6.7 Incremental construction

Given a set S = {p1,p2...pn} of n points on a plane, we want to find a pair of points
q,r € S such that d(p,q) = miny, , csd(p;, p;) where d() computes the Euclidean
distance between two points. The pair (¢, 7) is known as the closest pair and it may
not be unique. Moreover, the closest pair has distance zero if the points are not
distinct

In one dimension, it is easy to compute the closest pair by first sorting the points
and choosing an adjacent pair which has the minimum separation. A trivial algorithm
is to compute all the (;) pairs and choose the minimum separated pair, so we would
like to design a significantly faster algorithm.

A general approach to many similar problems is given in Figure 6.8. The idea is
to maintain the closest pair in an incremental fashion, so that in the end we have the
required result.

Algorithm 1: Closest pair(.S)

Input P ={p1,p2...pn} ;
1S ={p1,p2}; C=d(p1,p2); j =2 ;
2 while 7 <n do
3 if d(p;,S) < C then
4 L C = d(p;,q) where ¢ = argmin,cs d(p;,p)
5 P« PU{p;} j+j+1

6 Output C as closest pair distance.

Figure 6.8: Incremental Algorithm for closest pair computation

While the correctness of the algorithm is obvious, the analysis depends on the test
in line 3 and the update time in line 5. For simplicity, let us analyze the running
time for points in one dimension. Suppose the distances d(p;;1,S5;) are decreasing
where S; = {p1,p2...p;}. Then the closest pair distance C is updated in every step.
To find the closest point from p;;; to S;, we can maintain S; as a sorted set and
we can find the closest point from p;.; using a binary search in O(log j) = O(logn)
time. Overall, the algorithm takes O(nlogn) time which is the same as presorting
the points.

For points on a plane, we have to design a data structure to efficiently perform the
test in line 3 and update in line 5. Trivially it can be done in O(n) steps leading to
an O(n?) time algorithm. Instead we analyze the algorithm for a random ordering of

4So the lower bound for element distinctness would hold for the closest pair problem.

103

points in S. This will potentially reduce the number of updates required significantly
from the worst case bound of n—2 updates. Let ¢; denote the probability that point p;
causes an update when the points are inserted in a random order. A random ordering
corresponds to a random permutation of points in P. To avoid extra notations let us
assume that py, ps...p, is according to a randomly chosen permutation.

We can restate our problem as
When py,ps...p; is a random ordering of the set of points P = {p1,ps...p;} what is
the probability that p; defines the closest pair ?

Suppose the closest pair is unique, i.e., C = d(r, s) for some r,s € {p1,p2...p;i}.
Then, this probability is the same as the event that p; = {r, s}. The total number of
permutations of ¢ objects is i! and the total number of permutations with r or s as
the last element is 2(7 — 1)!. So the probability that p; defines C equals @ = %
In a random permutation of n elements, the previous argument holds for a fixed set
of 7 points. The law of total probability states that

Pr[A] = Pr[A|By] - Pr[B;] + Pr[A|Bs] - Pr[By] + ... Pr[A|By| - Pr[By]

6.7.6
for disjoint events By, Bs ... ()

In the above situation B; represent each of the (T;) possible choice of 7 elements as the
first ¢ elements and by symmetry the probabilities are equal as well as). Pr[B;] = 1.
Since Pr[A|B;] = 2, the unconditional probability of update in the -th step is 2.

This is very encouraging since the expected update cost of the i-th step is % ~U(1)
where U(i) is the cost of updating the data structure in the i-th step. Therefore even
for U(i) = O(ilogi), the expected update time is O(logi) = O(logn).

The situation for the test in line 3 is somewhat different since we will execute this
step regardless of whether update is necessary. Given S and a new point p;, we have
find the closest point from p; and S (and update if necessary). Suppose the closest
pair distance in S is D, then consider a D x D grid of the plane and each point of S
is hashed to the appropriate cell. Given the new point p; = (z;,y;), we can compute
the cell as [%], [%]. It can be seen (Figure 6.9) that the closest point to p; is within
distance D then it must lie in one of the neighboring grid cells, including the one
containing p;. We can exhaustively search each of the nine cells.

Claim 6.1 None of the cells can contain more than 4 points.

This implies that we need to do at most O(1) computations. These neighboring cells
can be stored in some appropriate search data structure (Exercise ?7) so that it can
be accessed in O(logi) steps. In line 4, this data structure can be rebuilt in O(ilog1)
time which results in an expected update time of O(logi). So, the overall expected
running time for the randomized incremental construction is O(nlogn).

104

