
Chapter 2

Basics of Probability and Tail
Inequalities

Randomized algorithms use random coin tosses to guide the progress of the algorithm.
Although the actual performance of the algorithm may depend on the outcomes of
these coin tosses, it turns out that one can often show that with reasonable probability,
the algorithm has the desired properties. This model can dramatically improve the
power of an algorithm. We will give examples where this ability can lead to very
simple algorithms, and in fact sometimes randomization turns out to be necessary. In
this chapter, we begin with the basics of probability. We relate the notion of a random
variable with the analysis of a randomized algorithm – often, the running time of a
randomized algorithm will be a random variable. We will then describe techniques
for bounding the probibility of a random variable exceeding certain values, thereby
bounding the running time.

Note Since randomized techniques have been used extensively used as a basic
tool, this chapter lays down some of the foundations of such applications for readers
who are not familiar with this methodology. For others, this chapter can be used as
reference as required.

2.1 Basics of Probability Theory

In this section, we do a brief review of the axiomatic approach to probability theory.
We will deal with the discrete case only. We begin with the notion of a sample space,
often denoted by Ω. It can be thought of as the set of outcomes (or elementary
events) in an experiment. For example, if we are rolling a dice, then Ω can be defined
as the set of 6 possible outcomes. In an abstract setting, we will define Ω to be
any set (which will be finite or countably infinite). To see an example where Ω can
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be infinite, consider the following experiment: we keep tossing a coin till be see a
Heads. Here the set of possible outcomes are infinite – for any integer i ≥ 0, there
is an outcome consisting of i Tails followed by a Heads. Given a sample space Ω, a
probability measure Pr assigns a non-negative real value pω to each elementary event
ω ∈ Ω. The probability measure Pr should satisfy the following condition:

∑

ω∈Ω

pω = 1. (2.1.1)

A probability space consists of a sample space Ω with a probability measure associated
with the elementary events. In other words, a probability space is specified by a pair
(Ω,Pr) of sample space and probability measure. Observe that the actual probability
assigned to each elementary event (or outcome) is part of the axiomatic definition of
a probability space. Often one uses prior knowledge about the experiment to come
up with such a probability measure. For example, if we assume that a dice is fair,
then we could assign equal probability, i.e., 1/6 to all the 6 outcomes. However, if
we suspect that the dice is biased, we could assign different probabilities to different
outcomes.

Example 2.1 Suppose we are tossing 2 coins. In this case the sample space is
{HH,HT, TH, TT}. If we think all 4 outcomes are equally likely, then we could
assign probability 1/4 to each of these 4 outcomes. However, assigning probability
0.3, 0.5, 0.1, 0.1 to these 4 outcomes also results in a probability space.

We now define the notion of an event. An event is a subset of Ω. Probability of an
event E is defined as

∑
ω∈E pω, i.e., the total sum of probabilities of all the outcomes

in E.

Example 2.2 Consider the experiment of throwing a dice, i.e., Ω = {1, 2, 3, 4, 5, 6},
and suppose the probabilities of these outcomes (in this sequence) are 0.1, 0.2, 0.3,
0.2, 0.1, 0.1. Then {2, 4, 6} is an event (which can be also be defined as the event
that the outcome is an even number) whose probability is 0.2 + 0.2 + 0.1 = 0.5.

The following properties follow immediately from the definition of the probability of
an event (proof deferred to exercises):

1. For all A ⊂ Ω , 0 ≤ Pr[A] ≤ 1

2. Pr[Ω] = 1

3. For mutually disjoint events E1, E2 . . . ,Pr[∪iEi] =
∑

i Pr[Ei]

The principle of Inclusion-Exclusion also has its counterpart in the probabilistic
world, namely
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Lemma 2.1

Pr[∪iEi] =
∑

i

Pr[Ei]−
∑

i<j

Pr[Ei ∩ Ej ] +
∑

i<j<k

Pr[Ei ∩ Ej ∩ Ek] . . .

Example 2.3 Suppose we pick a number uniformly at random from 1 to 1000. We
would like to calculate the probability that it is divisible by either 3 or 5. We can
use the principle of inclusion-exclusion to calculate this. Let E be the event that it is
divisible by either 3 or 5. Let E1 be the event that it is divisible by 3 and E2 be the
event that it is divisible by 5. By the inclusion-exclusion principle

Pr[E] = Pr[E1] + Pr[E2]− Pr[E1 ∩ E2].

Clearly E1 happens if we pick a multiple of 3. The number of multiples of 3 in the
range [1, 1000] is ⌊1000/3⌋ = 333, and so, Pr[E1] =

333
1000 . Similarly, Pr[E2] =

200
1000 .

It remains to compute Pr[E1 ∩ E2]. But note that this is exactly the probability that
the number is divisible by 15, and so, it is equal to ⌊1000/15⌋

1000 = 66
1000 . Thus, the desired

probability is 467/1000.

Definition 2.1 The conditional probability of E1 given E2 is denoted by Pr[E1|E2]
and is given by

Pr[E1 ∩ E2]

Pr[E2]

assuming Pr[E2] > 0.

Definition 2.2 A collection of events {Ei|i ∈ I} is independent if for all subsets
S ⊂ I

Pr[∩i∈SEi] = Πi∈S Pr[Ei]

Remark E1 and E2 are independent if Pr[E1|E2] = Pr[E1].
The notion of independence often has an intuitive meaning – if two events depend

on experiments which do not share any random bits respectively, then they would be
independent. However, the converse may not be true, and so the only way to verify
if two events are independent is to check the condition above.

Example 2.4 Suppose we throw two die. Let E1 be the event that the sum of the
two numbers is an even number. It is easy to check that E1 = 1/2. Let E2 be the
event that the first dice has outcome “1”. Clearly, Pr[E2] = 1/6. It is also clear that
Pr[E1 ∩ E2] is 1/12 – indeed, for E1 ∩ E2 to occur, the second dice can have only 3
outcomes. Since Pr[E1 ∩ E2] = Pr[E1] · Pr[E2], these two events are independent.

We now come to the notion of a random variable.
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Definition 2.3 A random variable (r.v.) X is a real-valued function over the sample
space, X : Ω→ R.

In other words, a random variable assigns a real value to each outcome of an experi-
ment.

Example 2.5 Consider the probability space defined by the throw of a fair dice. Let
X be function which is 1 if the outcome is an even number, and 2 if the outcome is
an odd number. Then X is a random variable. Now consider the probability space
defined by the throw of 2 fair die (where each of the 36 outcomes are equally likely).
Let X be a function which is equal to the sum of the values of the two die. Then X
is also a random variable which takes values in the range {2, . . . , 12}.

With each random variable X, we can associate several events. For example, given
a real x, we can define the event [X ≥ x] as the set {ω ∈ Ω : X(ω) ≤ x}. One can
similarly define the events [X = x], [X < x], and in fact [X ∈ S] for any subset S of
real numbers1. The probability associated with the event [X ≤ x] (respectively, [X <
x]) are known as cumulative density function, cdf (respectively probability density
function or pdf) and help us to characterize the behavior of the random variable X.
As in the case of events, one can also define the notion of independence for random
variables. Two random variables X and Y are said to be independent if for all x and
y in the range of X and Y respectively

Pr[X = x, Y = y] = Pr[X = x] · Pr[Y = y].

It is easy to check from the above definition that if X and Y are independent random
variables, then

Pr[X = x|Y = y] = Pr[X = x].

As in the case of events, we say that a set of random variables X1, . . . , Xn are mutually
independent if for all reals x1, . . . , xn, where xi lies in the range of Xi, for all i =
1, . . . , n,

Pr[X1 = x1, X2 = x2, . . . , Xn = xn] =
n∏

i=1

Pr[Xi = xi].

The expectation of a r.v. X , whose range lies in a (countable) set R, is denoted by
E[X] =

∑
x∈R x · Pr[X = x]. The expectation can be thought of as the typical value

of X if we conduct the corresponding experiment. One can formalise this intuition
– the law of large number states that if we repeat the same experiment many times,
then the average value of X is very close to E[X] (and gets arbitrarily close as the
number of experiments goes to infinity).

1We are only considering the case when X can be countably many different values.
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A very useful property of expectation, called the linearity property, can be stated
as follows

Lemma 2.2 If X and Y are random variables, then

E[X + Y ] = E[X] + E[Y ]

Remark Note that X and Y do not have to be independent !
Proof: Assuming R be the union of ranges of X and Y – we will assume that R is
countable, though the result holds in general as well. We can assume that both X
and Y have range R (if r ∈ R is not in the range of X , we can add it to the range of
X with the provision that Pr[X = r] = 0). Then,

E[X + Y ] =
∑

r1∈R,r2∈R

(r1 + r2) Pr[X = r1, Y = r2].

If X and Y were independent, we could have just written Pr[X = r1, Y = r2] as
Pr[X = r1] · Pr[Y = r2], and the result would follow trivially.

We proceed as follows:
∑

r1∈R,r2∈R

(r1 + r2) Pr[X = r1, Y = r2] =
∑

r1∈R,r2∈R r1 · Pr[X = r1, Y = r2]

+
∑

r1∈R,r2∈R r2 Pr[X = r1, Y = r2].(2.1.2)

If X and Y were independent, we could have just written Pr[X = r1, Y = r2] as
Pr[X = r1] · Pr[Y = r2], and the result would follow trivially.
Now observe that

∑
r1∈R,r2∈R r1 · Pr[X = r1, Y = r2] can be written as

∑
r1∈R1

r1 ·∑
r2∈R2

Pr[X = r1, Y = r2]. But now observe that
∑

r2∈R2
Pr[X = r1, Y = r2] is just

Pr[X = x1], and so
∑

r1∈R1
r1 ·
∑

r2∈R2
Pr[X = r1, Y = r2] is same as E[X ]. One can

similarly show that the other term in the RHS of (2.1.2) is equal to E[Y ]. ✷

The linearity of expectation property has many surprising applications, and can
often be used to simplify many intricate calculations.

Example 2.6 Suppose we have n letters meant for n different people (with their
names written on the respective letters). Suppose we randomly distribute the letters to
the n people (more formally, we assign the first letter to a person chosen uniformly at
random, the next letter to a uniformly chosen person from the remaining n−1 persons,
and so on). Let X be the number of persons who receive the letter meant for them.
What is the expectation of X? We can use the definition of X to calculate this quantity,
but the reader should check that even the expression of Pr[X = r] is non-trivial, and
then, adding up all such expressions (weighted by the corresponding probability) is
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a long calculation. We can instead use linearity of expectation to compute E[X ] in
a very simple manner as follows. For each person i, we define a random variable
Xi, which takes only two values – 0 or 1 2. We set Xi to 1 if this person receives
the correct letter, otherwise to 0. It is easy to check that X =

∑n
i=1Xi, and so, by

linearity of expectation, E[X ] =
∑

i E[Xi]. It is easy to compute E[Xi]. Indeed it is
equal to 0 · Pr[Xi = 0] + 1 · Pr[Xi = 1] = Pr[Xi = 1]. Now Pr[Xi = 1] is 1/n because
this person receives each of the n letters with equal probability. Therefore, E[X ] = 1.

Lemma 2.3 For independent random variables X, Y ,

E[X · Y ] = E[X ] · E[Y ]

Proof:

E[XY ] =
∑

i

∑

j

xi · yjP (xi, yj) where P denotes joint distribution ,

=
∑

i

∑

j

xi · yjpX(xi) · pY (yj) from independence of X, Y

=
∑

i

xipX(xi)
∑

j

yjpY (yj)

= E[X ] · E[Y ]

✷

As in the case of events, we can also define conditional expectation of a random
variable given the value of another random variable. Let X and Y be two random
variables. Then, the conditional expectation of X given [Y = y] is defined as

E[X|Y = y] =
∑

x

Pr x · [X = x|Y = y]

The theorem of total expectation that can be proved easily states that

E[X ] =
∑

y

E[X|Y = y]

2These are called indicator random variables and often simplify calculations in many situations.
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2.2 Tail inequalities

In many applications, especially in the analysis of randomized algorithms, we would
like to bound the running time of our algorithm (or the value taken by some other
random variable). Although one can compute the expectation of a random variable,
it may not give any useful information about how likely the random variable is going
to be close to its expectation. For example, consider a random variable which is
uniformly distributed in the interval [0, n], for some large number n. Its expectation
is n/2, but the probability that it lies in the interval [n/2(1−δ), n/2(1+δ)] is only 2δ,
where δ is a small constant. We will see examples of other random variables where
this probability will be very close to 1. Therefore, to say something more meaningful
about a random variable, one needs to look beyond its expectation. The law of large
number states that if we take many independent trials of a random variable, then
the average value taken by the random variable over these trials converges (almost
certainly) to the expectation. However, it does not say anything about how fast this
convergence happens, or how likely the random variable is going to be close to its
expectation if we perform this experiment only once.

In this section, we give various inequalities which bound the probability that a
random variable deviates from its expectation by a large amount. The foremost such
inequality is the Markov’s inequality, which just uses the expectation of a random
variable. As mentioned above, it may not yield very strong bounds, but it is the best
one can say when we do not have any other information about the random variable.

As a running example, we will use a modification of the experiment considered
in the previous chapter. We are given an array A of size m (which is even). Half of
the elements in A are colored red and the rest are colored green. We perform the
following experiment n times independently: pick a random element of A, and check
its color. Define X as a random variable which counts the number of times we picked
a green element. It is easy to show, using linearity of expectation, that E[X ] is n/2.
We would now be interested in tail inequalities which bound the probability that X
deviates from its mean.
Markov’s inequality Let X be a non-negative random variable. Then

Pr[X ≥ kE[X ]] ≤ 1

k
(2.2.3)

This result is really an “averaging” argument (for example, in any class consisting
of n students, at most half the students can get twice the average marks). The proof
of this result also follows easily. Let R be the range of X ≥ 0.

E[X ] =
∑

r∈R

r · Pr[X = r] ≥
∑

r∈R:r≥kE[X]

r · Pr[X = r] ≥ kE[X] ·
∑

r∈R:r≥kE[X]

Pr[X = r]

= kE[X ] Pr[X ≥ kE[X ]]
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Cancelling E[X ] on both sides yields Markov’s inequality. Unfortunately there is no
symmetric result which bounds the probability of events [X < kE[X ]], where k < 1.
To see why Markov’s inequality cannot yield a two-sided bound, consider the following
example.

Example 2.7 Let X be a random variable which takes two values - 0 with proability
(1− 1/n), and n2 with probability 1/n (think of n as a large number). Then E[X ] is
n. However, Pr[X < n/2] is 1− 1/n, which is very close to 1.

We now apply this inequality on our running example.

Example 2.8 In the example of array A with elements colored red or green, we know
that E[X] = n/2. Therefore, we see that Pr[X > 3n/4] ≤ 1/4.

Note that we get a very weak bound on the probability that [X ≥ 3n/4] in the
example above. Ideally, one would think that the probability of this event would go
down as we increase n (and indeed, this is true). However, Markov’s inequality is not
strong enough to prove this. The reason for this is that one can easily design random
variables X whose expectation is n/2 but the probability of going above 3n/4 is at
most 2/3. The extra information, that X is a sum of several independent random
variables, is not exploited by Markov’s inequality. Also, notice that we cannot say
anything about the probability of the event [X ≤ n/4] using Markov’s inequality. We
now show that there are inequalities which can exploit facts about higher moments
of X , and give stronger bounds.

The notion of expectation of random variable can be extended to functions f(X)
of random variable X in the following natural way (we can think of Y := f(X) as a
new random variable)

E[f(X)] =
∑

i

pif(X = i)

The variance of a random variable is given by E[X2]−E[X ]2. Consider the random
variable X in Example 2.7. Its variance is equal to

E[X2]− E[X ]2 = n3 − n2.

Let us now compute the variance of the random variable in our running example. We
first show that if X1 and X2 are two independent random variables then variance of
X1+X2 is sum of the variance of the two random variables. The variance of X1+X2

is given by

E[(X1 +X2)
2]− E[X1 +X2]

2 = E[X2
1 ] + E[X2

2 ] + 2E[X1X2]− E[X1]
2 − E[X2]

2 − 2E[X1]E[X2]

= E[X2
1 ]− E[X1]

2 + E[X2
2 ]− E[X2]

2,
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because E[X1X2] = E[X1]E[X2] (we use independence of these two random variables
here). The same observation extends by induction to sum of several random variables.
Let us apply this observation to our running example. Let Xi be the random variable
which is 1 if we pick a green element on the ith trial, 0 otherwise. Variance of Xi

is E[X2
i ] − E[Xi]2. Since Xi is a 0-1 random variable, E[X2

i ] = E[Xi], and so, its
variance is 1/2− 1/4 = 1/4. Let X denote the total number of green elements seen.
So, X =

∑n
i=1Xi and its variance is n/4.

If we have bounds on the variance of a random variable, then the following gives
a stronger tail bound
Chebychev’s inequality

Pr[|X − E[X ]| ≥ t] ≤ σ

t2
(2.2.4)

where σ is the variance of X . The proof of this inequality follows from applying
Markov’s inequality on the random variable Y := (X − E[X])2. Observe that this is
a two-sided inequality – not only it bounds the probability that X goes much above
its mean, but also the probability of X going much below its mean.

Example 2.9 We now apply this inequality to our running example. We get

Pr[X ≥ 3n/4] ≤ Pr[|X − E[X ] ≥ n/4|] ≤ n/4

9n2/16
=

4

9n
.

Thus this probability goes to 0 as n goes to infinity.

We see in the example above that Chebychev inequality gives a much stronger bound
than Markov’s inequality. In fact, it is possible to get much stronger bounds. Cheby-
chev just uses bounds on the second moment of X . With knowledge of higher mo-
ments, we can give tighter bounds on probability that X deviates from its mean by a
large amount. If X =

∑n
i Xi is the sum of n mutually independent random variables

where each Xi is Bernoulli random variable (i.e., takes values 0 or 1 only), then
Chernoff bounds gives

Pr[X ≥ (1 + δ)µ] ≤ eδµ

(1 + δ)(1+δ)µ
, (2.2.5)

where δ is any positive parameter and µ denotes E[X ]. The analogous bound for
deviations below the mean is as follows:

Pr[X ≤ (1− δ)µ] ≤ eδµ

(1 + δ)(1+δ)µ
, (2.2.6)

where δ lies between 0 and 1.
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Before we get into the proof of these bounds, we state more usable versions which
often suffice in practice. It is easy to check that for any δ > 0, ln(1 + δ) > 2δ

2+δ .
Therefore

δ − (1 + δ) ln(1 + δ) ≤ − δ2

2 + δ
.

Taking exponents on both sides, we see that

eδµ

(1 + δ)(1+δ)µ
≤ e−

δ2µ
2+δ .

Thus we get the following:

• For 0 ≤ δ ≤ 1,
Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/3, (2.2.7)

and
Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/3 (2.2.8)

• For δ > 2,
Pr[X ≥ (1 + δ)µ] ≤ e−δµ/2 (2.2.9)

Prob(X ≥ m) ≤
(np
m

)m
em−np (2.2.10)

We now give a proof of the Chernoff bound (2.2.5). The proof for the case (2.2.6)
is analogous.

Pr[X ≥ (1 + δ)µ] = Pr[eλX ≥ eλ(1+δ)µ] ≤ E[eλX ]
eλ(1+δ)µ

,

where λ is a positive parameter that we shall fix later, and the last inequality follows
from Markov’s inequality. Notice that E[eλX ] = E[

∏n
i=1 e

λXi] =
∏n

i=1 E[eλXi ] because
X1, . . . , Xn are mutually independent. Let pi denote the probability with which Xi

takes the value 1. Then E[eλXi ] = (1−pi)+pi ·eλ = 1+pi(eλ−1) ≤ epi(e
λ−1), because

1 + x ≤ ex for any positive x. Since µ =
∑n

i=1 pi, we get we get

Pr[X ≥ (1 + δ)µ] ≤ eµ(e
λ−1)

eλ(1+δ)µ
.

Now we choose λ > 0 to minimise the right hand side, i.e., to minimise eλ−λ(1+ δ).
It is easy to check that this is minimised at λ = ln(1 + δ). Substituting this value of
λ in the RHS of the inequality above gives us the Chernoff bound (2.2.5).
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Example 2.10 We now apply Chernoff bound to our running example. Here µ =
n/2. Using δ = 1/2 in (2.2.7) to get

Pr[X ≥ 3n/4] ≤ e−n/12.

Note that for large values of n this is much sharper bound than the one obtained using
Chebychev’s inequality.

Example 2.11 (Balls in Bins) Suppose we throw n balls into n bins, where each ball
is thrown independently and uniformly at random into one of the bins. Let Yi denote
the number of balls which fall in bin i. We are interested in the random variable
Y := maxni=1 Yi, i.e., the maximum number of balls which fall in a bin. We will use
Chernoff bound to show that Y is O(lnn) with high probability. Let us first consider
a fixed bin i and show that Yi is O(lnn) with high probability. For a ball j, let Xj be
the indicator random variable which is 1 if ball j falls in bin i, 0 otherwise. Clearly,
Pr[Xj = 1] is 1/n. Now, Yi =

∑n
j=1Xj, and so, E[Yi] = 1. Since X1, . . . , Xn are

independent Bernoulli random variables, we can apply (2.2.9) with δ = 4 lnn to get

Pr[Yi ≥ 4 lnn + 1] ≤ e−2 lnn = 1/n2.

Now we use union bound to get

Pr[Y ≥ 4 lnn+ 1] ≤
n∑

i=1

Pr[Yi ≥ 4 lnn+ 1] ≤ 1/n.

Thus, with probability at least 1− 1/n, no bin gets more than 4 lnn + 1 balls.
It turns out that one can get a sharper bound if we use (2.2.5) directly. It is left

as an exercise to show that Y is O(lnn/ ln lnn) with high probability.

Example 2.12 Suppose we toss a fair coin n times independently. What is the
absolute value of the difference between the number of Heads and the number of Tails
? Using Chernoff bounds, one can show that this random variable is very likely to be
O(
√
n). To see this, let Xi be the indicator random variable which is 1 if the outcome

of the ith coin toss is Heads, 0 otherwise. Then the random variable X =
∑n

i=1Xi

counts the number of Heads which are seen during this experiment. Clearly, µ :=
E[X ] = n/2. Using δ = 3/

√
n in (2.2.7) and in (2.2.8), we see that Pr[|X − n/2| ≥√

n] is at most e−3, which is about 0.05.

2.3 Generating Random numbers

The performance of any randomized algorithm is closely dependent on the underly-
ing random number generator (RNG) in terms of efficiency. A common underlying
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assumption is availability of a RNG that generates a number uniformly in some range
[0, 1] in unit time or alternately logN independent random bits in the discrete case
for the interval [0 . . . N ]. This primitive is available in all standard programming
languages - we will refer to this RNG as U . We will need to adapt this to various
scenarios that we describe below.

2.3.1 Generating a random variate for an arbitrary distribu-
tion

We consider a discrete distribution D, which is specified by distribution function
f(s), s = 1, . . . , N . We would like to generate a random variate according to D.
The distribution D can be thought of generating a random variable X with weight
wi = f(i) where

∑
i wi = 1. A natural way to sample from such a distribution is as

follows. We can divide the interval [0, 1] into consecutive subintervals I1, I2 . . . such
that Ij has length wj . Now, using the RNG U , we sample a random point in the
interval [0, 1]. If it falls in the interval Ij, we output j. It is easy to see that the
probability that this random variable takes value j is exactly f(j).

As stated, the above process can take O(N) time because we need to figure out
the interval in which the randomly chosen point lies. We can make this more ef-
ficient by using binary search. More formally, let F (j) denote

∑j
i=1 f(i) – it is

also called the cumulative distribution function (CDF) of D. Clearly, the sequence
F (1), F (2), . . . , F (N) = 1 forms a monotonically non-decreasing sequence. Given a
number x in the range [0, 1], we can use binary search to find the index j such that
x lies between F (j) and F (j+1). Therefore, we can sample from this distribution in
O(logN) time.

This idea of dividing the unit interval into discrete segments does not work for a
continuous distribution (for example, the normal distribution). However, we can still
use a simple extension of the previous idea. A continuous distribution is specified by
a CDF F (), where F (s) is supposed to indicate the probability of taking a value less
than or equal to s. We assume that F () is continuous (note that F (−∞) = 0 and
F (+∞) = 1). In order to sample from this distribution, we again a sample a value x
uniformly from [0, 1] using U . Let s be a value such that F (s) = x (we are assuming
we can compute F−1, in the discrete case, we were using a binary search procedure
instead). We output the value s. It is again easy to check that this random variable
has distribution given by D.

2.3.2 Generating random variables from a sequential file

Suppose a file contains N records from which we would like to sample a subset of n
records uniformly at random. There are several approaches to this basic problem:
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• Sampling with replacement We can use U to repeatedly sample an element from
the file. This could lead to duplicates.

• Sampling without replacement We can use the previous method to choose the
next sample but we will reject duplicates. The result is an uniform sample but
the efficiency may suffer. In particular, the expected number of times we need
to invoke the RNG for the k-th sample is N

N−k (see exercises).

• Sampling in a sequential order Here we want to pick the samples S1, S2 . . . Sn

in an increasing order from the file, i.e., Si ∈ [1 . . .N ] and Si < Si+1. This
has applications to processes where can scan the records exactly once and we
cannot retrace.

Suppose we have selected S1, . . . , Sm so far, and scanned the first t elements.
Conditioned on these events, we select the next element (as Sm+1) with proba-
bility n−m

N−t . Again we implement this process by choosing a random value x in
the range [0, 1] using U and then checking if x happens to be more or less than
n−m
N−t .

In order to show that this random sampling procedure is correct, let us calculate
the probability that this process selects elements s1, . . . , sn, where 1 ≤ s1 ≤ s2 ≤
. . . ≤ sn ≤ N . Let us condition on the fact that S1 = s1, . . . , Sm = sm. What is
the probability that Sm+1 = sm+1. For this to happen we must not select any
of the elements in sm + 1, . . . , sm+1 − 1, and then select sm+1. The probability
of such an event is exactly

n−m

N − sm+1
·
sm+1−1∏

t=sm+1

(
1− n−m

N − t

)
.

Taking the product of the above expression for m = 1, . . . , n, we see that the
probability of selecting s1, . . . , sn is exactly 1

(Nn)
.

Although the above procedure works, it calls U N times. Here is a more efficient
process which calls U fewer number of times. It is easy to check that the
distribution of Si+1 − Si is given by (see exercises)

F (s) = 1−
(
(N−t−s)
(n−m)

)

(
(N−t)
(n−m)

) s ∈ [t+ 1, N ]. (2.3.11)

Thus we can sample random variables from the distribution S1, S2−S1, . . . , Sn−
Sn−1, and then select the corresponding elements.
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• Sampling in a sequential order from an arbitrarily large file: This case is same
as above except that we do not know the value of N . This is the typical scenario
in a streaming algorithm (see Chapter 16).

In this case, we always maintain the following invariant:

Among the i records that we have scanned so far, we have a sample of n elements
chosen uniformly at random from these i elements.

Note that the invaraint makes sense only when i ≥ n because the n samples
are required to be distinct. Further, when i = n, the first n records must be
chosen in the sample. Now assume that this invariant holds for some i ≥ n.
Let Sn,i denote the random sample of n elements at this point of time. When
we scan the next record (which may not happen if the file has ended), we want
to restore this invariant for the i+ 1 records. Clearly the i+ 1-th record needs
to be in the sample with some probability, say pi+1 and if picked, one of the
previous sampled records must be replaced.

Note that pi+1 = n
i+1 . This follows from the fact that there are

(
i+1
n

)
ways of

selecting n samples from the first i + 1 elements, and exactly
(

i
n−1

)
of these

contain i+ 1. Therefore,

pi+1 =

(
i

n−1

)
(
i+1
n

) =
n

i+ 1
.

If the (i+1)-th record is indeed chosen, we drop one of the previously chosen n
samples with equal probability. To see this, notice that the invariant guarantees
that the set Sn,i is a uniformly chosen sample of n elements. We claim that
dropping one of the samples uniformly at random gives us Sn−1,i, i.e., a uniform
n−1 sample. The probability that a specific subset of n−1 elements, say S∗ is
chosen is the probability that S∗∪{x} was chosen, (x ̸∈ S∗) and x was dropped.
You can verify that

1

n
· (i− n + 1) · 1(

i
n

) =
1(
i

n−1

)

where the term (i − n + 1) represents the number of choices of x. The RHS
is the uniform probability of an n − 1 sample. Thus the sampling algorithm
is as follows: when we consider record i + 1, we select it in the sample with
probability n

i+1 – if it gets selected, we drop one of the earlier chosen samples
with uniform probability.
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Procedure Random Permutation({x1, x2 . . . xn})
1 Input : Objects {x1, x2 . . . xn} ;
2 Output: A random permutation Π = {xσ(1), xσ(2) . . . xσ(n)} ;
3 Initialize an array of size m(> n) as unmarked ;
for i = 1 to n do

4 while A[j] is marked do
5 Generate a random number j ∈U [1, m] ;

6 A[j]← i ;
7 mark A[j] ;

8 Compress the marked locations in A[1, n] and Return A where σ(A[j]) = j ;

Figure 2.1: Generating a random permutation of n distinct objects

2.3.3 Generating a random permutation

Many randomized algorithms rely on the properties of random permutation to yield
good expected bounds. Some algorithms like Hoare’s quicksort or randomized incre-
mental construction actually start from the assumption on an initial random order.
However, the input may not have this property, in which case the onus is on the
algorithm to generate a random permutation. Broadly speaking, any such algorithm
must have access to random numbers and also ensure that all the permuations of the
input objects are equally likely outcomes.

We describe the algorithm in Figure 2.1. The algorithm runs in n iterations, in
the ith iteration, it assigns xi to a random location in the permutation. It places the
ordered elements (according to the random permutation) in an array A. Note that
the size of A is slightly larger than n, and so, some positions in A will remain empty
at the end. Still, we can read the permutation from A by scanning it from left to
right.

In the array A, the algorithm marks the locations which are occupied. The main
loop tries to assign xi to a random location among the unmarked (unoccupied) loca-
tions in the array A. For this, it keeps trying until it finds a free position. We need
to prove the following
(i) After termination, all permutations are equally likely.
(ii) The expected number of executions of the loop is not too large - preferably linear
in n.
(iii) Returning the n elements in contiguous locations takes m steps.

To balance (ii) and (iii), we have to choose m somewhat carefully. We make some
simple observations
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Claim 2.1 If the number of unmarked locations in A is t, then each of the t locations
is chosen with equal likelihood.

This follows from a simple application of conditional probability, conditioned on a
location being unmarked. Consider any fixed set N of distinct n locations. Condi-
tioned on assigning the elements x1, x2 . . . xn to N , all permutations of x1, x2 . . . xn

are equally likely. Again this follows from the observation that, after x1.x2 . . . xi are
assigned, xi+1 is uniformly distributed among the unoccupied n − i locations. Since
this holds for any choice of N , the unconditional distribution of the permutations is
also the same.

The number of iterations depend on the number of unsucessful attempts to find
an unassigned location. The probability of finding an unassigned location after i
assignments is m−i

m = 1 − i
m . Since the locations are chosen independently, the

expected number of iterations to find a free location for the xi+1 is
m

m−i and from the
linearity of expectation, the total expected number of iterations is

n−1∑

i=0

m

m− i
= m

(
1

m
+

1

m− 1
. . .

1

m− n + 1

)
(2.3.12)

So, m = n, this is O(n logn) whereas for m = 2n, this becomes O(n). Since the
probabilities are independent, we can obtain concentration bounds for deviation from
the expected bounds using Chernoff-Hoefding bounds as follows.

What is the probability that the number of iterations exceed 3n for m = 2n ?
This is equivalent to finding fewer than n assignments in 3n iterations. Let pi =

2n−i
2n ,

then for i ≤ n, pi ≥ 1/2 where pi is the probability of finding a free location for
xi. Let us define 0-1 random variables Xi such that Xi = 1 if the i-th iteration is
successful, i.e., we find an unmarked location. To terminate, we need n unmarked
locations. From our previous observation, Pr[Xi = 1] ≥ 1/2. So E[

∑3n
i=1Xi] ≥ 3n/2.

Let X =
∑

i Xi be the number of successes in 3n/2 iterations. Then X is a sum of
independent Bernoulli random variables and a straightforward application of Chernoff
bounds (Equation 2.2.8 shows that

Pr[X < n] = Pr[X < (1− 1/3)E[X ]] ≤ exp(−3n
36

)

which is inverse exponential.

Claim 2.2 A random permutation of n distinct objects can be generated in O(n) time
and O(n) space with high probability.

The reader would have noted that as m grows larger, the probability of encountering
a marked location decreases. So, it is worth estimating for what value of m, there

48



will be exactly n iterations with high probability, i.e., no reassignment will be neces-
sary. This could be useful in online applications where we need to generate random
permutations. Using Equation 2.2.10, we can bound the probability that the number
random asignments in a location exceeds 1 as

( n

2m

)2
e2−n/m ≤ O(n2/m2)

Note that the expected number of assignments in a fixed location µ = n
m . From union

bound, the probability that any of the m locations has more than 1 assignment is
bound by O(n

2

m ). So, by choosing m = Ω(n2), with probability 1−O(n
2

m ) the number
of iterations is n, i.e., there is no reassignment required.

Further Reading

There are several excellent textbooks on introductory probability theory and random-
ized algorithms []. Most of the topics covered in this chapter are classical, and are
covered in these texts in more detail. Chernoff bounds are among the most power-
ful tail inequalities when we are dealing with independent random variables. There
are similar bounds which sometimes give better results depending on the parameters
involved, e.g., Hoeffding’s bound. Maintaining a random sample during a streaming
algorithm is a common subroutine used in many streaming algorithms (see e.g., Chap-
ter 16). The idea that picking n elements out of an array of size 2n or more results in
small repetitions is often used in many other applications, for example hashing (see
Chapter!??).

Exercises

Exercise 2.1 Consider the experiment of tossing a fair coin till two heads or two
tails appear in succession.
(i) Describe the sample space.
(ii) What is the probability that the experiment ends with an even number of tosses ?
(iii) What is the expected number of tosses ?

Exercise 2.2 In a temple, thirty persons give their shoes to the caretaker who hands
back the shoes at random. What is the expected number of persons who get back their
own shoes.

Exercise 2.3 A chocolate company is offering a prize for anyone who can collect
pictures of n different cricketers, where each wrap has one picture. Assuming that
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each chocolate can have any of the pictures with equal probability, what is the expected
number of chocolates one must buy to get all the n different pictures ?

Exercise 2.4 There are n letters which have corresponding n envelopes. If the letters
are put blindly in the envelopes, show that the probability that none of the letters goes
into the right envelope tends to 1

e as n tends to infinity.

Exercise 2.5 Imagine that you are lost in a new city where you come across a cross-
road. Only one of them leads you to your destination in 1 hour. The others bring you
back to the same point after 2,3 and 4 hours respectively. Assuming that you choose
each of the roads with equal probability, what is the expected time to arrive at your
destination ?

Exercise 2.6 A gambler uses the following strategy. The first time he bets Rs. 100
- if he wins, he quits. Otherwise. he bets Rs. 200 and quits regardless of the result.
What is the probability that he goes back a winner assuming that he has probability
1/2 of winning each of the bets. What is the generalization of the above strategy ?

Exercise 2.7 Gabbar Singh problem Given that there are 3 consecutive blanks
and three consecutive loaded chambers in a pistol, and you start firing the pistol from
a random chamber, calculate the following probabilities. (i) The first shot is a blank
(ii) The second shot is also a blank given that the first shot was a blank (iii) The third
shot is a blank given that the first two were blanks.

Exercise 2.8 In the balls in bins example 2.11, show that the maximum number of
balls in any bin is O(lnn/ ln lnn) with high probability.

Exercise 2.9 Suppose we throw m balls independently and uniformly at random in
n bibs. Show that if m ≥ n lnn, then the maximum number of balls received by any
bin is O(m/n) with high probability.

Exercise 2.10 Three prisoners are informed by the jailor that one of them will be
acquited without divulging the identity. One of the prisoners requests the jailor to
divulge the identity of one of the other prisoner who won’t be acquited. The jailor
reasons that since at least one of the remaining two will not be acquited, reveals the
identity. However this makes this prisoner very happy. Can you explain this ?

Exercise 2.11 For random variables X, Y , show that
(i) E[X · Y ] = E[Y × E[X|Y ]]
(ii) E[E[X|Y ]] = E[X ]
(iii) E[φ1(X1) · φ2(X2)] = E[φ1(X1)] · E[φ2(X2)] for functions φ1,φ2 of random vari-
ables.
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Exercise 2.12 Give an example to show that even if E[X · Y ] = E[X ] · E[Y ], the
random variables X, Y may not be independent.
Hint: Consider X and some appropriate function of X.

Exercise 2.13 Let Y =
∑n

i=1Xi where Xis are identically distributed random vari-
ables with expectation µ. If n is a non-negative integral random variable, then Y is
known as random sum. Show that E[Y ] = µ · E[n].
Exercise 2.14 Let Y be a random variable that denotes the number of times a fair
dice must be rolled till we obtain a six. Assume that the outcomes are independent of
each other. How many times do we have to roll the dice to obtain k successes ?
Let X be a random variable that denotes this, then
(i) Compute E[X]
(ii) Show that Pr[X ≥ 10k] ≤ 1

2k using Chernoff bounds.
The distribution of Y is known as geometric and X is known as negative binomial.

Exercise 2.15

For a discrete random variable X , eXs is known as the moment generating function
and let M(s) = E[esX ]. Show that
E[Xk] = dkM

dsk |s=0, k = 1, 2, . . .. This is a useful formulation for computing the k-th
moment of a random variable.
Hint: Write down the series for esX .

Exercise 2.16 Let G(n, p) be a graph on n vertices where we add an edge between
every pair of vertices independently with probability p. Let X denote the number of
edges in the graph G(n, p). What is the expectation of X ? What is the variance of
X?

Exercise 2.17 Let G(n, p) be as above. A triangle in this graph is a set of three
vertices {u, v, w} (note that it is an unordered triplet) such that we have edges between
all the three pairs of vertices. Let X denote the number of triangles in G(n, p). What
are the expectation and the variance of X?

Exercise 2.18 Consider the algorithm for sampling from a continuous distribution
in Section 2.3.1. Prove that the random variable has the desired distribution.

Exercise 2.19 Consider the problem of uniformly sampling n distinct elements from
a file containing N elements. Suppose we have already sampled a set S k elements.
For the next element, we keep on selecting a uniform sample from the file till we get
an element which is not in S. What is the expected number of times we need to sample
from the file?

Exercise 2.20 Consider the problem of sampling in a sequential order. Prove that
the distribution of Si − Si−1 is given by the expression in 2.3.11.
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