Tate Pairing (Preliminaries)

- $E(\mathbb{F}_{q^k})/rE(\mathbb{F}_{q^k})$: collection of all cosets of $rE(\mathbb{F}_{q^k})$.
- $f_{s,P}$: an \mathbb{F}_{q^k} -rational function $f_{s,P}$ with divisor

 $\langle f_{s,P} \rangle = s \langle P \rangle - \langle [s]P \rangle - (s-1) \langle \mathcal{O} \rangle.$

Tate Pairing Definition

Tate pairing $e(\cdot, \cdot)$: (modified: reduced and normalised)

 $E(\mathbb{F}_q)[r] \times E(\mathbb{F}_{q^k})/rE(\mathbb{F}_{q^k}) \to \mu_r(\mathbb{F}_{q^k})$

is given by

$$e(P,Q) = f_{r,P}(Q)^{(q^k-1)/r}.$$

- *P* is an *r*-torsion point from $E(\mathbb{F}_{q^k})$;
- Q is any point in a coset of $rE(\mathbb{F}_{q^k})$;
- the result is an element of \mathbb{F}_{q^k} of order r.

Computing Tate Pairing

Note: P is from $E(\mathbb{F}_q)$ while Q is from $E(\mathbb{F}_{q^k})$.

$$\langle f_{r,P} \rangle = r \langle P \rangle - \langle [r]P \rangle - (r-1) \langle \mathcal{O} \rangle$$

= $r \langle P \rangle - r \langle \mathcal{O} \rangle.$

The computation of $f_{s,P}$ is using a double-and-add algorithm similar to that of scalar multiplication.

Some Simple Facts

Assume that E is given in Weierstraß form. Let P and R be points on E.

 $\ell_{P,R}, R \neq P$: line passing through P, R and -(P+R).

 $\ell_{R,R}$: line passing through R and -2R. $\ell_{R,-R}$: line passing through R and -R.

 $\langle \ell_{P,R} \rangle = \langle P \rangle + \langle R \rangle + \langle -(P+R) \rangle - 3 \langle \mathcal{O} \rangle$ $\langle \ell_{R,R} \rangle = 2 \langle R \rangle + \langle -2R \rangle - 3 \langle \mathcal{O} \rangle$ $\langle \ell_{R,-R} \rangle = \langle R \rangle + \langle -R \rangle - 2 \langle \mathcal{O} \rangle$

Some Simple Facts

 $h_{P,R}, R \neq P:$ $h_{P,R} = \ell_{P,R}/\ell_{T,-T}; T = P + R.$ $h_{R,R}:$ $h_{R,R} = \ell_{R,R}/\ell_{T,-T}; T = 2R.$

 $\langle f_{1,P} \rangle = \langle P \rangle - \langle P \rangle = 0$: So, $f_{1,P} = 1$.

Recurrence for $f_{s,P}$

$$\begin{split} f_{2m,P} \rangle &= 2m \langle P \rangle - \langle 2mP \rangle - (2m-1) \langle \mathcal{O} \rangle \\ &= 2(m \langle P \rangle - \langle mP \rangle - (m-1) \langle \mathcal{O} \rangle) \\ &+ 2 \langle mP \rangle - \langle 2mP \rangle - \langle \mathcal{O} \rangle \\ &= 2 \langle f_{m,P} \rangle + 2 \langle mP \rangle + \langle -2mP \rangle - 3 \langle \mathcal{O} \rangle \\ &- (\langle 2mP \rangle + \langle -2mP \rangle - 2 \langle \mathcal{O} \rangle) \\ &= 2 \langle f_{m,P} \rangle + \langle \ell_{mP,mP} \rangle - \langle \ell_{2mP,-2mP} \rangle \\ &= 2 \langle f_{m,P} \rangle + \langle h_{mP,mP} \rangle. \end{split}$$

Recurrence for $f_{s,P}$

 $\langle f_{2m+1,P} \rangle = (2m+1)\langle P \rangle - \langle (2m+1)P \rangle$ $-2m\langle \mathcal{O}\rangle$ $= 2m\langle P \rangle - \langle 2mP \rangle - (2m-1)\langle \mathcal{O} \rangle$ $+\langle P \rangle + \langle 2mP \rangle - \langle (2m+1)P \rangle - \langle \mathcal{O} \rangle$ $= \langle f_{2m,P} \rangle + \langle P \rangle + \langle 2mP \rangle$ $+\langle -(2m+1)P\rangle - 3\langle \mathcal{O}\rangle$ $-(\langle (2m+1)P \rangle + \langle -(2m+1)P \rangle)$ $-2\langle \mathcal{O} \rangle$) $= \langle f_{2m,P} \rangle + \langle \ell_{2mP,P} \rangle$ $-\langle \ell_{(2m+1)P,-(2m+1)P} \rangle$ $= \langle f_{2m,P} \rangle + \langle h_{P,2mP} \rangle.$

Cyclic Groups in Cryptography -p.57/6

Miller's Algorithm

Given $P \in E(\mathbb{F}_q)$ and $Q \in E(\mathbb{F}_{q^k})$ to compute $f_{r,P}(Q)$. Let $r_{t-1}r_{t-2} \dots r_0$ be the binary expansion of r.

- Set $f \leftarrow 1$.
- Compute *rP* from left-to-right using "double and add".
- Let R be the input before the *i*th iteration.
 - $f \leftarrow f^2 \times h_{R,R}(Q); R \leftarrow 2R;$
 - if $r_{n-i} = 1$ $f \leftarrow f \times h_{R,P}(Q);$ $R \leftarrow R + P.$

Effect of Bilinear Map

Recall

 $e: E(\mathbb{F}_q)[r] \times E(\mathbb{F}_{q^k})/rE(\mathbb{F}_{q^k}) \to \mu_r(\mathbb{F}_{q^k})$

$$e(aP,Q) = e(P,Q)^a$$

- reduces discrete log over $E(\mathbb{F}_q)$ to that over $\mu_r(\mathbb{F}_{q^k})$;
- security depends on k;
- for supersingular curves $k \leq 6$;
- for general elliptic curves k is large.

Effect of Bilinear Map

- Symmetric bilinear map: The second argument Q of e(P,Q) is an element E(\mathbb{F}_{q^k}). Using a distortion map, one can consider Q to be an element of E(\mathbb{F}_q).
- Solution to DDH: given (P, aP, bP, Q) determine if Q = abP; verify e(aP, bP) = e(P, Q).
- Gap DH-groups: groups where CDH is hard but DDH is easy.

Joux's Key Agreement Protocol

3-party, single-round.

- Three users U_1, U_2 and U_3 ;
- U_i chooses a uniform random r_i and broadcasts $X_i = r_i P$;
- U_i computes $K = e(X_j, X_k)^{r_i}$, where $\{j, k\} = \{1, 2, 3\} \setminus \{i\};$

 $K = e(P, P)^{r_1 r_2 r_3}.$

Efficiency Improvements

- Irrelevant denominators: the denominator of $h_{P,R}$ need not be evaluated.
- Point tripling: the line through P and 2P passes through -3P;
 instead of doubling, use tripling;
 applicable for characteristics three curves.
- Variants: Ate and Eta pairings; the aim is to reduce the number of Miller iterations.
- Pairings on other forms of elliptic curves.
- Other implementation issues.

Pairing Friendly Curves

- Supersingular curves have embedding degree at most 6.
- Obtain non-supersingular curves with low embedding degree k; typically k ≤ 12; involves a lot of computation with computer algebra packages; only a few examples are known.
- Embedding degree and group size determines the security level of the target protocol.

Thank you for your kind attention!