Randomized Techniques in Computational Geometry

I Fundamentals

Sandeep Sen
I.I.T. Delhi, India

Outline

- Kind of Problems
- Kind of Algorithms
- Random Sampling in Geometry
- Incremental Construction

Primary Source (for this talk)

- Clarkson and Shor, "Applications of random sampling in computational geometry". DCG 89.
- Reif and Sen"Optimal parallel randomized algorithms for 3-D hulls and related problems. SIAMJC 92.
- Mulmuley and Sen, Dynamic point location in arrangements of hyperplanes. DCG 92.
- Mulmuley "Computational Geometry : An introduction through randomized algorithms". Prentice Hall 94.

The problems addressed

- Range searching
- Ray shooting/Point location
- Planar partitioning
- Convex hulls
- Linear programming
- Nearest neighbour

The problems addressed cont'd

- Triangulation
- Hidden surface
- Levels of arrangements
- Diameter/ Width
- Euclidean minimum spanning tree

$$
\frac{\text { Exact computations }}{\text { "Real" RAM }}
$$

Randomization in Computational Geometry

- Improved Complexities

Range searching

- Simpler Algorithms

Convex hulls, triangulation, LP

- Dynamic Algorithms
with minimal modifications
- Parallel Algorithms

Faster, more efficient

Randomized Algorithms

- RNG $O(\log n)$ bits in constant time
- Assumes No input distribution
- Halts with a correct output
- Running time is bounded by some probability distribution

Expectation $[T]$
Tail estimates : Prob. $\left.\left[T_{n}>f(n)\right] \leq \epsilon\right]$

Elementary Tools

Probabilistic Inequalities :

- Markov only expectation
- Chernoff
moment generating function
- Chebychev intermediate(bounding random bits)

Linearity of Expectation

$$
E[X+Y]=E[X]+E[Y]
$$

for any X, Y not necessarily independent

$$
P(A \cup B) \leq P(A)+P(B)
$$

Notation : $\tilde{O}(\cdot) \stackrel{\text { def }}{=} O(\cdot) \quad$ with prob. $1-\frac{1}{n}$

Quick Sort

Ideal :

$$
\begin{aligned}
T(n) & =2 T(n / 2)+O(n) \\
& \leq O(n \log n)
\end{aligned}
$$

randomized : $T(n)=T\left(n_{1}\right)+T\left(n-n_{1}-1\right)+O(n)$
where n_{1} is a random variable in $[1, n]$

$$
E[T(n)]: O(n \log n)
$$

Generalized : r splitters

Ideal :

$$
\begin{aligned}
T(n) & =\sum T(n / r)+O(n \log r) \\
& \leq O(n \log n)
\end{aligned}
$$

$$
E[T(n)]: O(n \log n)
$$

Kind of sampling

Choose a random subset $R \subset N$

- with replacement
- without replacement
- Bernoulli sample (expected sample size is $|R|$ by picking every element with prob. $\left.\left(\frac{|R|}{|N|}\right)\right)$.
"parallel" sampling
Remark : Little difference in final results. We shall choose the one that simplifies proof.

Some Notations

N : set of objects $|N|=n$
$\sigma \quad:(D(\sigma) \quad L(\sigma)) \quad(D, L)$
configuration define conflict

Assumptions(for technical reasons)

- D is bounded by constant
- Valence (no. of σ with same $D(\sigma)$ is bounded

$$
\square
$$

18

19

Need for bounded degree

All lines tangential to a circle

Any subset of size r induces a face that intersects $n-r$ lines.

Some Notations cont'd

- $\Pi(N)$: set of configurations (multiset) over N
- $\Pi^{i}(N)$: set of configurations with conflict size $=i$
- $\Pi^{0}(R)$: configurations active

For $R \subset N, \sigma$ is feasible (for R) if $D(\sigma) \subset R$
We shall often use $\Pi(N)$ to also denote $|\Pi(N)|$

A simple combinatorial bound

Claim $\Pi^{a}(N)=O\left(2^{a+d} \cdot E\left[\Pi^{0}(R)\right]\right)$
where R is a random sample of size $n / 2$.
$\Pi^{0}(R)=\sum_{\sigma \in \Pi(N)} I_{\sigma, R}$
where $I_{\sigma, R}$ is 1 if σ is feasible.

$$
\begin{aligned}
& E\left[\Pi^{0}(R)\right]=E\left[\sum_{\sigma \in \Pi(N)} I_{\sigma, R}\right]=\sum_{\sigma \in \Pi(N)} E\left[I_{\sigma, R}\right] \\
& =\sum_{\sigma \in \Pi(N)} \operatorname{Pr}\left\{\sigma \in \Pi^{0}(R)\right\} \\
& \geq \sum_{\sigma \in \Pi^{a}(N)}\left\{\sigma \in \Pi^{0}(R)\right\} \\
& =\Pi^{a}(N) \cdot \frac{1}{2^{a+d}}
\end{aligned}
$$

Claim :

$$
\operatorname{Pr}\left\{\max _{\sigma \in \Pi^{0}(R)} l(\sigma) \geq c \frac{n}{r} \log r\right\} \leq \frac{1}{2}
$$

$|R|=r$ by Bernoulli sampling
$p(\sigma, r)$: conditional probability that none of the k conflicting element are selected given σ is feasible

$$
\begin{array}{lr}
\leq(1-r / n)^{k} \\
\leq e^{-c \log r} & \text { for } \\
& \frac{k \geq c n / r \ln r}{\text { BAD } \sigma} \\
=1 / r^{c} &
\end{array}
$$

$q(\sigma, r):$ Prob. that $D(\sigma) \subset R$
Prob. that $\sigma \in \Pi^{0}(R)=p(\sigma, r) \times q(\sigma, r)$
Prob. that some $\sigma \in \Pi^{0}(R)$ is $\underline{\mathbf{B A D}}(l(\sigma) \geq c(n \ln r) / r)$:

$$
\begin{aligned}
& \leq \frac{1}{r^{c}} \sum_{\sigma \in \Pi(N)} q(\sigma, r) \\
& =\frac{1}{r^{c}} \quad E[\Pi(R)] \\
& \left.\quad \quad \quad \text { usually } \Pi(R)=r^{O(1)}\right) \\
& \leq 1 / 2 \text { for appropriate } c
\end{aligned}
$$

Sum of subproblem sizes

Def: c-order conflict $\binom{l(\sigma)}{c}$, for some $c \geq 0$
Let $T_{c}=\sum_{\sigma \in \Pi^{0}(R)}\binom{l(\sigma)}{c}$
Remark For technical reasons it is not $l(\sigma)^{c} . T_{0}=\left|\Pi^{0}(R)\right| . T_{1}=$ sum of subproblems.

$$
\text { Claim } E\left[T_{c}\right]=O\left(\left(\frac{n}{r}\right)^{c} E\left[\Pi^{c}(R)\right]\right)
$$

For constant $c, E\left[\Pi^{c}(R)=O\left(E\left[\Pi^{0}(R)\right]\right.\right.$ implying that average conflict size is very close to $\frac{n}{r}$

$$
\begin{aligned}
& T_{c}=\sum_{\sigma \in \Pi(N)(R)}\binom{l(\sigma)}{c} I_{\sigma, R} \text { where } I_{\sigma, R}=1 \text { if } \sigma \in \Pi^{0}(R) . \\
& E\left[T_{c}\right]=\sum_{\sigma \in \Pi(N)}\binom{l(\sigma)}{c} p^{d(\sigma)} \cdot(1-p)^{l(\sigma)} \text { for } l(\sigma) \geq c . \\
& =\sum_{\sigma \in \Pi(N)}\binom{l(\sigma)}{c} p^{d(\sigma)+c} \cdot(1-p)^{l(\sigma)-c} \cdot\left(\frac{1-p}{p}\right)^{c} \\
& \leq\left(\frac{1-p}{p}\right)^{c} \cdot E\left[\Pi^{c}(R)\right]
\end{aligned}
$$

since
$\operatorname{Pr}\left\{\sigma \in \Pi^{c}(R)\right\}=\operatorname{Pr}\{d(\sigma)$ defining elements chosen and cout of $l(\sigma)$ conflicting elements not chosen\}

$$
\leq\left(\frac{1}{p}\right)^{c} \cdot E\left[\Pi^{c}(R)\right]
$$

where $p=\frac{r}{n}$.

Improvements - Tail estimates ?

Improvements - Tail estimates ?

$\operatorname{Pr}\left\{\right.$ no segments in S^{\prime} is selected $\} \geq\left(\frac{1}{2}\right)^{\log \log n}$

$$
=\Omega\left(\frac{1}{\log n}\right)
$$

\Rightarrow With Prob. $\Omega\left(\frac{1}{\log n}\right)$, \# of intersections is $\Omega(n \log \log n)$

Selecting a GOOD sample w.h.p.

Motivation: In divide-and-conquer algorithms, we are often interested in bounding the maximum size of subproblems for which we need tail estimates including the sum of subproblem sizes.

Since sample is $G O O D$ in the expected sense, the probability that the sum of subproblems is $\leq 2 \times E[$ sum of subproblems] is $\geq 1 / 2$ from Markov's inequality.

Implying
If we choose a set of $\log n$ independent samples - $R_{1}, R_{2} \ldots R_{\log n}$, at least one is GOOD w.h.p.

How do we know which is good?

Polling: an efficient resampling technique

1. Choose $c \log n$ samples
2. Poll (sample) $S^{\prime}=\frac{n}{\log ^{2} n}$ of the input
3. Estimate the goodness of the samples w.r.t. S^{\prime}. Choose an R_{i} that is good w.r.t. S^{\prime} (break ties arbitrarily).

Polling Lemma With high probability we obtain a good sample by the above procedure.

Consequences of Random Sampling

- Dynamization
- Existence of good splitters : The probabilistic method. There exists efficient derandomization by method of connditional probability and divide-and-conquer.
- Improved bounds for important combinatorial measures like $k-s e t s$.

Randomized Incremental Construction (RIC)

Starting from an empty set

Repeat:

1. Insert the next object
2. Update the partial construction (data-structures)

Total Time $=\sum_{i}$ Time to insert the i-th object.
$T_{s}(N)=$ Total time to insert a sequence $s .(s$ is good if total time is less).

Expected total time $=$ Expected time for a Random Insertion sequence (worst case for any input of size n).

Quicksort as R.I.C.

Gradual refinement of partition
$\begin{array}{llllllllllll}X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} & X_{7} & X_{8} & X_{9} & X_{10} & X_{11}\end{array}$
1
2
3
4
4
5
6
6
7
8
8
9
10
10. 1
2
3
3
4
5
6
6
7
8
9.
9.
10.
11.
(-inf, +inf)

Quicksort as R.I.C.

Conflict graph
$\begin{array}{lllllllllll}X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} & X_{7} & X_{8} & X 9 & X_{10} & X_{11}\end{array}$

Quicksort as R.I.C.

Conflict graph

A general bound for RIC

Total (amortised) cost $=O$ (edges created in conflict graph)
Edges can be deleted at most once
General Step: $R \leftarrow R \cup s$ (for a fixed $R^{\prime}=R \cup s$)
Expected work (\#edges created given R^{\prime})=

$$
\sum_{\sigma \in \Pi^{0}(R \cup s)} l(\sigma) \cdot \operatorname{Pr}\left\{\sigma \in \Pi^{0}(R \cup s)-\Pi^{0}(R)\right\}
$$

From backward analysis this probability equals $\frac{d(\sigma)}{r+1}$. Substituting

$$
\sum_{\sigma \in \Pi^{0}(R \cup s)} l(\sigma) \cdot \frac{d(\sigma)}{r+1}=\frac{d(\sigma)}{r+1} \sum_{\sigma \in \Pi^{0}(R \cup s)} l(\sigma)
$$

This is expected cost conditioned on $R^{\prime}=R \cup s$.

Unconditioned Cost

$\mathbb{E}[\#$ edges created $]=\mathbb{E}\left[\mathbb{E}\left[\#\right.\right.$ edges created $\left.\left.\mid R^{\prime}\right]\right]$
$=\frac{d(\sigma)}{r+1} \operatorname{Pr}\left(R^{\prime}\right.$ is chosen $) \cdot \sum_{R^{\prime}} \sum_{\sigma \in \Pi^{0}\left(R^{\prime}\right)} l(\sigma)=O\left(\frac{d(\sigma)}{r} \cdot \frac{n}{r} E\left[\Pi^{0}(R \cup s)\right]\right)$
A common scenario $E\left[\Pi^{0}(R)=O(r)\right.$.

$$
\text { Total expected cost of RIC }=\sum_{r=1}^{r=n} O\left(\frac{d}{r} \cdot n\right)
$$

$=O(n \log n)($ applicable to convex hulls)

OPEN PROBLEM

Tail estimates

Backward Analysis

For a fixed set of $i+1$ object, what is the probability that the $i+1$-st insertion affects σ ?

Because of random insertion sequence, any one of the fixed set of $i+1$ objects is equally likely to be the last inserted object (by symmetry)

What is the probability that a random deletion from $i+1$ objects defines σ ? (pretending to run backwards).

$$
\frac{d(\sigma)}{i+1}
$$

Since conditional expected cost depends only on i (independent of the actual set of objects)

Conditional expected cost $=($ Unconditional $)$ expected cost

Linear programming (fixed Dim.)

Max. X_{d}

Non degenerate : Exactly d constraints define the optimum.

Analysis

$\overline{T_{d}(n)}=$ Expected running time in d dimension for n constraints.
From backward analysis, probability that i-th insertion changes optimum is $\frac{d}{i}$ (d constraints define optimum).

$$
\overline{T_{d}(i)}=\overline{T_{d}(i-1)}+\overline{T_{d-1}(i-1)} \cdot \frac{d}{i}+O(d)
$$

By induction [Seidel]

$$
\overline{T_{d}(n)}=O(d!n)
$$

A generic search problem

Given a set $S \subset U$, build a data structure D, so that we can answer a query quickly.

Issues

- query time
- space for D (space)
- Preprocessing time to construct D

Dynamic version

- Insert update D for $S \cup x, x \in U-S$
- Delete update D for $S-x$

Ideal goal is to match the static performance and minimize update times.

Arrangement Searching

Problem : Given N lines(planes,hyperplanes), build data structure to do point location(report the face it lies in)

Arrangement Searching cont'd

Dynamic version :
Allow insertion/deletion of lines

Binary search

$$
T(n) \leq T\left(\frac{n}{2}\right)+O(1)
$$

Approximate split :

$$
T(n) \leq T(\alpha n)+O(1)
$$

where α is a constant <1 (independent of n)

$\underline{\text { Binary search cont'd }}$

Random split :

$$
T(n) \leq T(x)+O(1)
$$

where x is random variable uniformly distributed in [1..n]

$$
\operatorname{Pr}[T(n)>c \log n]<\frac{1}{n}
$$

Examples : - Randomized search trees

- Quick sort

Review of randomized search

Simple binary search

$$
T(n)=T\left(\frac{n}{2}\right)+O(1)
$$

Approximate Split

$$
T(n) \leq T(\alpha \cdot n)+O(1), \alpha<1
$$

Random Split

$$
T(n) \leq T(X)+O(1)
$$

X is a r.v. $\in[1 \ldots n]$

$$
\operatorname{Pr}[T(n)>c \log n]<\frac{1}{n}
$$

Randomized Search Trees/Quicksort

Generalizing the randomized search tree

- Choose a good sample R of size C.
- Split the input using R and build the data structure recursively for each subset.
R is good if each subproblem size is less than $n / 2$
- C is large enough such that R is good with probability $\geq 1 / 2$, i.e. expected number of repetition ≤ 2.
- Height of data structure is $O(\log n)$, so search time is $O(\log n)$
- Space Fragmentation makes it super-linear space. In this case
$O\left(C^{2} \frac{n}{C} \log C\right)$ or

$$
O(n C \log C)
$$

From triangles to triangles

$\underline{\text { Reviewing skip list }}$

0 -

\bigcirc \bigcirc \bigcirc \bigcirc) ○
-
\bigcirc)
\bigcirc) \bigcirc \bigcirc

Reviewing skip list cont'd

$\underline{\text { Reviewing skip list cont'd }}$
\bigcirc
O
\bigcirc
○
\bigcirc
O
0
O
0

A slightly different version

Choose an element to be in the sample with probbility 0.5

Expectation $\left[L_{i}\right]=2$
$\underline{\text { PUGH Exp. }}$ [Total] $=O(\log n)$
Improvement with careful analysis [Sen 91]:
Total $<c \log n$ with probability $1-\frac{1}{n^{c}}$

Overall structure

Overall structure

Descendence oracle for skip-lists

For each level L_{i}, maintain a linked-list of elements of L_{i-1} that an interval $[a, b], a, b \in L_{i}$ intersects.
L_{i}
L_{i-1}

Descendence oracle for arrangement searching

How many triangles of level i intersect a triangle of level $i-1$? $O\left(\frac{n}{r}\right)$ whp from Random sampling lemma

Descendence oracle can be a simple data structure storing the intersections between triangles of successive levels and takes time $O(\log n)$ w.h.p.
implying $O\left(\log ^{2} n\right)$ time w.h.p for overall query.
$\underline{\text { Updates }}$

Update

Zone lemma

Size of zone is $O(n)$, i.e. only $O(n)$ triangles must be updates at each level.

Bounds

- Searching $O(\log n)$ w,h.p.
- Update $O(n \log n)$ w.h.p.
- Space $O\left(n^{2}\right)$

$$
\text { Dimension } d \text { (fixed) }
$$

- Searching $O\left(\log ^{d-1} n\right)$ w.h.p.
- Update $O\left(n^{d-1} \log n\right)$ w.h.p.
- Space $O\left(n^{d}\right)$
[Mu-Sen]

